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The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split
feasibility problem. Strong convergence theorem is given.

1. Introduction

Throughout, we assume thatH
1
andH

2
are two real Hilbert

spaces, 𝑓 : H
1
→ R ∪ {+∞} and 𝑔 : H

2
→ R ∪ {+∞}

are two proper, lower semicontinuous convex functions, and
𝐴 : H

1
→ H

2
is a bounded linear operator.

In the present paper, we are devoted to solving the
following minimization problem:

min
𝑥
†
∈H1

{𝑓 (𝑥†) + 𝑔
𝜆
(𝐴𝑥†)} , (1)

where 𝑔
𝜆
stands for the Moreau-Yosida approximation of the

function 𝑔 of parameter 𝜆; that is,

𝑔
𝜆
(𝑢) = min

V∈H2
{𝑔 (V) +

1

2𝜆
‖𝑢 − V‖2} . (2)

Problem (1) includes the split feasibility problem as a
special case. In fact, we choose 𝑓 and 𝑔 as the indicator
functions of two nonempty closed convex sets 𝐶 ⊂ H

1
and

𝑄 ∈ H
2
; that is,

𝑓 (𝑥†) = 𝛿
𝐶
(𝑥†) = {

0, if 𝑥† ∈ 𝐶,

+∞, otherwise,

𝑔 (𝑥†) = 𝛿
𝑄
(𝑥†) = {

0, if 𝑥† ∈ 𝑄,

+∞, otherwise.
(3)

Then, problem (1) reduces to

min
𝑥
†
∈H1

{𝛿
𝐶
(𝑥†) + (𝛿

𝑄
)
𝜆
(𝐴𝑥†)} , (4)

which equals

min
𝑥
†
∈𝐶

{
1

2𝜆

(𝐼 − proj
𝑄
) (𝐴𝑥†)


2

} . (5)

Nowwe know that solving (5) is exactly to solve the following
split feasibility problem of finding 𝑥‡ such that

𝑥‡ ∈ 𝐶, 𝐴𝑥‡ ∈ 𝑄, (6)

provided 𝐶 ∩ 𝐴−1(𝑄) ̸= 0.
The split feasibility problem in finite-dimensional Hilbert

spaces was first introduced by Censor and Elfving [1] for
modeling inverse problems which arise from phase retrievals
and in medical image reconstruction. Recently, the split
feasibility problem (6) has been studied extensively by many
authors; see, for instance, [2–8].
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In order to solve (6), one of the key ideas is to use fixed
point technique according to 𝑥† which solves (6) if and only
if

𝑥† = proj
𝐶
(𝐼 − 𝛾𝐴∗ (𝐼 − proj

𝑄
)𝐴) 𝑥†. (7)

Next, we will use this idea to solve (1). First, by the differen-
tiability of the Yosida approximation 𝑔

𝜆
, we have

𝜕 (𝑓 (𝑥†) + 𝑔
𝜆
(𝐴𝑥†)) = 𝜕𝑓 (𝑥†) + 𝐴∗∇𝑔

𝜆
(𝐴𝑥†)

= 𝜕𝑓 (𝑥†) + 𝐴∗ (
𝐼 − prox

𝜆𝑔

𝜆
) (𝐴𝑥†) ,

(8)

where 𝜕𝑓(𝑥†) denotes the subdifferential of 𝑓 at 𝑥† and
prox
𝜆𝑔
(𝑥†) is the proximal mapping of 𝑔. That is,

𝜕𝑓 (𝑥†) = {𝑥∗ ∈ H
1
: 𝑓 (𝑥‡) ≥ 𝑓 (𝑥†) + ⟨𝑥∗, 𝑥‡ − 𝑥†⟩ ,

∀𝑥‡ ∈ H
1
} ,

prox
𝜆𝑔
(𝑥†) = arg min

𝑥
‡
∈H2

{𝑔 (𝑥‡) +
1

2𝜆

𝑥
‡ − 𝑥†


2

} .

(9)

Note that the optimality condition of (8) is as follows:

0 ∈ 𝜕𝑓 (𝑥†) + 𝐴∗ (
𝐼 − prox

𝜆𝑔

𝜆
) (𝐴𝑥†) , (10)

which can be rewritten as

0 ∈ 𝜇𝜆𝜕𝑓 (𝑥†) + 𝜇𝐴∗ (𝐼 − prox
𝜆𝑔
) (𝐴𝑥†) , (11)

which is equivalent to the fixed point equation

𝑥† = prox
𝜇𝜆𝑓

(𝑥† − 𝜇𝐴∗ (𝐼 − prox
𝜆𝑔
)) (𝐴𝑥†) . (12)

If argmin𝑓 ∩ 𝐴−1(argmin𝑔) ̸= 0, then (1) is reduced to the
following proximal split feasibility problem of finding 𝑥† such
that

𝑥† ∈ argmin𝑓, 𝐴𝑥† ∈ argmin𝑔, (13)

where

argmin𝑓 = {𝑥∗ ∈ H
1
: 𝑓 (𝑥∗) ≤ 𝑓 (𝑥†) , ∀𝑥† ∈ H

1
} ,

argmin𝑔 = {𝑥† ∈ H
2
: 𝑔 (𝑥†) ≤ 𝑔 (𝑥) , ∀𝑥 ∈ H

2
} .

(14)

In the sequel, we will use Γ to denote the solution set of (13).
Recently, in order to solve (13), Moudafi and Thakur [9]

presented the following split proximal algorithm with a way
of selecting the stepsizes such that its implementation does
not need any prior information about the operator norm.

Split Proximal Algorithm

Step 1 (initialization).

𝑥
0
∈ H
1
. (15)

Step 2. Assume that 𝑥
𝑛
has been constructed and 𝜃(𝑥

𝑛
) ̸= 0.

Then compute 𝑥
𝑛+1

via the manner

𝑥
𝑛+1

= prox
𝜇𝑛𝜆𝑓

[𝑥
𝑛
− 𝜇
𝑛
𝐴∗ (𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛
] , ∀𝑛 ≥ 0,

(16)

where the stepsize 𝜇
𝑛
= 𝜌
𝑛
((ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))/𝜃2(𝑥

𝑛
)) in which

0 < 𝜌
𝑛
< 4, ℎ(𝑥

𝑛
) = (1/2)‖(𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛
‖2, 𝑙(𝑥

𝑛
) = (1/

2)‖(𝐼 − prox
𝜇𝑛𝜆𝑓

)𝑥
𝑛
‖2 and 𝜃(𝑥

𝑛
) = √‖∇ℎ(𝑥

𝑛
)‖2 + ‖∇𝑙(𝑥

𝑛
)‖2.

If 𝜃(𝑥
𝑛
) = 0, then 𝑥

𝑛+1
= 𝑥
𝑛
is a solution of (13) and the

iterative process stops; otherwise, we set 𝑛 := 𝑛 + 1 and go to
(16).

Consequently, they demonstrated the following weak
convergence of the above split proximal algorithm.

Theorem 1. Suppose that Γ ̸= 0. Assume that the parameters
satisfy the condition:

𝜖 ≤ 𝜌
𝑛
≤

4ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
)+ 𝑙 (𝑥

𝑛
)
− 𝜖 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜖 > 0 𝑠𝑚𝑎𝑙𝑙 𝑒𝑛𝑜𝑢𝑔ℎ.

(17)

Then the sequence 𝑥
𝑛
weakly converges to a solution of (13).

Note that the proximal mapping of 𝑔 is firmly nonexpan-
sive, namely,

⟨prox
𝜆𝑔
𝑥 − prox

𝜆𝑔
𝑦, 𝑥 − 𝑦⟩ ≥

prox𝜆𝑔𝑥 − prox
𝜆𝑔
𝑦

2

,

∀𝑥, 𝑦 ∈ H
2
,
(18)

and it is also the case for complement 𝐼 − prox
𝜆𝑔
. Thus,

𝐴∗(𝐼 − prox
𝜆𝑔
)𝐴 is cocoercive with coefficient 1/‖𝐴‖2 (recall

that a mapping 𝐵 : H
1

→ H
1
is said to be cocoercive if

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼‖𝐵𝑥 − 𝐵𝑦‖2 for all 𝑥, 𝑦 ∈ H
1
and some

𝛼 > 0). If 𝜇 ∈ (0, 1/‖𝐴‖2), then 𝐼 − 𝜇𝐴∗(𝐼 − prox
𝜆𝑔
)𝐴 is

nonexpansive. Hence, we need to regularize (16) such that
the strong convergence is obtained. This is the main purpose
of this paper. In the next section, we will collect some useful
lemmas and in the last section we will present our algorithm
and prove its strong convergence.

2. Lemmas

Lemma 2 (see [10]). Let {𝑎
𝑛
}
𝑛∈N be a sequence of nonnegative

real numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝜎
𝑛
+ 𝛿
𝑛
, 𝑛 ≥ 0, (19)

where

(i) {𝛼
𝑛
}
𝑛∈N ⊂ [0, 1] and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝜎
𝑛
≤ 0;

(iii) ∑∞
𝑛=1

𝛿
𝑛
< ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.
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Lemma 3 (see [11]). Let {𝛾
𝑛
}
𝑛∈N be a sequence of real numbers

such that there exists a subsequence {𝛾
𝑛𝑖
}
𝑖∈N of {𝛾𝑛}𝑛∈N such that

𝛾
𝑛𝑖

< 𝛾
𝑛𝑖+1

for all 𝑖 ∈ N. Then, there exists a nondecreasing
sequence {𝑚

𝑘
}
𝑘∈N of N such that lim

𝑘→∞
𝑚
𝑘

= ∞ and
the following properties are satisfied by all (sufficiently large)
numbers 𝑘 ∈ N:

𝛾
𝑚𝑘

≤ 𝛾
𝑚𝑘+1

, 𝛾
𝑘
≤ 𝛾
𝑚𝑘+1

. (20)

In fact,𝑚
𝑘
is the largest number 𝑛 in the set {1, . . . , 𝑘} such that

the condition 𝛾
𝑛
< 𝛾
𝑛+1

holds.

3. Main results

Let H
1
and H

2
be two real Hilbert spaces. Let 𝑓 : H

1
→

R ∪ {+∞} and 𝑔 : H
2
→ R ∪ {+∞} be two proper, lower

semicontinuous convex functions and 𝐴 : H
1

→ H
2
a

bounded linear operator.
Now, we firstly introduce our algorithm.

Algorithm 4

Step 1 (initialization).

𝑥
0
∈ H
1
. (21)

Step 2. Assume that 𝑥
𝑛
has been constructed. Set ℎ(𝑥

𝑛
) =

(1/2)‖(𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
‖2, 𝑙(𝑥

𝑛
) = (1/2)‖(𝐼 − prox

𝜇𝑛𝜆𝑓
)𝑥
𝑛
‖2

and 𝜃(𝑥
𝑛
) = √‖∇ℎ(𝑥

𝑛
)‖2 + ‖∇𝑙(𝑥

𝑛
)‖2 for all 𝑛 ∈ N.

If 𝜃(𝑥
𝑛
) ̸= 0, then compute 𝑥

𝑛+1
via the manner

𝑥
𝑛+1

= prox
𝜇𝑛𝜆𝑓

[𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑥
𝑛
− 𝜇
𝑛
𝐴∗ (𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛
] ,

∀𝑛 ≥ 0,

(22)

where 𝑢 ∈ H
1
is a fixed point and {𝛼

𝑛
}
𝑛∈N ⊂ [0, 1] is a

real number sequence and 𝜇
𝑛
is the stepsize satisfying 𝜇

𝑛
=

𝜌
𝑛
((ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))/𝜃2(𝑥

𝑛
)) with 0 < 𝜌

𝑛
< 4.

If 𝜃(𝑥
𝑛
) = 0, then 𝑥

𝑛+1
= 𝑥
𝑛
is a solution of (13) and the

iterative process stops; otherwise, we set 𝑛 := 𝑛 + 1 and go to
(22).

Theorem 5. Suppose that Γ ̸= 0. Assume that the parameters
{𝛼
𝑛
} and {𝜌

𝑛
} satisfy the conditions:

(C1) lim
𝑛→∞

𝛼
𝑛
= 0;

(C2) ∑∞
𝑛=0

𝛼
𝑛
= ∞;

(C3) 𝜖 ≤ 𝜌
𝑛
≤ (4ℎ(𝑥

𝑛
)/(ℎ(𝑥

𝑛
) + 𝑙(𝑥

𝑛
))) − 𝜖 for some 𝜖 > 0

small enough.

Then the sequence 𝑥
𝑛
converges strongly to 𝑝𝑟𝑜𝑗

Γ
(𝑢).

Proof. Let 𝑥∗ ∈ Γ. Since minimizers of any function
are exactly fixed points of its proximal mappings, we have

𝑥∗ = prox
𝜇𝑛𝜆𝑓

𝑥∗ and 𝐴𝑥∗ = prox
𝜆𝑔
𝐴𝑥∗. By (22) and the

nonexpansivity of prox
𝜇𝑛𝜆𝑓

, we derive

𝑥𝑛+1 − 𝑥∗

2

=
prox𝜇𝑛𝜆𝑓 [𝛼𝑛𝑢 + (1 − 𝛼

𝑛
) 𝑥
𝑛
− 𝜇
𝑛
𝐴∗ (𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛
]

− prox
𝜇𝑛𝜆𝑓

𝑥∗

2

≤
𝛼𝑛𝑢 + (1 − 𝛼

𝑛
) 𝑥
𝑛
− 𝜇
𝑛
𝐴∗ (𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛
− 𝑥∗


2

=

𝛼
𝑛
(𝑢 − 𝑥∗) + (1 − 𝛼

𝑛
)

× [𝑥
𝑛
−

𝜇
𝑛

1 − 𝛼
𝑛

𝐴∗ (𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− 𝑥∗]



2

≤ 𝛼
𝑛

𝑢 − 𝑥∗

2

+ (1 − 𝛼
𝑛
)

×

𝑥
𝑛
−

𝜇
𝑛

1 − 𝛼
𝑛

𝐴∗(𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− 𝑥∗



2

.

(23)

Since prox
𝜆𝑔
is firmly nonexpansive, we deduce that 𝐼−prox

𝜆𝑔

is also firmly nonexpansive. Hence, we have

⟨𝐴∗ (𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
, 𝑥
𝑛
− 𝑥∗⟩

= ⟨(𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
, 𝐴𝑥
𝑛
− 𝐴𝑥∗⟩

= ⟨(𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− (𝐼 − prox

𝜆𝑔
)𝐴𝑥∗, 𝐴𝑥

𝑛
− 𝐴𝑥∗⟩

≥
(𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛


2

= 2ℎ (𝑥
𝑛
) .

(24)

Note that ∇ℎ(𝑥
𝑛
) = 𝐴∗(𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛
and ∇𝑙(𝑥

𝑛
) = (𝐼 −

prox
𝜇𝑛𝜆𝑓

)𝑥
𝑛
. From (24), we obtain


𝑥
𝑛
−

𝜇
𝑛

1 − 𝛼
𝑛

𝐴∗(𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− 𝑥∗



2

=
𝑥𝑛 − 𝑥∗


2

+
𝜇2
𝑛

(1 − 𝛼
𝑛
)
2

𝐴
∗(𝐼 − prox

𝜆𝑔
)𝐴𝑥
𝑛


2

−
2𝜇
𝑛

1 − 𝛼
𝑛

⟨𝐴∗ (𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
, 𝑥
𝑛
− 𝑥∗⟩

=
𝑥𝑛 − 𝑥∗


2

+
𝜇2
𝑛

(1 − 𝛼
𝑛
)
2

∇ℎ(𝑥𝑛)

2

−
2𝜇
𝑛

1 − 𝛼
𝑛

⟨∇ℎ (𝑥
𝑛
) , 𝑥
𝑛
− 𝑥∗⟩

≤
𝑥𝑛 − 𝑥∗


2

+
𝜇2
𝑛

(1 − 𝛼
𝑛
)
2

∇ℎ (𝑥𝑛)

2

−
4𝜇
𝑛
ℎ (𝑥
𝑛
)

1 − 𝛼
𝑛
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=
𝑥𝑛 − 𝑥∗


2

+ 𝜌2
𝑛

(ℎ(𝑥
𝑛
) + 𝑙 (𝑥

𝑛
))
2

(1 − 𝛼
𝑛
)
2

𝜃4 (𝑥
𝑛
)

∇ℎ(𝑥𝑛)

2

− 4𝜌
𝑛

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)

(1 − 𝛼
𝑛
) 𝜃2 (𝑥

𝑛
)
ℎ (𝑥
𝑛
)

≤
𝑥𝑛 − 𝑥∗


2

+ 𝜌2
𝑛

(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

(1 − 𝛼
𝑛
)
2

𝜃2 (𝑥
𝑛
)

− 4𝜌
𝑛

(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

(1 − 𝛼
𝑛
) 𝜃2 (𝑥

𝑛
)

ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)

=
𝑥𝑛 − 𝑥∗


2

− 𝜌
𝑛
(

4ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)
−

𝜌
𝑛

1 − 𝛼
𝑛

)

×
(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

(1 − 𝛼
𝑛
) 𝜃2 (𝑥

𝑛
)
.

(25)

By condition (C3), without loss of generality, we can assume
that (4ℎ(𝑥

𝑛
)/(ℎ(𝑥

𝑛
) + 𝑙(𝑥

𝑛
))) − (𝜌

𝑛
/(1 − 𝛼

𝑛
)) ≥ 0 for all 𝑛 ≥ 0.

Thus, from (23) and (25), we obtain
𝑥𝑛+1 − 𝑥∗


2

≤ 𝛼
𝑛

𝑢 − 𝑥∗

2

+ (1 − 𝛼
𝑛
)

× [
𝑥𝑛 − 𝑥∗


2

− 𝜌
𝑛
(

4ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)
−

𝜌
𝑛

1 − 𝛼
𝑛

)
(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

(1 − 𝛼
𝑛
) 𝜃2 (𝑥

𝑛
)
]

= 𝛼
𝑛

𝑢 − 𝑥∗

2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑥∗


2

− 𝜌
𝑛
(

4ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)
−

𝜌
𝑛

1 − 𝛼
𝑛

)
(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

𝜃2 (𝑥
𝑛
)

≤ 𝛼
𝑛

𝑢 − 𝑥∗

2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑥∗


2

≤ max {𝑢 − 𝑥∗

2

,
𝑥𝑛 − 𝑥∗


2

} .

(26)

Hence, {𝑥
𝑛
} is bounded.

Let 𝑧 = 𝑃
Γ
𝑢. From (26), we deduce

0 ≤ 𝜌
𝑛
(

4ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)
−

𝜌
𝑛

1 − 𝛼
𝑛

)
(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

𝜃2 (𝑥
𝑛
)

≤ 𝛼
𝑛‖𝑢 − 𝑧‖

2 + (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑧


2

−
𝑥𝑛+1 − 𝑧


2

.

(27)

We consider the following two cases.

Case 1. One has ‖𝑥
𝑛+1

− 𝑧‖ ≤ ‖𝑥
𝑛
− 𝑧‖ for every 𝑛 ≥ 𝑛

0
large

enough.
In this case, lim

𝑛→∞
‖ 𝑥
𝑛
− 𝑧 ‖ exists as finite and hence

lim
𝑛→∞

(
𝑥𝑛+1 − 𝑧

 −
𝑥𝑛 − 𝑧

) = 0. (28)

This together with (27) implies that

𝜌
𝑛
(

4ℎ (𝑥
𝑛
)

ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)
−

𝜌
𝑛

1 − 𝛼
𝑛

)
(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

𝜃2 (𝑥
𝑛
)

→ 0.

(29)

Since lim inf
𝑛→∞

𝜌
𝑛
((4ℎ(𝑥

𝑛
)/(ℎ(𝑥

𝑛
)+𝑙(𝑥
𝑛
)))−(𝜌

𝑛
/(1−𝛼

𝑛
))) ≥

2𝜖 (by condition (C3)), we get

(ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))
2

𝜃2 (𝑥
𝑛
)

→ 0. (30)

Noting that 𝜃2(𝑥
𝑛
) = ‖∇ℎ(𝑥

𝑛
)‖2 + ‖∇𝑙(𝑥

𝑛
)‖2 is bounded, we

deduce immediately that

lim
𝑛→∞

(ℎ (𝑥
𝑛
) + 𝑙 (𝑥

𝑛
)) = 0. (31)

Therefore,

lim
𝑛→∞

ℎ (𝑥
𝑛
) = lim
𝑛→∞

𝑙 (𝑥
𝑛
) = 0. (32)

Next, we prove

lim sup
𝑛→∞

⟨𝑢 − 𝑧, 𝑥
𝑛
− 𝑧⟩ ≤ 0. (33)

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛𝑖
}

satisfying 𝑥
𝑛𝑖
⇀ 𝑧† and

lim sup
𝑛→∞

⟨𝑢 − 𝑧, 𝑥
𝑛
− 𝑧⟩ = lim

𝑖→∞

⟨𝑢 − 𝑧, 𝑥
𝑛𝑖
− 𝑧⟩. (34)

By the lower semicontinuity of ℎ, we get

0 ≤ ℎ (𝑧†) ≤ lim inf
𝑖→∞

ℎ (𝑥
𝑛𝑖
) = lim
𝑛→∞

ℎ (𝑥
𝑛
) = 0. (35)

So,

ℎ (𝑧†) =
1

2

(𝐼 − prox
𝜆𝑔
)𝐴𝑧†

 = 0. (36)

That is, 𝐴𝑧† is a fixed point of the proximal mapping of 𝑔 or
equivalently 0 ∈ 𝜕𝑔(𝐴𝑧†). In other words,𝐴𝑧† is a minimizer
of 𝑔.

Similarly, from the lower semicontinuity of 𝑙, we get

0 ≤ 𝑙 (𝑧†) ≤ lim inf
𝑖→∞

𝑙 (𝑥
𝑛𝑖
) = lim
𝑛→∞

𝑙 (𝑥
𝑛
) = 0. (37)

Therefore,

𝑙 (𝑧†) =
1

2

(𝐼 − prox
𝜇𝑛𝜆𝑓

) 𝑧†
 = 0. (38)

That is, 𝑧† is a fixed point of the proximal mapping of 𝑓 or
equivalently 0 ∈ 𝜕𝑓(𝑧†). In other words, 𝑧† is a minimizer of
𝑓. Hence, 𝑧† ∈ Γ. Therefore,

lim sup
𝑛→∞

⟨𝑢 − 𝑧, 𝑥
𝑛
− 𝑧⟩ = lim

𝑖→∞

⟨𝑢 − 𝑧, 𝑥
𝑛𝑖
− 𝑧⟩

= ⟨𝑢 − 𝑧, 𝑧† − 𝑧⟩ ≤ 0.

(39)



Abstract and Applied Analysis 5

From (22), we have
𝑥𝑛+1 − 𝑧


2

≤

𝛼
𝑛
(𝑢 − 𝑧) + (1 − 𝛼

𝑛
)

× [𝑥
𝑛
−

𝜇
𝑛

1 − 𝛼
𝑛

𝐴∗ (𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− 𝑧]



2

= (1 − 𝛼
𝑛
)
2

𝑥
𝑛
−

𝜇
𝑛

1 − 𝛼
𝑛

𝐴∗(𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− 𝑧



2

+ 𝛼2
𝑛
‖𝑢 − 𝑧‖

2 + 2𝛼
𝑛
(1 − 𝛼

𝑛
)

× ⟨𝑥
𝑛
−

𝜇
𝑛

1 − 𝛼
𝑛

𝐴∗ (𝐼 − prox
𝜆𝑔
)𝐴𝑥
𝑛
− 𝑧, 𝑢 − 𝑧⟩

≤ (1 − 𝛼
𝑛
)
2𝑥𝑛 − 𝑧


2

+ 𝛼2
𝑛
‖𝑢 − 𝑧‖

2

+ 2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨𝑥
𝑛
− 𝑧, 𝑢 − 𝑧⟩

− 2𝛼
𝑛
𝜇
𝑛
⟨∇ℎ (𝑥

𝑛
) , 𝑢 − 𝑧⟩

≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑧


2

+ 𝛼
𝑛
(𝛼
𝑛‖𝑢 − 𝑧‖

2 + 2 (1 − 𝛼
𝑛
) ⟨𝑥
𝑛
− 𝑧, 𝑢 − 𝑧⟩

+ 2𝜇
𝑛

∇ℎ (𝑥𝑛)
 ‖𝑢 − 𝑧‖ ) .

(40)

Since ∇ℎ is Lipschitz continuous with Lipschitzian constant
‖𝐴‖2 and ∇𝑙 is nonexpansive, ∇ℎ(𝑢

𝑛
),∇𝑙(𝑢

𝑛
), and 𝜃2(𝑥

𝑛
) =

‖∇ℎ(𝑥
𝑛
)‖2 + ‖∇𝑙(𝑥

𝑛
)‖2 are bounded. Note that 𝜇

𝑛
‖∇ℎ(𝑥

𝑛
)‖ =

𝜌
𝑛
((ℎ(𝑥
𝑛
) + 𝑙(𝑥

𝑛
))/𝜃2(𝑥

𝑛
))‖∇ℎ(𝑥

𝑛
)‖. Thus, 𝜇

𝑛
‖∇ℎ(𝑥

𝑛
)‖ → 0

by (32). From Lemma 2, (39), and (40) we deduce that 𝑥
𝑛
→

𝑧.

Case 2. There exists a subsequence {‖𝑥
𝑛𝑗
− 𝑧‖} of {‖𝑥

𝑛
− 𝑧‖}

such that

𝑥
𝑛𝑗
− 𝑧


<

𝑥
𝑛𝑗+1

− 𝑧

, (41)

for all 𝑗 ≥ 1. By Lemma 3, there exists a strictly increasing
sequence {𝑚

𝑘
} of positive integers such that lim

𝑘→∞
𝑚
𝑘
=

+∞ and the following properties are satisfied by all numbers
𝑘 ∈ N:
𝑥𝑚𝑘 − 𝑧

 ≤
𝑥𝑚𝑘+1 − 𝑧

 ,
𝑥𝑘 − 𝑧

 ≤
𝑥𝑚𝑘+1 − 𝑧

 . (42)

Consequently,

0 ≤ lim
𝑘→∞

(
𝑥𝑚𝑘+1 − 𝑧

 −
𝑥𝑚𝑘 − 𝑧

)

≤ lim sup
𝑛→∞

(
𝑥𝑛+1 − 𝑧

 −
𝑥𝑛 − 𝑧

)

≤ lim sup
𝑛→∞

(𝛼
𝑛 ‖𝑢 − 𝑧‖ + (1 − 𝛼

𝑛
)
𝑥𝑛 − 𝑧

 −
𝑥𝑛 − 𝑧

)

= lim sup
𝑛→∞

𝛼
𝑛
(‖𝑢 − 𝑧‖ −

𝑥𝑛 − 𝑧
) = 0.

(43)

Hence,

lim
𝑘→∞

(
𝑥𝑚𝑘+1 − 𝑧

 −
𝑥𝑚𝑘 − 𝑧

) = 0. (44)

By a similar argument as that of Case 1, we can prove that

lim sup
𝑘→∞

⟨𝑢 − 𝑧, 𝑥
𝑚𝑘

− 𝑧⟩ ≤ 0,

𝑥𝑚𝑘+1 − 𝑧

2

≤ (1 − 𝛼
𝑚𝑘
)
𝑥𝑚𝑘 − 𝑧


2

+ 𝛼
𝑚𝑘
𝜎
𝑚𝑘
,

(45)

where 𝜎
𝑚𝑘

= 𝛼
𝑚𝑘
‖𝑢 − 𝑧‖2 + 2(1 − 𝛼

𝑚𝑘
)⟨𝑥
𝑚𝑘

− 𝑧, 𝑢 − 𝑧⟩ +
2𝜇
𝑚𝑘
‖∇ℎ(𝑥

𝑚𝑘
)‖‖𝑢 − 𝑧‖.

In particular, we get

𝛼
𝑚𝑘

𝑥𝑚𝑘 − 𝑧

2

≤
𝑥𝑚𝑘 − 𝑧


2

−
𝑥𝑚𝑘+1 − 𝑧

 + 𝛼
𝑚𝑘
𝜎
𝑚𝑘

≤ 𝛼
𝑚𝑘
𝜎
𝑚𝑘
.

(46)

Then,

lim sup
𝑘→∞

𝑥𝑚𝑘 − 𝑧

2

≤ lim sup
𝑘→∞

𝜎
𝑚𝑘

≤ 0. (47)

Thus, from (42) and (44), we conclude that

lim sup
𝑘→∞

𝑥𝑘 − 𝑧
 ≤ lim sup
𝑘→∞

𝑥𝑚𝑘+1 − 𝑧
 = 0. (48)

Therefore, 𝑥
𝑛
→ 𝑧. This completes the proof.

Remark 6. Note that problem (13) was considered, for exam-
ple, in [12, 13]; however, the iterative methods proposed to
solve it need to know a priori the norm of the bounded linear
operator 𝐴.

Remark 7. Wewould like also to emphasize that by taking𝑓 =
𝛿
𝐶
, 𝑔 = 𝛿

𝑄
the indicator functions of two nonempty closed

convex sets𝐶,𝑄 of𝐻
1
and𝐻

2
respectively, our algorithm (22)

reduces to

𝑥
𝑛+1

= proj
𝐶
[𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑥
𝑛
− 𝜇
𝑛
𝐴∗ (𝐼 − proj

𝑄
)𝐴𝑥
𝑛
] ,

∀𝑛 ≥ 0.

(49)

We observe that (49) is simpler than the one in [14].
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