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We investigate the solvability of a fully fourth-order periodic boundary value problemof the form 𝑥
(4)

= 𝑓(𝑡, 𝑥, 𝑥

, 𝑥

, 𝑥

),𝑥(𝑖)(0) =

𝑥
(𝑖)
(𝑇), 𝑖 = 0, 1, 2, 3, where 𝑓 : [0, 𝑇] × R4 → R satisfies Carathéodory conditions. By using the coincidence degree theory, the

existence of nontrivial solutions is obtained. Meanwhile, as applications, some examples are given to illustrate our results.

1. Introduction

In this paper, we consider a fully nonlinear fourth-order
periodic boundary value problem of the form

𝑥
(4)

= 𝑓 (𝑡, 𝑥, 𝑥

, 𝑥

, 𝑥

) , (1)

subject to the boundary conditions

𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝑇) , 𝑖 = 0, 1, 2, 3, (2)

where 𝑓 : [0, 𝑇] × R4 → R = (−∞, +∞) satisfies Carathé-
odory conditions; that is,

(i) for a.e. 𝑡 ∈ [0, 𝑇], the function 𝑓(𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) :

R4 → R is continuous;
(ii) for every (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ R4, the function

𝑓(𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) : [0, 𝑇] → R is measurable;
(iii) for each 𝜌 > 0, there is a real valued function ℎ𝜌(⋅) ∈

𝐿
1
[0, 𝑇] such that





𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)





≤ ℎ𝜌 (𝑡) , (3)

for a.e. 𝑡 ∈ [0, 𝑇] and 𝑥
2
0 + 𝑥
2
1 + 𝑥
2
2 + 𝑥
2
3 < 𝜌
2.

It is well known that fourth-order periodic boundary
value problems are important research topics which arise in a
variety of different areas, such as nonlinear oscillations, fluid

mechanical, and nonlinear elastic mechanical phenomena,
and thus have been extensively studied; for instance, see [1–
30] and references therein. However, most of the works in the
above-mentioned references allow only having 𝑡, 𝑥 or 𝑡, 𝑥, 𝑥
in the right-hand side nonlinear function 𝑓; see [2–11, 13, 15–
18, 20–30]. The works on the fully nonlinear cases of which
𝑓 contains explicitly 𝑡 and every derivative of 𝑥 up to order
three have been quite rarely seen; see [1, 12, 14, 19].

The aim of this paper is to establish the existence of
solutions and nontrivial solutions for the fully nonlinear
fourth-order PBVP (1), (2). Our main tool is the coincidence
degree theory. The paper [31] motivated our study.

2. Preliminary

In this section, we present some lemmaswhich are needed for
our main results.

At first, we will briefly recall some notations that are
needed for our discussion.

Let 𝑋, 𝑍 be real Banach spaces. A linear mapping 𝐿 :

dom 𝐿 ⊂ 𝑋 → 𝑍 will be called a Fredholm mapping of index
zero if the following two conditions hold:

(i) Im 𝐿 is a closed subspace of 𝑍;

(ii) dimKer𝐿 = codimIm𝐿 < +∞.
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Let𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 be a Fredholmmapping of index
zero; then there exist continuous projectors 𝑃 : 𝑋 → 𝑋 and
𝑄 : 𝑍 → 𝑍 such that

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿, (4)

so that

𝑋 = Ker 𝐿 ⊕ Ker𝑃, 𝑍 = Im 𝐿 ⊕ Im𝑄. (5)

It follows that 𝐿|dom𝐿∩Ker𝑃 : dom 𝐿 ∩ Ker𝑃 → Im 𝐿 is
invertible. We denote the inverse of that map by 𝐾𝑃. Let Ω
be an open bounded subset of 𝑋 such that dom 𝐿 ∩ Ω ̸= 0;
the map 𝑁 : 𝑋 → 𝑍 will be called 𝐿-compact on Ω, if
𝑄𝑁 : Ω → 𝑍 and𝐾𝑃(𝐼 − 𝑄)𝑁 : Ω → 𝑋 are compact.

Lemma 1 (see [32]). Let 𝐿 : dom 𝐿 → 𝑍 be a linear Fredholm
mapping of index zero and let Ω ⊂ 𝑋 be an open bounded set.
Let 𝑁 : Ω → 𝑍 be 𝐿-compact on Ω and let 𝐴 : 𝑋 → 𝑍 be
𝐿-completely continuous such that

(i) Ker(𝐿 − 𝐴) = {0};
(ii) for every (𝑥, 𝜆) ∈ (dom 𝐿 ∩ 𝜕Ω) × (0, 1),

𝐿𝑥 − (1 − 𝜆)𝐴𝑥 − 𝜆𝑁𝑥 ̸= 0, (6)

and assume that 0 ∈ Ω. Then equation

𝐿𝑥 = 𝑁𝑥 (7)

has at least one solution in dom 𝐿 ∩ Ω.

Lemma2 (see [33]). Let𝐿 : dom 𝐿 → 𝑍 be a linear Fredholm
mapping of index zero and let Ω ⊂ 𝑋 be an open bounded set.
Let𝑁 : Ω → 𝑍 be 𝐿-compact onΩ and the coincidence degree
𝐷[(𝐿,𝑁), Ω] is well defined. If there exists 𝑧 ∈ 𝑍 with 𝑧 ̸= 0

such that

𝐿𝑥 − 𝑁𝑥 ̸= 𝜆𝑧, ∀ (𝑥, 𝜆) ∈ (dom 𝐿 ∩ 𝜕Ω) × [0, +∞) , (8)

then𝐷[(𝐿,𝑁), Ω] = 0.

In the following, we take Banach space𝑋 = 𝐶
3
[0, 𝑇]with

the norm ‖𝑥‖𝐶3 = ∑
3

𝑖=0 ‖𝑥
(𝑖)
‖∞, and 𝑍 = 𝐿

1
[0, 𝑇]. Define a

linear map 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑍 by

(𝐿𝑥) (𝑡) = 𝑥
(4)

(𝑡) , ∀𝑥 ∈ dom 𝐿, (9)

where dom 𝐿 = {𝑥 ∈ 𝑊
4,1

(0, 𝑇) : 𝑥
(𝑖)
(0) = 𝑥

(𝑖)
(𝑇), 𝑖 =

0, 1, 2, 3} and 𝑊
4,1

(0, 𝑇) is the usual Sobolev space. It is easy
to see that 𝐿 is a Fredholmmapping of index zero. Also define
a nonlinear map𝑁 : 𝑋 → 𝑍 by

(𝑁𝑥) (𝑡) = 𝑓 (𝑡, 𝑥, 𝑥

, 𝑥

, 𝑥

) , ∀𝑥 ∈ 𝑋. (10)

Define two projects 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 → 𝑍 as
follows:

𝑃𝑥 =

1

𝑇

∫

𝑇

0

𝑥 (𝑡) d𝑡, ∀𝑥 ∈ 𝑋;

𝑄𝑧 =

1

𝑇

∫

𝑇

0

𝑧 (𝑡) d𝑡, ∀𝑧 ∈ 𝑍.

(11)

Let 𝐺(𝑡, 𝑠) be Green function for the homogeneous BVP

𝑥
(4)

(𝑡) = 0, 0 < 𝑡 < 𝑇,

∫

𝑇

0

𝑥 (𝑡) d𝑡 = 0, 𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝑇) , 𝑖 = 0, 1, 2, 3.

(12)

Then 𝐾𝑃 : Im 𝐿 → dom 𝐿 ∩ Ker𝑃 can be given by

(𝐾𝑃𝑧) (𝑡) = ∫

1

0
𝐺 (𝑡, 𝑠) 𝑧 (𝑠) d𝑠, ∀𝑧 ∈ Im 𝐿. (13)

Hence the map 𝐾𝑃 : Im 𝐿 → dom 𝐿 ∩ Ker𝑃 is continuous.
We note that if 𝑓 : [0, 𝑇] ×R4 → R satisfying Carathéodory
conditions, then 𝑁 : 𝑋 → 𝑍 is bounded and continuous by
Lebesgue’s dominated convergence theorem. Furthermore,𝑁
is 𝐿-compact on every bounded set Ω ⊂ 𝑋.

3. Main Results

For ℎ ∈ 𝐿
1
[0, 𝑇] and 𝑟 ∈ (0, +∞) we put

ℎ0 = exp(2∫

𝑇

0

ℎ (𝑡) d𝑡) , 𝑟0 = 𝑟 + 𝑒ℎ0𝑇
3
;

𝜀 ∈ (0,min{

1

2𝑟0𝑇
, (

2𝜋

𝑇

)

4

}) , 𝑟3 = ℎ0 exp (2𝜀𝑟0𝑇) ;

𝑟2 = 𝑟3𝑇, 𝑟1 = 𝑟2𝑇.

(14)

In order to introduce our main theorem, we need some
lemmas.

Lemma 3. Let ℎ ∈ 𝐿
1
[0, 𝑇] be a nonnegative function and

𝑟 ∈ (0, +∞). Let 𝑟0, 𝑟1, 𝑟2, 𝑟3, and 𝜀 fulfil (14). Then for any
𝑥 ∈ dom 𝐿, the inequalities

|𝑥 (𝑡)| ≤ 𝑟0,





𝑥

(𝑡)






≤ 𝑟1,






𝑥

(𝑡)






≤ 𝑟2,

∀𝑡 ∈ [0, 𝑇] ,

(15)

𝑥
(4)

(𝑡) sign𝑥


(𝑡) ≤ ℎ (𝑡)






𝑥


(𝑡)






+ 𝜀 |𝑥 (𝑡)|

𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ {𝑡 ∈ [0, 𝑇] :






𝑥


(𝑡)






≥ 1}

(16)

imply





𝑥


(𝑡)






< 𝑟3, ∀𝑡 ∈ [0, 𝑇] . (17)

Proof. Since 𝑥 ∈ dom 𝐿, there exists 𝑡0 ∈ (0, 𝑇) such that

𝑥


(𝑡0) = 0. (18)

We will show that





𝑥


(𝑡)






< √𝑟3, ∀𝑡 ∈ [𝑡0, 𝑇] . (19)

By contradiction, assume that there exists 𝑡1 ∈ (𝑡0, 𝑇] such
that






𝑥


(𝑡1)





≥ √𝑟3. (20)



Journal of Applied Mathematics 3

Then there exists 𝑡2 ∈ (𝑡0, 𝑡1) such that





𝑥


(𝑡2)





= 1,






𝑥


(𝑡)






≥ 1, ∀𝑡 ∈ [𝑡2, 𝑡1] . (21)

There are two cases to consider.

Case 1. Consider 𝑥(𝑡) ≥ 1 on [𝑡2, 𝑡1]. In this case, integrating
(16) from 𝑡2 to 𝑡1 and using (15) and (21) we infer that

∫

𝑡1

𝑡2

𝑥
(4)

(𝑡)

𝑥


(𝑡)

d𝑡 ≤ ∫

𝑡1

𝑡2

(ℎ (𝑡) + 𝜀𝑟0) d𝑡 < ∫

𝑇

0

ℎ (𝑡) d𝑡 + 𝜀𝑟0𝑇.

(22)

Thus 𝑥(𝑡1) < √𝑟3, which contradicts (20).

Case 2. Consider 𝑥(𝑡) ≤ −1 on [𝑡2, 𝑡1]. Similar to Case 1, we
have

∫

𝑡1

𝑡2

−𝑥
(4)

(𝑡)

−𝑥


(𝑡)

d𝑡 ≤ ∫

𝑡1

𝑡2

(ℎ (𝑡) + 𝜀𝑟0) d𝑡 < ∫

𝑇

0

ℎ (𝑡) d𝑡 + 𝜀𝑟0𝑇.

(23)

Thus, 𝑥(𝑡1) > −√𝑟3, which contradicts (20). Therefore (19)
is true. Furthermore, from the fact 𝑥(0) = 𝑥


(𝑇) it follows

that |𝑥(0)| < √𝑟3.
Finally, we show that






𝑥


(𝑡)






< 𝑟3, ∀𝑡 ∈ [0, 𝑡0] . (24)

Suppose on the contrary that there exists 𝑡3 ∈ (0, 𝑡0) satisfying





𝑥


(𝑡3)





≥ 𝑟3. (25)

Then there exists 𝑡4 ∈ (0, 𝑡3) such that





𝑥


(𝑡4)





= √𝑟3,






𝑥


(𝑡)






≥ √𝑟3, ∀𝑡 ∈ [𝑡4, 𝑡3] . (26)

There are two cases to consider.

Case 1. Consider 𝑥(𝑡) ≥ √𝑟3 on [𝑡4, 𝑡3]. Similar to Case 1,
we have 𝑥(𝑡3) < 𝑟3, which contradicts (25).

Case 2. Consider 𝑥(𝑡) ≤ −√𝑟3 on [𝑡4, 𝑡3]. Similar to Case
2, one has 𝑥(𝑡3) > −𝑟3, which also contradicts (25). Hence
(24) is true.

In summary, from (19) and (24) it follows that estimate
(17) holds. This completes the proof of the lemma.

Lemma 4. Let 𝑟 ∈ (0, +∞) and let ℎ ∈ 𝐿
1
[0, 𝑇] be a

nonnegative function. Let 𝑟0, 𝑟1, 𝑟2, 𝑟3, and 𝜀 fulfil (14). Then
for any function 𝑥 ∈ dom 𝐿 the inequalities






𝑥


(𝑡)






< 𝑟3, ∀𝑡 ∈ [0, 𝑇] , (27)

𝜇𝑥
(4)

(𝑡) sign𝑥 (𝑡) > 0 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ {𝑡 ∈ [0, 𝑇] : |𝑥 (𝑡)| ≥ 𝑟}

(28)

imply

|𝑥 (𝑡)| < 𝑟0,





𝑥

(𝑡)






< 𝑟1,






𝑥

(𝑡)






< 𝑟2,

∀𝑡 ∈ [0, 𝑇] .

(29)

Proof. For every 𝑥 ∈ dom 𝐿, from (28), there exist 𝑡0, 𝑡1, 𝑡2 ∈
[0, 𝑇] such that





𝑥 (𝑡0)





< 𝑟, 𝑥


(𝑡1) = 0, 𝑥


(𝑡2) = 0. (30)

Integrating (27) by (14) and (30) we get





𝑥

(𝑡)






< 𝑟3𝑇 = 𝑟2,






𝑥

(𝑡)






< 𝑟2𝑇 = 𝑟1 on [0, 𝑇] ,

|𝑥 (𝑡)| < 𝑟 + 𝑟2𝑇
2
< 𝑟0 on [0, 𝑇] .

(31)

This completes the proof of the lemma.

Now, we apply Lemma 1 to establish the existence results
of solutions for the fourth-order PBVP (1), (2).

Theorem 5. Assume that there exist 𝜇 ∈ {−1, 1}, 𝑟 ∈ (0, +∞),
and a nonnegative function ℎ ∈ 𝐿

1
[0, 𝑇]. Suppose further that

(H0) 𝑓 : [0, 𝑇] × R4 → R satisfies the Carathéodory
conditions;

(H1) if |𝑥0| ≥ 𝑟, |𝑥1| ≤ 𝑟1, |𝑥2| ≤ 𝑟2, |𝑥3| ≤ 𝑟3, then

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) sign𝑥0 ≥ 0 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, 𝑇] ; (32)

(H2) if |𝑥0| ≤ 𝑟0, |𝑥1| ≤ 𝑟1, |𝑥2| ≤ 𝑟2, |𝑥3| ≥ 1, then

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) sign𝑥3 ≤ ℎ (𝑡)




𝑥3






𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, 𝑇] ,

(33)

where 𝑟0, 𝑟1, 𝑟2, 𝑟3 fulfil (14). Then PBVP (1), (2) has at
least one solution 𝑥 such that






𝑥
(𝑖)

(𝑡)






≤ 𝑟𝑖, 𝑖 = 0, 1, 2, 3, ∀𝑡 ∈ [0, 𝑇] . (34)

Proof. Let

Ω = {𝑥 ∈ 𝑋 :






𝑥
(𝑖)

(𝑡)






< 𝑟𝑖, 𝑖 = 0, 1, 2, 3, 𝑡 ∈ [0, 𝑇]} . (35)

Then 𝑥 ∈ 𝜕Ω iff there exist some 𝑗 ∈ {0, 1, 2, 3} such that

max
0≤𝑡≤𝑇






𝑥
(𝑗)

(𝑡)






= 𝑟𝑗,






𝑥
(𝑖)

(𝑡)






≤ 𝑟𝑖, 𝑖 = 0, 1, 2, 3,

𝑡 ∈ [0, 𝑇] .

(36)

Now, we show that

Ker (𝐿 − 𝐴) = {0} , (37)

where 𝐴 : 𝑋 → 𝑍, 𝑥 → 𝜇𝜀𝑥. To do this, we assume that
𝑥(𝑡) is the solution of the following periodic boundary value
problem:

𝑥
(4)

(𝑡) = 𝜇𝜀𝑥 (𝑡) , a.e. 𝑡 ∈ (0, 𝑇) ,

𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝑇) , 𝑖 = 0, 1, 2, 3.

(38)

Integrating the equation as above on [0, 𝑇], we obtain

∫

𝑇

0

𝑥 (𝑡) d𝑡 = 0. (39)



4 Journal of Applied Mathematics

Thus, by Wirtinger inequality,






𝑥
(𝑖)


2

≤

𝑇

2𝜋






𝑥
(𝑖+1)



2
, 𝑖 = 0, 1, 2, 3. (40)

Hence from (38) it follows that

‖𝑥‖2 ≤ (

𝑇

2𝜋

)

4





𝑥
(4)



2

≤ 𝜀(

𝑇

2𝜋

)

4

‖𝑥‖2.
(41)

If ‖𝑥‖2 > 0, then, from 𝜀 < (2𝜋/𝑇)
4, the following

contradiction holds:

‖𝑥‖2 < ‖𝑥‖2. (42)

Therefore, Ker(𝐿 − 𝐴) = {0}.
Finally, we show that, for every (𝑥, 𝜆) ∈ (dom 𝐿 ∩ 𝜕Ω) ×

(0, 1),

𝐿𝑥 − (1 − 𝜆)𝐴𝑥 − 𝜆𝑁𝑥 ̸= 0. (43)

To do this, let 𝜆 ∈ (0, 1) and let 𝑥𝜆 ∈ Ω be a solution of the
following PBVP:

𝑥
(4)

= 𝜆𝑓 (𝑡, 𝑥, 𝑥

, 𝑥

, 𝑥

) + (1 − 𝜆) 𝜇𝜀𝑥,

𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝑇) , 𝑖 = 0, 1, 2, 3.

(44)

Then 𝑥𝜆 ∉ 𝜕Ω. In fact, let





𝑥𝜆 (𝑡)





≤ 𝑟0,






𝑥


𝜆 (𝑡)





≤ 𝑟1,






𝑥


𝜆 (𝑡)





≤ 𝑟2,

∀𝑡 ∈ [0, 𝑇] .

(45)

Then, by (33),

𝑥
(4)

𝜆
sign𝑥



𝜆 = 𝜆𝑓 sign𝑥


𝜆

+ (1 − 𝜆) 𝜇𝜀𝑥𝜆 sign𝑥


𝜆 ≤ ℎ (𝑡)






𝑥


𝜆






+ 𝜀





𝑥𝜆





,

(46)

for a.e. 𝑡 ∈ {𝑡 ∈ [0, 𝑇] : |𝑥

𝜆 (𝑡)| ≥ 1}. Applying Lemma 3, we

obtain





𝑥


𝜆 (𝑡)






< 𝑟3, ∀𝑡 ∈ [0, 𝑇] . (47)

Thus according to (32), we have

𝜇𝑥
(4)

𝜆
sign𝑥𝜆 = 𝜆𝜇𝑓 sign𝑥𝜆 + 𝜇

2
(1 − 𝜆) 𝜀





𝑥𝜆





> 0, (48)

for a.e. 𝑡 ∈ {𝑡 ∈ [0, 𝑇] : |𝑥𝜆(𝑡)| ≥ 𝑟}. It follows from Lemma 4
that





𝑥𝜆 (𝑡)





< 𝑟0,






𝑥


𝜆 (𝑡)





< 𝑟1,






𝑥


𝜆 (𝑡)





< 𝑟2,

∀𝑡 ∈ [0, 𝑇] .

(49)

Thus 𝑥𝜆 ∉ 𝜕Ω. This implies that condition (ii) of Lemma 1 is
valid.

In summary, all conditions of Lemma 1 are satisfied.
Therefore the conclusion ofTheorem 5 holds. This completes
the proof of the theorem.

Next, we establish the existence result of nontrivial
solutions for the fourth-order PBVP (1), (2) by means of
Lemma 2.

Theorem 6. Assume that all conditions in Theorem 5 hold
with the exception of (H1), which is replaced by the following:

(H1) there exists a constant 𝑟
∗
∈ (0, 𝑟) such that if 𝑥0 > −𝑟

∗,
|𝑥1| ≤ 𝑟1, |𝑥2| ≤ 𝑟2, |𝑥3| ≤ 𝑟3, then

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) ≥ 0 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, 𝑇] , (50)

and if 𝑥0 < −𝑟, |𝑥1| ≤ 𝑟1, |𝑥2| ≤ 𝑟2, |𝑥3| ≤ 𝑟3, then

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) ≤ 0 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ [0, 𝑇] . (51)

Then PBVP (1), (2) has at least one nontrivial solution 𝑥

satisfying (34).

Proof. From the proof of Theorem 5 and Lemma 1, it follows
that 𝐿𝑥 = 𝑁𝑥 has a solution in

Ω = {𝑥 ∈ 𝑋 :






𝑥
(𝑖)

(𝑡)






< 𝑟𝑖, 𝑖 = 0, 1, 2, 3, 𝑡 ∈ [0, 𝑇]} , (52)

and |𝐷[(𝐿,𝑁), Ω]| = 1. Without loss of generality, we assume
that 𝜇 = 1 and 𝐵𝑟∗ = {𝑥 : ‖𝑥‖𝐶3 < 𝑟

∗
} ⊂ Ω. We also assume

that 𝐿𝑥 ̸= 𝑁𝑥 for all 𝑥 ∈ 𝜕𝐵𝑟∗ .
Now we assert that

𝐷[(𝐿,𝑁) , 𝐵𝑟∗] = 0. (53)

In fact, suppose that there exist 𝑥0 ∈ 𝜕𝐵𝑟∗ and 𝜆0 > 0 such
that

𝐿𝑥0 − 𝑁𝑥0 = 𝜆0. (54)

Applying 𝑄 to both sides of above equality, it follows that

−𝑄𝑁𝑥0 = 𝜆0𝑄 (1) ; (55)

that is,

−

1

𝑇

∫

𝑇

0

𝑓 (𝑡, 𝑥0 (𝑡) , 𝑥


0 (𝑡) , 𝑥


0 (𝑡) , 𝑥


0 (𝑡)) d𝑡 = 𝜆0.
(56)

Notice that ‖𝑥0‖𝐶3 = 𝑟
∗ and 𝐵𝑟∗ ⊂ Ω; we have

𝑥0 (𝑡) ≥ −




𝑥0




∞

≥ −




𝑥0




𝐶3

= −𝑟
∗
, ∀𝑡 ∈ [0, 𝑇] ,






𝑥


0 (𝑡)





≤ 𝑟1,






𝑥


0 (𝑡)





≤ 𝑟2,






𝑥


0 (𝑡)






≤ 𝑟3,

∀𝑡 ∈ [0, 𝑇] .

(57)

Consequently, from assumption (H1) one has

𝑓 (𝑡, 𝑥0 (𝑡) , 𝑥


0 (𝑡) , 𝑥


0 (𝑡) , 𝑥


0 (𝑡)) ≥ 0 for a.e. 𝑡 ∈ [0, 𝑇] .

(58)

This together with (56) it follows that

𝜆0 ≤ 0, (59)
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which is a contradiction. This implies that

𝐿𝑥 − 𝑁𝑥 ̸= 𝜆, ∀𝑥 ∈ 𝜕𝐵𝑟∗ , ∀𝜆 ≥ 0. (60)

Thus from Lemma 2 it follows that

𝐷[(𝐿,𝑁) , 𝐵𝑟∗] = 0. (61)

Hence

𝐷[(𝐿,𝑁) , Ω \ 𝐵𝑟∗] = 𝐷 [(𝐿,𝑁) , Ω] − 𝐷 [(𝐿,𝑁) , 𝐵𝑟∗] ̸= 0.

(62)

Therefore 𝐿𝑥 = 𝑁𝑥 has a solution in Ω \ 𝐵𝑟∗ ; that is, PBVP
(1), (2) has at least one nontrivial solution.This completes the
proof of the theorem.

Finally, we give some examples to illustrate our results.

Example 7. Consider the fourth-order periodic boundary
value problem

𝑥
(4)

(𝑡) = 𝜆ℎ (𝑡) (𝑥 (𝑡) + 1) 𝑒
𝑥(𝑡)𝑥

(𝑡)
(𝑥

(𝑡))

2
(𝑥


(𝑡) + 𝑐) ,

a.e. 𝑡 ∈ [0, 𝑇] ,

𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝑇) , 𝑖 = 0, 1, 2, 3,

(63)

where 𝜆 is a parameter, ℎ ∈ 𝐿
1
[0, 𝑇] is nonnegative, and

𝑐 ∈ (exp(2∫

𝑇

0

ℎ (𝑡) d𝑡 + 1) , +∞) (64)

is a constant.
Let

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝜆ℎ (𝑡) (𝑥0 + 1) 𝑒
𝑥0𝑥1

𝑥
2

2 (𝑥3 + 𝑐) . (65)

Then 𝑓 : [0, 𝑇] ×R4 → R satisfies Carathéodory conditions.
Taking any 𝑟 ∈ (1, +∞), then 𝑟0, 𝑟1, 𝑟2, and 𝑟3 are well defined
by (14).

Now, we assert that all conditions of Theorem 5 are
satisfied when

𝜆 ∈ [−

1

(𝑟0 + 1) 𝑒
𝑟0𝑟1𝑟
2
2 (𝑟3 + 𝑐)

,

1

(𝑟0 + 1) 𝑒
𝑟0𝑟1𝑟
2
2 (𝑟3 + 𝑐)

] .

(66)

In fact, without loss of generality, we can assume𝜆 ∈ [−1/(𝑟0+

1)𝑒
𝑟0𝑟1

𝑟
2
2(𝑟3+𝑐), 0]. In this case, we choose 𝜇 = −1. It is easy to

see that, for every (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ [𝑟, +∞) ×R2 × [−𝑟3, 𝑟3],

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) sign𝑥0 ≥ 0, a.e. 𝑡 ∈ [0, 𝑇] , (67)

and, for every (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ (−∞, −𝑟] ×R2 × [−𝑟3, 𝑟3],

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) sign𝑥0 ≥ 0, a.e. 𝑡 ∈ [0, 𝑇] . (68)

Hence condition (H1) of Theorem 5 is satisfied. In addition,
for |𝑥0| ≤ 𝑟0, |𝑥1| ≤ 𝑟1, |𝑥2| ≤ 𝑟2, |𝑥3| ≥ 1, we have

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) sign𝑥3

≤ |𝜆| ℎ (𝑡) (




𝑥0





+ 1) 𝑒

|𝑥0𝑥1|
𝑥
2

2 (




𝑥3





+ 𝑐)

≤ ℎ (𝑡)





𝑥3





+ 𝑐

𝑟3 + 𝑐

≤ ℎ (𝑡)




𝑥3





, a.e. 𝑡 ∈ [0, 𝑇] .

(69)

Therefore, condition (H2) of Theorem 5 is also satisfied.
Hence, from Theorem 5, the fourth-order PBVP (63) has at
least a solution 𝑥 = 𝑥(𝑡), provided

𝜆 ∈ [−

1

(𝑟0 + 1) 𝑒
𝑟0𝑟1𝑟
2
2 (𝑟3 + 𝑐)

,

1

(𝑟0 + 1) 𝑒
𝑟0𝑟1𝑟
2
2 (𝑟3 + 𝑐)

] .

(70)

Example 8. Consider the fourth-order periodic boundary
value problem

𝑥
(4)

(𝑡) =

𝜆ℎ (𝑡) (𝑥 (𝑡) + 1)
𝑘 



𝑥


(𝑡)







1 + (𝑥

(𝑡))
𝑛
+ (𝑥

(𝑡))
𝑛 , a.e. 𝑡 ∈ [0, 𝑇] ,

𝑥
(𝑖)

(0) = 𝑥
(𝑖)

(𝑇) , 𝑖 = 0, 1, 2, 3,

(71)

where 𝜆 is a parameter, 𝑘, 𝑛 ∈ N = {1, 2, . . .}, 𝑘 is odd, 𝑛 is
even, and ℎ ∈ 𝐿

1
[0, 𝑇] is a nonnegative function.

Let

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) =

𝜆ℎ (𝑡) (𝑥0 + 1)
𝑘 



𝑥3






1 + 𝑥
𝑛
1 + 𝑥
𝑛
2

. (72)

Then 𝑓 : [0, 𝑇] ×R4 → R satisfies Carathéodory conditions.
We choose 𝑟 ∈ (1, +∞); then 𝑟0 is well defined by (14).

Now, we assert that𝑓 satisfies all conditions ofTheorem 6
when

𝜆 ∈ [−(𝑟0 + 1)
−𝑘
, (𝑟0 + 1)

−𝑘
] . (73)

In fact, without loss of generality, we can assume that 𝜆 ∈

[0, (𝑟0 + 1)
−𝑘
]. Choose 𝜇 = 1 and 𝑟

∗
= 1. Then it is easy to see

that, for every (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ [−𝑟
∗
, +∞) ×R3,

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) ≥ 0, a.e. 𝑡 ∈ [0, 𝑇] , (74)

and, for every (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ (−∞, −𝑟] ×R3,

𝜇𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) ≤ 0 a.e. 𝑡 ∈ [0, 𝑇] . (75)

On the other hand, for every (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ [−𝑟0, 𝑟0] ×R3,

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) sign𝑥3

≤

𝜆




𝑥0 + 1






𝑘

1 + 𝑥
𝑛
1 + 𝑥
𝑛
2

ℎ (𝑡)




𝑥3






≤

1

1 + 𝑥
𝑛
1 + 𝑥
𝑛
2

ℎ (𝑡)




𝑥3






≤ ℎ (𝑡)




𝑥3





, a.e. 𝑡 ∈ [0, 𝑇] .

(76)
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In summary, all conditions ofTheorem 6 are satisfied.There-
fore, fromTheorem 6, the fourth-order PBVP (71) has at least
one nontrivial solution 𝑥 = 𝑥(𝑡), provided 𝜆 ∈ [−(𝑟0+

1)
−𝑘
, (𝑟0 + 1)

−𝑘
].
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