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We mainly investigate the unicity of meromorphic functions sharing two or three sets with their linear difference polynomials and
prove some results.

1. Introduction and Main Results

In this paper, we assume the reader is familiar with the fun-
damental results and the basic notations of the Nevanlinna
theory of meromorphic functions (see, e.g., [1–3]). Let 𝑓(𝑧)
be meromorphic in the whole plane. We use the notation
𝜌(𝑓) to denote the order of growth of the meromorphic
function 𝑓(𝑧). In addition, we denote by 𝑆(𝑟, 𝑓) any quantity
satisfying 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)), as 𝑟 → ∞ outside of a
possible exceptional set of finite logarithmic measure. We say
that a meromorphic function 𝑎(𝑧) is a small function of 𝑓(𝑧)
provided that 𝑇(𝑟, 𝑎) = 𝑆(𝑟, 𝑓). Let 𝑆(𝑓) be the set of all small
functions of 𝑓(𝑧).

For a set 𝑆 ⊂ 𝑆(𝑓), we define the following:

𝐸𝑓 (𝑆) = ⋃
𝑎∈𝑆

{𝑧 | 𝑓 (𝑧) − 𝑎 (𝑧) = 0, counting multiplicities} ,

𝐸𝑓 (𝑆) = ⋃
𝑎∈𝑆

{𝑧 | 𝑓 (𝑧) − 𝑎 (𝑧) = 0, ignoring multiplicities} .

(1)

Let 𝑓 and 𝑔 be meromorphic functions. If 𝐸𝑓(𝑆) = 𝐸𝑔(𝑆)
and 𝐸𝑓(𝑆) = 𝐸𝑔(𝑆), respectively, then we say that 𝑓 and 𝑔
share a set 𝑆 CM and IM, respectively.

Furthermore, let 𝑐 be a nonzero complex constant. We
define the shift of 𝑓(𝑧) by 𝑓(𝑧 + 𝑐), and define the difference
operators of 𝑓(𝑧) by

Δ 𝑐𝑓 (𝑧) = 𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧) ,

Δ𝑛𝑐𝑓 (𝑧) = Δ
𝑛−1
𝑐 (Δ 𝑐𝑓 (𝑧)) , 𝑛 ∈ N, 𝑛 ≥ 2.

(2)

Theunicity theory ofmeromorphic functions sharing sets
is an important topic of the uniqueness theory. First of all, we
recall the following theorem given by Li and Yang in [4].

Theorem A (see [4]). Let 𝑚 ≥ 2 and let 𝑛 > 2𝑚 + 6 with
𝑛 and 𝑛 − 𝑚 having no common factors. Let 𝑎 and 𝑏 be two
nonzero constants such that the equation 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0
has no multiple roots. Let 𝑆 = {𝜔 | 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0}.
Then, for any two nonconstant meromorphic functions 𝑓 and
𝑔, the conditions 𝐸𝑓(𝑆) = 𝐸𝑔(𝑆) and 𝐸𝑓({∞}) = 𝐸𝑔({∞})
imply 𝑓 = 𝑔.

Yi and Lin considered the case 𝑚 = 1 with the condition
that two meromorphic functions share three sets and got the
result as follows.

Theorem B (see [5]). Let 𝑆1 = {𝜔 : 𝜔𝑛 + 𝑎𝜔𝑛−1 + 𝑏 = 0},
𝑆2 = {0}, and 𝑆3 = {∞}, where 𝑎, 𝑏 are nonzero constants such
that 𝜔𝑛 + 𝑎𝜔𝑛−1 + 𝑏 = 0 has no repeated root and 𝑛(≥ 4) is an
integer. If, for two nonconstant meromorphic functions 𝑓 and
𝑔, 𝐸𝑓(𝑆𝑗) = 𝐸𝑔(𝑆𝑗) for 𝑗 = 1, 2, 3, and Θ(∞;𝑓) > 0, then
𝑓 ≡ 𝑔.

Recently, a number of papers have focused on difference
analogues of the Nevanlinna theory (see, e.g., [6–9]). In
particular, there has been an increasing interest in studying
the uniqueness problems related to meromorphic functions
and their shifts or their difference operators (see, e.g., [10–
16]).
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In 2010, Zhang considered a meromorphic function 𝑓(𝑧)
sharing sets with its shift 𝑓(𝑧 + 𝑐) and proved the following
result.

TheoremC (see [16]). Let𝑚 ≥ 2 and let 𝑛 ≥ 2𝑚+4with 𝑛 and
𝑛 − 𝑚 having no common factors. Let 𝑎 and 𝑏 be two nonzero
constants such that the equation 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0 has no
multiple roots. Let 𝑆 = {𝜔 | 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0}. Suppose that
𝑓(𝑧) is a nonconstant meromorphic function of finite order.
Then 𝐸𝑓(𝑧)(𝑆) = 𝐸𝑓(𝑧+𝑐)(𝑆) and 𝐸𝑓(𝑧)({∞}) = 𝐸𝑓(𝑧+𝑐)({∞})
imply 𝑓(𝑧) ≡ 𝑓(𝑧 + 𝑐).

For an analogue result in difference operator, B. Chen and
Z. Chen proved the following theorem in [10].

Theorem D (see [10]). Let 𝑚 ≥ 2 and let 𝑛 ≥ 2𝑚 + 4 with
𝑛 and 𝑛 − 𝑚 having no common factors. Let 𝑎 and 𝑏 be two
nonzero constants such that the equation 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0
has nomultiple roots. Let 𝑆 = {𝜔 | 𝜔𝑛+𝑎𝜔𝑛−𝑚+𝑏 = 0}. Suppose
that𝑓(𝑧) is a nonconstantmeromorphic function of finite order
satisfying 𝐸𝑓(𝑧)(𝑆) = 𝐸Δ

𝑐
𝑓(𝑆) and 𝐸𝑓(𝑧)({∞}) = 𝐸Δ

𝑐
𝑓({∞}). If

𝑁(𝑟,
1

Δ 𝑐𝑓
) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) , (3)

then Δ 𝑐𝑓 ≡ 𝑓(𝑧).

It is natural to ask what happens if the shift 𝑓(𝑧 + 𝑐) or
difference operatorΔ 𝑐𝑓(𝑧) is replaced by a general expression
of 𝑓(𝑧), such as a linear difference polynomial of 𝑓(𝑧).

Here, a linear difference polynomial of 𝑓(𝑧) is an expres-
sion of the form

𝐿 (𝑧, 𝑓) = 𝑏𝑘 (𝑧) 𝑓 (𝑧 + 𝑐𝑘) + ⋅ ⋅ ⋅ + 𝑏0 (𝑧) 𝑓 (𝑧 + 𝑐0) , (4)

where 𝑏𝑘(𝑧) ̸≡ 0, 𝑏0(𝑧), . . . , 𝑏𝑘(𝑧) are small functions of
𝑓(𝑧), 𝑐0, . . . , 𝑐𝑘 are complex constants, and 𝑘 is a nonnegative
integer.

In this paper, our aim is to investigate the uniqueness
problems of linear difference polynomials of 𝑓(𝑧). In partic-
ular, we primarily consider the linear difference polynomial
𝐿(𝑧, 𝑓) which satisfies one of the following conditions:

(i) 𝑏0 (𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑘 (𝑧) ≡ 1,

(ii) 𝑏0 (𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑘 (𝑧) ≡ 0,

𝑁(𝑟,
1

𝐿 (𝑧, 𝑓)
) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(5)

Corresponding to the above question, we obtain the
following results.

Theorem 1. Let 𝑚 ≥ 2 and let 𝑛 ≥ 2𝑚 + 4 with 𝑛 and
𝑛 − 𝑚 having no common factors. Let 𝑎 and 𝑏 be two nonzero
constants such that the equation 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0 has no
multiple roots. Let 𝑆 = {𝜔 | 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0}. Suppose
that𝑓(𝑧) is a nonconstantmeromorphic function of finite order
and 𝐿(𝑧, 𝑓) is of the form (4) satisfying the condition in (5).
If 𝐸𝑓(𝑧)(𝑆) = 𝐸𝐿(𝑧,𝑓)(𝑆) and 𝐸𝑓(𝑧)({∞}) = 𝐸𝐿(𝑧,𝑓)({∞}), then
𝐿(𝑧, 𝑓) ≡ 𝑓(𝑧).

Corollary 2. Let 𝑛,𝑚, and 𝑆 be given as inTheorem 1. Suppose
that𝑓(𝑧) is a nonconstantmeromorphic function of finite order
satisfying the following:

𝑁(𝑟,
1

Δ𝑘𝑐𝑓
) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) . (6)

If 𝐸𝑓(𝑧)(𝑆) = 𝐸Δ𝑘
𝑐
𝑓(𝑧)(𝑆) and 𝐸𝑓(𝑧)({∞}) = 𝐸Δ𝑘

𝑐
𝑓(𝑧)({∞}), then

Δ𝑘𝑐𝑓 ≡ 𝑓(𝑧).

With an additional restriction on the order of growth of
𝑓(𝑧), we prove the following fact.

Theorem 3. Let 𝑛,𝑚, and 𝑆 be given as inTheorem 1. Suppose
that𝑓(𝑧) is a nonconstantmeromorphic function of finite order
such that 𝜌(𝑓) ∉ N. If 𝐸𝑓(𝑧)(𝑆) = 𝐸𝐿(𝑧,𝑓)(𝑆) and 𝐸𝑓(𝑧)({∞}) =
𝐸𝐿(𝑧,𝑓)({∞}), then 𝐿(𝑧, 𝑓) ≡ 𝑓(𝑧).

Remark 4. Note that, in Theorem 3, we do not assume that
the linear polynomial 𝐿(𝑧, 𝑓) satisfies the condition in (5).
In fact, since 𝜌(𝑓) ∉ N, by (19), we can easily get 𝜌(𝑒ℎ(𝑧)) =
deg(ℎ(𝑧)) < 𝜌(𝑓), which implies 𝑇(𝑟, 𝑒ℎ(𝑧)) = 𝑆(𝑟, 𝑓). Then
using a similar method as in the proof of Theorem 1, we can
complete the proof of Theorem 3.

Now we may ask what happens if the condition𝑚 ≥ 2 in
Theorem 1 is replaced by a weaker condition containing the
case 𝑚 = 1 or even 𝑚 = 0. By considering three sets, we get
the following theorem.

Theorem 5. Let 𝑛,𝑚 be nonnegative integers such that 𝑛 > 𝑚.
Let 𝑎 and 𝑏 be nonzero constants such that 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0
has no multiple roots. Let 𝑆1 = {𝜔 : 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0} ̸=⌀,
𝑆2 = {∞}, and 𝑆3 = {0}. Suppose that 𝑓(𝑧) is a nonconstant
meromorphic function of finite order, 𝐿(𝑧, 𝑓) is of the form (4)
satisfying the condition in (5), and 𝐸𝑓(𝑧)(𝑆𝑗) = 𝐸𝐿(𝑧,𝑓)(𝑆𝑗) for
𝑗 = 1, 2, 3. Then one has the following.

(i) If𝑚 = 0, then 𝐿(𝑧, 𝑓) ≡ 𝑡𝑓(𝑧), where 𝑡𝑛 = 1.
(ii) If 𝑛 and𝑚 are coprime, then 𝐿(𝑧, 𝑓) ≡ 𝑓(𝑧).

Remark 6. Taking 𝑚 = 1 in Theorem 5, we can obtain an
analogue result of Theorem B related to linear difference
polynomials.

Furthermore, the following result is a corollary of
Theorem 5 related to difference operators.

Corollary 7. Let 𝑛, 𝑚, and 𝑆𝑗, 𝑗 = 1, 2, 3, be given as in
Theorem 5. Suppose that 𝑓(𝑧) is a nonconstant meromorphic
function of finite order satisfying

𝑁(𝑟,
1

𝑓 (𝑧)
) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) , (7)

and 𝐸𝑓(𝑧)(𝑆𝑗) = 𝐸Δ𝑘
𝑐
𝑓(𝑆𝑗) for 𝑗 = 1, 2, 3. Then one has the

following.

(i) If𝑚 = 0, then Δ𝑘𝑐𝑓 ≡ 𝑡𝑓(𝑧), where 𝑡
𝑛 = 1.

(ii) If 𝑛 and𝑚 are coprime, then Δ𝑘𝑐𝑓 ≡ 𝑓(𝑧).

Finally, we give some examples for our results.
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Examples. In the following, let 𝑔(𝑧) be an entire function
with period 1 such that 𝜌(𝑔) ∈ (1,∞) \ N (see [17]).

(1) For the case (i) of condition (5), let 𝑓1(𝑧) = 𝑒2𝜋𝑖𝑧,
𝑓2(𝑧) = 𝑔(𝑧)𝑒2𝜋𝑖𝑧, 𝑓3(𝑧) = 𝑒2𝜋𝑖𝑧/𝑔(𝑧) and let
𝐿(𝑧, 𝑓𝑗) = 2𝑓𝑗(𝑧) − 𝑓𝑗(𝑧 + 1). Then for 𝑗 = 1, 2, 3,
𝐿(𝑧, 𝑓𝑗) = 𝑓𝑗(𝑧) and the sum of the coefficients of
𝐿(𝑧, 𝑓𝑗) is equal to 1.These examples satisfyTheorems
1 and 5 but do not satisfy Theorem D.

(2) For the case (ii) of condition (5), let 𝑓(𝑧) = 𝑒𝑧 log 2𝑔(𝑧)
and let 𝐿(𝑧, 𝑓) = Δ𝑓(𝑧) = 𝑓(𝑧 + 1) − 𝑓(𝑧). Then
𝐿(𝑧, 𝑓) = Δ𝑓(𝑧) = 𝑓(𝑧), the sum of the coefficients
of 𝐿(𝑧, 𝑓) equals 0, and

𝑁(𝑟,
1

Δ𝑓
) = 𝑁(𝑟,

1

𝑓
) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(8)

This example satisfiesTheorems 1 and 5 and Corollar-
ies 2 and 7.

(3) For Theorem 3, let 𝑓(𝑧) = 𝑒𝑧 log 3/𝑔(𝑧) and let
𝐿(𝑧, 𝑓) = 𝑓(𝑧 + 1) − 2𝑓(𝑧). Then 𝐿(𝑧, 𝑓) = 𝑓(𝑧)
and the sum of the coefficients of 𝐿(𝑧, 𝑓) equals −1.
This example satisfies Theorem 3 but does not satisfy
Theorem D andTheorems 1 and 5.

2. Proof of Theorem 1

We need the following lemmas for the proof of Theorem 1.
The difference analogue of the logarithmic derivative

lemmawas given byHalburd-Korhonen [7] andChiang-Feng
[6] independently. We recall the following lemmas.

Lemma 8 (see [7]). Let 𝑓(𝑧) be a nonconstant meromorphic
function of finite order, 𝑐 ∈ C and 𝛿 < 1. Then

𝑚(𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) = 𝑜(

𝑇 (𝑟 + |𝑐| , 𝑓)

𝑟𝛿
) , (9)

for all 𝑟 outside of a possible exceptional set with finite logarith-
mic measure.

Lemma 9 (see [8]). Let 𝑐 ∈ C, let 𝑛 ∈ N, and let 𝑓(𝑧) be
a meromorphic function of finite order. Then for any small
periodic function 𝑎(𝑧) ∈ 𝑆(𝑓) with period 𝑐, consider the
following:

𝑚(𝑟,
Δ𝑛𝑐𝑓

𝑓 (𝑧) − 𝑎 (𝑧)
) = 𝑆 (𝑟, 𝑓) , (10)

where the exceptional set associated with 𝑆(𝑟, 𝑓) is of at most
finite logarithmic measure.

Let 𝑓(𝑧) be a meromorphic function of finite order.
Notice that if 𝐿(𝑧, 𝑓) ( ̸≡ 0) is of the form (4) such that

𝑏0(𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑘(𝑧) ≡ 0, then, for any given complex con-
stant 𝑎, 𝐿(𝑧, 𝑎) = 0. This indicates that 𝐿(𝑧, 𝑓) = 𝐿(𝑧, 𝑓 − 𝑎)
and hence

𝑚(𝑟,
𝐿 (𝑧, 𝑓)

𝑓 − 𝑎
) = 𝑚(𝑟,

𝐿 (𝑧, 𝑓 − 𝑎)

𝑓 − 𝑎
)

≤
𝑘

∑
𝑗=0

𝑚(𝑟,
𝑏𝑗 (𝑧) (𝑓 (𝑧 + 𝑐𝑗) − 𝑎)

𝑓 − 𝑎
)

+ 𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) .

(11)

With this, one can easily prove Lemma 10 below by a similar
reasoning as in the proof of the difference analogue of the
second main theorem of the Nevanlinna theory in [8] by
Halburd and Korhonen. We omit those details.

Lemma 10. Let 𝑐 ∈ C, let 𝑓(𝑧) be a meromorphic function of
finite order, and let 𝐿(𝑧, 𝑓) ̸≡ 0 be of the form (4) such that
𝑏0(𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑘(𝑧) ≡ 0. Let 𝑞 ≥ 2 and let 𝑎1, . . . , 𝑎𝑞 be distinct
complex constants. Then

𝑚(𝑟, 𝑓) +

𝑞

∑
𝑖=1

𝑚(𝑟,
1

𝑓 − 𝑎𝑖
)

≤ 2𝑇 (𝑟, 𝑓) − 𝑁∗ (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(12)

where

𝑁∗ (𝑟, 𝑓) := 2𝑁 (𝑟, 𝑓) − 𝑁 (𝑟, 𝐿 (𝑧, 𝑓)) + 𝑁(𝑟,
1

𝐿 (𝑧, 𝑓)
)

(13)

and the exceptional set associated with 𝑆(𝑟, 𝑓) is of at most
finite logarithmic measure.

Remark 11. If the linear difference polynomial 𝐿(𝑧, 𝑓) is
replaced by

𝐿∗ (𝑧, 𝑓) = 𝑏𝑘 (𝑧) 𝑓 (𝑧 + 𝑘𝑐)

+ ⋅ ⋅ ⋅ + 𝑏1 (𝑧) 𝑓 (𝑧 + 𝑐) + 𝑏0 (𝑧) 𝑓 (𝑧) ,
(14)

Lemma 10 also holds even if the distinct complex constants
𝑎1, . . . , 𝑎𝑞 are replaced by 𝑎1(𝑧), . . . , 𝑎𝑞(𝑧) which are distinct
meromorphic periodic functions with period 𝑐 such that 𝑎𝑖 ∈
𝑆(𝑓) for all 𝑖 = 1, . . . , 𝑞.

The following is the standardValiron-Mohon’ko theorem;
(see Theorem 2.2.5 in the book of Laine [2]).

Lemma 12 (see [2]). Let 𝑓(𝑧) be a meromorphic function.
Then, for all irreducible rational functions in 𝑓,

𝑅 (𝑧, 𝑓) =
𝑃 (𝑧, 𝑓)

𝑄 (𝑧, 𝑓)
=
∑
𝑝
𝑖=0 𝑎𝑖 (𝑧) 𝑓

𝑖

∑
𝑞
𝑗=0 𝑏𝑗 (𝑧) 𝑓

𝑗
, (15)

with meromorphic coefficients 𝑎𝑖(𝑧), 𝑏𝑗(𝑧) such that

𝑇 (𝑟, 𝑎𝑖) = 𝑆 (𝑟, 𝑓) , 𝑖 = 0, . . . , 𝑝,

𝑇 (𝑟, 𝑏𝑗) = 𝑆 (𝑟, 𝑓) , 𝑗 = 0, . . . , 𝑞.
(16)
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The characteristic function of 𝑅(𝑧, 𝑓) satisfies

𝑇 (𝑟, 𝑅 (𝑧, 𝑓)) = 𝑑𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) , (17)

where 𝑑 = max{𝑝, 𝑞}.

Proof of Theorem 1. Since 𝑓(𝑧) and 𝐿(𝑧, 𝑓) share∞ CM, we
see that 𝐿(𝑧, 𝑓) ̸≡ 0 and𝑁(𝑟, 𝐿(𝑧, 𝑓)) = 𝑁(𝑟, 𝑓(𝑧)). Then by
Lemma 8, we have

𝑇 (𝑟, 𝐿 (𝑧, 𝑓)) = 𝑚 (𝑟, 𝐿 (𝑧, 𝑓)) + 𝑁 (𝑟, 𝐿 (𝑧, 𝑓))

≤ 𝑚(𝑟,
𝐿 (𝑧, 𝑓)

𝑓 (𝑧)
)

+ 𝑚 (𝑟, 𝑓 (𝑧)) + 𝑁 (𝑟, 𝑓 (𝑧))

≤
𝑘

∑
𝑖=0

𝑚(𝑟,
𝑓 (𝑧 + 𝑐𝑖)

𝑓 (𝑧)
)

+
𝑘

∑
𝑖=0

𝑚(𝑟, 𝑏𝑖 (𝑧)) + 𝑇 (𝑟, 𝑓 (𝑧))

≤ 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(18)

Since 𝐸𝑓(𝑧)(𝑆) = 𝐸𝐿(𝑧,𝑓)(𝑆), where 𝑆 = {𝜔 | 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 +

𝑏 = 0} and the equation 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0 has no multiple
roots, we know that (𝐿(𝑧, 𝑓))𝑛+𝑎(𝐿(𝑧, 𝑓))𝑛−𝑚+𝑏 and𝑓(𝑧)𝑛+
𝑎𝑓(𝑧)𝑛−𝑚 + 𝑏 share 0 CM. Then from this and the condition
𝐸𝑓(𝑧)({∞}) = 𝐸𝐿(𝑧,𝑓)({∞}), there exists a polynomial ℎ(𝑧)
such that

(𝐿 (𝑧, 𝑓))
𝑛
+ 𝑎(𝐿 (𝑧, 𝑓))

𝑛−𝑚
+ 𝑏

𝑓(𝑧)𝑛 + 𝑎𝑓(𝑧)𝑛−𝑚 + 𝑏
= 𝑒ℎ(𝑧). (19)

Suppose that 𝑒ℎ(𝑧) ̸≡ 1. Note that 𝑆 = {𝜔 | 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 +
𝑏 = 0} and the equation 𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0 has no multiple
roots. Let 𝜔1, . . . , 𝜔𝑛 denote all different roots of the equation
𝜔𝑛 + 𝑎𝜔𝑛−𝑚 + 𝑏 = 0.

Next we prove that 𝑇(𝑟, 𝑒ℎ(𝑧)) = 𝑆(𝑟, 𝑓). We know that

𝐿 (𝑧, 𝑓) − 𝜔𝑖 = 𝑏𝑘 (𝑧) (𝑓 (𝑧 + 𝑐𝑘) − 𝑓 (𝑧))

+ ⋅ ⋅ ⋅ + 𝑏0 (𝑧) (𝑓 (𝑧 + 𝑐0) − 𝑓 (𝑧))

+ (𝑏𝑘 (𝑧) + ⋅ ⋅ ⋅ + 𝑏0 (𝑧)) 𝑓 (𝑧) − 𝜔𝑖,

= 𝑏𝑘 (𝑧) Δ 𝑐
𝑘

𝑓 + ⋅ ⋅ ⋅ + 𝑏0 (𝑧) Δ 𝑐
0

𝑓

+ (𝑏𝑘 (𝑧) + ⋅ ⋅ ⋅ + 𝑏0 (𝑧)) 𝑓 (𝑧) − 𝜔𝑖.

(20)

(i) If 𝑏0(𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑘(𝑧) ≡ 1, we see that

𝐿 (𝑧, 𝑓) − 𝜔𝑖 = 𝑏𝑘 (𝑧) Δ 𝑐
𝑘

𝑓 + ⋅ ⋅ ⋅ + 𝑏0 (𝑧) Δ 𝑐
0

𝑓 + (𝑓 (𝑧) − 𝜔𝑖) .

(21)

Then we deduce from this, (19), and Lemma 9 that

𝑇 (𝑟, 𝑒ℎ(𝑧)) = 𝑚 (𝑟, 𝑒ℎ(𝑧))

= 𝑚(𝑟,
(𝐿 (𝑧, 𝑓))

𝑛
+ 𝑎(𝐿 (𝑧, 𝑓))

𝑛−𝑚
+ 𝑏

𝑓(𝑧)𝑛 + 𝑎𝑓(𝑧)𝑛−𝑚 + 𝑏
)

= 𝑚(𝑟,
(𝐿 (𝑧, 𝑓) − 𝜔1) ⋅ ⋅ ⋅ (𝐿 (𝑧, 𝑓) − 𝜔𝑛)

(𝑓 (𝑧) − 𝜔1) ⋅ ⋅ ⋅ (𝑓 (𝑧) − 𝜔𝑛)
)

≤
𝑛

∑
𝑖=1

𝑚(𝑟,
𝐿 (𝑧, 𝑓) − 𝜔𝑖
𝑓 (𝑧) − 𝜔𝑖

) + 𝑆 (𝑟, 𝑓)

≤
𝑛

∑
𝑖=1

𝑘

∑
𝑗=0

𝑚(𝑟,
Δ 𝑐
𝑗

𝑓

𝑓 (𝑧) − 𝜔𝑖
)

+
𝑛

∑
𝑖=1

𝑘

∑
𝑗=0

𝑚(𝑟, 𝑏𝑗 (𝑧)) + 𝑆 (𝑟, 𝑓)

= 𝑆 (𝑟, 𝑓) .

(22)

(ii) If 𝑏0(𝑧) + ⋅ ⋅ ⋅ + 𝑏𝑘(𝑧) ≡ 0, we have

𝐿 (𝑧, 𝑓) − 𝜔𝑖 = 𝑏𝑘 (𝑧) Δ 𝑐
𝑘

𝑓 + ⋅ ⋅ ⋅ + 𝑏0 (𝑧) Δ 𝑐
0

𝑓 − 𝜔𝑖. (23)

From this, (19), and Lemma 9, we get

𝑇 (𝑟, 𝑒ℎ(𝑧)) = 𝑚 (𝑟, 𝑒ℎ(𝑧))

≤
𝑛

∑
𝑖=1

𝑚(𝑟,
𝐿 (𝑧, 𝑓) − 𝜔𝑖
𝑓 (𝑧) − 𝜔𝑖

) + 𝑆 (𝑟, 𝑓)

≤
𝑛

∑
𝑖=1

𝑘

∑
𝑗=0

𝑚(𝑟,
Δ 𝑐
𝑗

𝑓

𝑓 (𝑧) − 𝜔𝑖
)

+
𝑛

∑
𝑖=1

𝑚(𝑟,
1

𝑓 (𝑧) − 𝜔𝑖
) + 𝑆 (𝑟, 𝑓)

=
𝑛

∑
𝑖=1

𝑚(𝑟,
1

𝑓 (𝑧) − 𝜔𝑖
) + 𝑆 (𝑟, 𝑓) .

(24)

Applying Lemma 10 to 𝑓(𝑧), we get

𝑛

∑
𝑖=1

𝑚(𝑟,
1

𝑓 (𝑧) − 𝜔𝑖
)

≤ 2𝑇 (𝑟, 𝑓 (𝑧)) − 𝑚 (𝑟, 𝑓 (𝑧)) − 2𝑁 (𝑟, 𝑓 (𝑧))

+ 𝑁 (𝑟, 𝐿 (𝑧, 𝑓)) − 𝑁(𝑟,
1

𝐿 (𝑧, 𝑓)
) + 𝑆 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑓 (𝑧)) − 𝑁(𝑟,
1

𝐿 (𝑧, 𝑓)
) + 𝑆 (𝑟, 𝑓) .

(25)
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Then the assumptions in (5), (24), and (25) yield the
following:

𝑇 (𝑟, 𝑒ℎ(𝑧)) ≤ 𝑇 (𝑟, 𝑓 (𝑧))

− 𝑁(𝑟,
1

𝐿 (𝑧, 𝑓)
) + 𝑆 (𝑟, 𝑓) = 𝑆 (𝑟, 𝑓) .

(26)

To sum up, we now prove that 𝑇(𝑟, 𝑒ℎ(𝑧)) = 𝑆(𝑟, 𝑓). Rewriting
(19), we get

(𝐿 (𝑧, 𝑓))
𝑛−𝑚

[(𝐿 (𝑧, 𝑓))
𝑚
+ 𝑎]

= [𝑓(𝑧)
𝑛 + 𝑎𝑓(𝑧)

𝑛−𝑚 + 𝑏 − 𝑏𝑒−ℎ(𝑧)] 𝑒ℎ(𝑧).
(27)

Denote 𝐹(𝑧) = 𝑓(𝑧)𝑛 + 𝑎𝑓(𝑧)𝑛−𝑚. It follows from
Lemma 12 and𝑚 > 0 that

𝑇 (𝑟, 𝐹 (𝑧)) = 𝑛𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) . (28)

Hence, 𝑆(𝑟, 𝐹) = 𝑆(𝑟, 𝑓).
By (18) and (27) and applying the second main theorem

for three small target functions, we deduce the following:

𝑇 (𝑟, 𝐹 (𝑧))

≤ 𝑁 (𝑟, 𝐹 (𝑧)) + 𝑁(𝑟,
1

𝐹 (𝑧)
)

+ 𝑁(𝑟,
1

𝐹 (𝑧) + 𝑏 − 𝑏𝑒−𝑝(𝑧)
) + 𝑆 (𝑟, 𝐹)

≤ 𝑁 (𝑟, 𝑓 (𝑧)) + 𝑁(𝑟,
1

𝑓(𝑧)𝑛−𝑚 [𝑓(𝑧)𝑚 + 𝑎]
)

+ 𝑁(𝑟,
1

(𝐿 (𝑧, 𝑓))
𝑛−𝑚) + 𝑁(𝑟,

1

(𝐿 (𝑧, 𝑓))
𝑚
+ 𝑎

)

+ 𝑆 (𝑟, 𝑓)

≤ 𝑁 (𝑟, 𝑓 (𝑧)) + 𝑁(𝑟,
1

𝑓 (𝑧)
) + 𝑁(𝑟,

1

𝑓(𝑧)𝑚 + 𝑎
)

+ 𝑁(𝑟,
1

𝐿 (𝑧, 𝑓)
) + 𝑇(𝑟,

1

(𝐿 (𝑧, 𝑓))
𝑚
+ 𝑎

)

+ 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑇(𝑟,
1

𝑓 (𝑧)
) + 𝑇(𝑟,

1

𝑓(𝑧)𝑚 + 𝑎
)

+ 𝑇(𝑟,
1

𝐿 (𝑧, 𝑓)
) + 𝑚𝑇 (𝑟, 𝐿 (𝑧, 𝑓)) + 𝑆 (𝑟, 𝑓)

≤ (𝑚 + 2) 𝑇 (𝑟, 𝑓 (𝑧))

+ (𝑚 + 1) 𝑇 (𝑟, 𝐿 (𝑧, 𝑓)) + 𝑆 (𝑟, 𝑓)

≤ (2𝑚 + 3) 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) .

(29)

By combining (28) and (29), we have

(𝑛 − 2𝑚 − 3) 𝑇 (𝑟, 𝑓 (𝑧)) ≤ 𝑆 (𝑟, 𝑓) , (30)

which contradicts with 𝑛 ≥ 2𝑚 + 4.
Now we turn to consider the case 𝑒ℎ(𝑧) ≡ 1. Equation (19)

yields the following:

(𝐿 (𝑧, 𝑓))
𝑛
+ 𝑎(𝐿 (𝑧, 𝑓))

𝑛−𝑚
≡ 𝑓(𝑧)

𝑛 + 𝑎𝑓(𝑧)
𝑛−𝑚. (31)

Set 𝜑(𝑧) = 𝐿(𝑧, 𝑓)/𝑓(𝑧), and we have

𝑓(𝑧)
𝑚 (𝜑(𝑧)

𝑛 − 1) = −𝑎 (𝜑(𝑧)
𝑛−𝑚 − 1) . (32)

If 𝜑(𝑧) is not a constant, (32) can be rewritten as

𝑓(𝑧)
𝑚 (𝜑 (𝑧) − 1) (𝜑 (𝑧) − 𝜇) ⋅ ⋅ ⋅ (𝜑 (𝑧) − 𝜇

𝑛−1)

= −𝑎 (𝜑 (𝑧) − 1) (𝜑 (𝑧) − ]) ⋅ ⋅ ⋅ (𝜑 (𝑧) − ]𝑛−𝑚−1) ,
(33)

where 𝜇 = cos(2𝜋/𝑛) + 𝑖 sin(2𝜋/𝑛) and ] = cos(2𝜋/(𝑛−𝑚)) +
𝑖 sin(2𝜋/(𝑛 − 𝑚)).

By the assumption that 𝑛 and 𝑛 − 𝑚 have no common
factors, we see that 𝜇, . . . , 𝜇𝑛−1, ], . . . , ]𝑛−𝑚−1 are different.
Assume that 𝑧0 is a 𝜇

𝑗-point of 𝜑(𝑧) of multiplicity 𝑢𝑗 > 0,
where 1 ≤ 𝑗 ≤ 𝑛 − 1. Notice that

−𝑎 (𝜑 (𝑧0) − 1) (𝜑 (𝑧0) − ]) ⋅ ⋅ ⋅ (𝜑 (𝑧0) − ]𝑛−𝑚−1) (34)

is a constant.Then (33) implies that 𝑧0 is a pole of𝑓(𝑧)
𝑚.Thus,

𝑢𝑗 ≥ 𝑚. This yields the following, for 1 ≤ 𝑗 ≤ 𝑛 − 1:

𝑚𝑁(𝑟,
1

𝜑 (𝑧) − 𝜇𝑗
) ≤ 𝑁(𝑟,

1

𝜑 (𝑧) − 𝜇𝑗
)

≤ 𝑇 (𝑟, 𝜑 (𝑧)) + 𝑆 (𝑟, ℎ) .

(35)

Then by (35), we get

2 ≥
𝑛−1

∑
𝑗=1

Θ(𝜇𝑗, 𝜑 (𝑧)) =
𝑛−1

∑
𝑗=1

{1 − lim
𝑟→∞

𝑁(𝑟, 1/ (𝜑 (𝑧) − 𝜇𝑗))

𝑇 (𝑟, 𝜑 (𝑧))
}

≥
𝑛−1

∑
𝑗=1

(1 −
1

𝑚
) = (𝑛 − 1) (1 −

1

𝑚
) ,

(36)

which is impossible with𝑚 ≥ 2 and 𝑛 ≥ 2𝑚 + 4.
Hence, 𝜑(𝑧) is a constant. Since 𝑓(𝑧) is a nonconstant

meromorphic function, we deduce from (32) that 𝜑(𝑧) ≡ 1.
This yields 𝐿(𝑧, 𝑓) ≡ 𝑓(𝑧), which completes the proof of
Theorem 1.

3. Proof of Theorem 5

Since 𝑓(𝑧) is a nonconstant meromorphic function of finite
order, 𝐸𝑓(𝑧)(𝑆𝑗) = 𝐸𝐿(𝑧,𝑓)(𝑆𝑗) for 𝑗 = 1, 2, 3, 𝑆1 = {𝜔 : 𝜔𝑛 +

𝑎𝜔𝑛−𝑚 + 𝑏 = 0}, 𝑆2 = {∞}, and 𝑆3 = {0}, we have 𝐿(𝑧, 𝑓) ̸≡
0, 𝑁(𝑟, 𝐿(𝑧, 𝑓)) = 𝑁(𝑟, 𝑓(𝑧)), and 𝑁(𝑟, 1/𝐿(𝑧, 𝑓)) = 𝑁(𝑟,
1/𝑓(𝑧)), and we also get (18) and (19).
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Since 𝑓(𝑧) and 𝐿(𝑧, 𝑓) share 0, ∞ CM, there exists a
polynomial ℎ∗(𝑧) such that

𝐿 (𝑧, 𝑓)

𝑓 (𝑧)
= 𝑒ℎ

∗(𝑧). (37)

By Lemma 8, we see that

𝑇(𝑟, 𝑒ℎ
∗(𝑧)) = 𝑚(𝑟, 𝑒ℎ

∗(𝑧)) = 𝑚(𝑟,
𝐿 (𝑧, 𝑓)

𝑓 (𝑧)
)

≤
𝑘

∑
𝑗=0

𝑚(𝑟,
𝑓 (𝑧 + 𝑐𝑗)

𝑓 (𝑧)
)

+
𝑘

∑
𝑗=0

𝑚(𝑟, 𝑏𝑗 (𝑧)) + 𝑆 (𝑟, 𝑓)

= 𝑆 (𝑟, 𝑓) .

(38)

As in the proof of Theorem 1, we see that 𝑇(𝑟, 𝑒ℎ(𝑧)) =
𝑆(𝑟, 𝑓) still holds in both cases (i) and (ii).

Rewriting (19), we have

(𝐿 (𝑧, 𝑓))
𝑛
+ 𝑎(𝐿 (𝑧, 𝑓))

𝑛−𝑚
− 𝑒ℎ(𝑧)𝑓(𝑧)

𝑛

− 𝑎𝑒ℎ(𝑧)𝑓(𝑧)
𝑛−𝑚 = 𝑏 (𝑒ℎ(𝑧) − 1) .

(39)

Combining this and (37), we get

(𝑒𝑛ℎ
∗(𝑧) − 𝑒ℎ(𝑧))𝑓(𝑧)

𝑛 + 𝑎 (𝑒(𝑛−𝑚)ℎ
∗(𝑧) − 𝑒ℎ(𝑧))𝑓(𝑧)

𝑛−𝑚

= 𝑏 (𝑒ℎ(𝑧) − 1) .

(40)

Suppose that 𝑒𝑛ℎ
∗(𝑧) − 𝑒ℎ(𝑧) ̸≡ 0. If𝑚 = 0, (40) becomes

(𝑎 + 1) (𝑒
𝑛ℎ∗(𝑧) − 𝑒ℎ(𝑧))𝑓(𝑧)

𝑛 = 𝑏 (𝑒ℎ(𝑧) − 1) . (41)

By the condition that 𝑏 ̸= 0, 𝑆1 = {𝜔 : (𝑎 + 1)𝜔𝑛 + 𝑏 = 0} ̸=⌀
implies 𝑎 ̸= − 1.

It follows from (38), (41), and 𝑇(𝑟, 𝑒ℎ(𝑧)) = 𝑆(𝑟, 𝑓) that

𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) = 𝑇 (𝑟, (𝑒𝑛ℎ
∗(𝑧)

− 𝑒ℎ(𝑧))𝑓(𝑧)
𝑛)

= 𝑇 (𝑟, 𝑏 (𝑒ℎ(𝑧) − 1)) = 𝑆 (𝑟, 𝑓) ,

(42)

which is a contradiction, since 𝑛 ≥ 1.
If𝑚 ≥ 1, it follows from (38), (41), and𝑇(𝑟, 𝑒ℎ(𝑧)) = 𝑆(𝑟, 𝑓)

that

𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) = 𝑇 (𝑟, (𝑒𝑛ℎ
∗(𝑧) − 𝑒ℎ(𝑧))𝑓(𝑧)

𝑛)

= 𝑇 (𝑟, −𝑎 (𝑒(𝑛−𝑚)ℎ
∗(𝑧) − 𝑒ℎ(𝑧)) 𝑓(𝑧)

𝑛−𝑚

+ 𝑏 (𝑒ℎ(𝑧) − 1))

≤ (𝑛 − 𝑚)𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(43)

That is impossible.

Therefore, 𝑒𝑛ℎ
∗(𝑧) − 𝑒ℎ(𝑧) ≡ 0. Notice that 𝑎, 𝑏 ̸= 0. Using a

similar method, we can prove that 𝑒(𝑛−𝑚)ℎ
∗(𝑧)−𝑒ℎ(𝑧) ≡ 0.Then

(40) implies that 𝑒ℎ(𝑧) ≡ 1.
If 𝑚 = 0, we have 𝑒𝑛ℎ

∗(𝑧) ≡ 1. Obviously, 𝑒ℎ
∗(𝑧) is a

constant. Set 𝑡 = 𝑒ℎ
∗(𝑧). Thus, by (37), we get 𝐿(𝑧, 𝑓) ≡ 𝑡𝑓(𝑧),

where 𝑡𝑛 = 1.
If 𝑛 and 𝑚 are coprime, 𝑒𝑛ℎ

∗(𝑧) ≡ 1 and 𝑒𝑚ℎ
∗(𝑧) ≡ 1 imply

that 𝑒ℎ
∗(𝑧) ≡ 1. Thus, by (37), we get 𝐿(𝑧, 𝑓) ≡ 𝑓(𝑧). Thus,

Theorem 5 is proved.
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