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The paper considers the nonlocal hydrodynamic-type systems which are two-dimensional travelling wave systems with a five-
parameter group. We apply the method of dynamical systems to investigate the bifurcations of phase portraits depending on the
parameters of systems and analyze the dynamical behavior of the travelling wave solutions. The existence of peakons, compactons,
and periodic cusp wave solutions is discussed.When the parameter 𝑛 equals 2, namely, let the isochoric Gruneisen coefficient equal
1, some exact analytical solutions such as smooth bright solitary wave solution, smooth and nonsmooth dark solitary wave solution,
and periodic wave solutions, as well as uncountably infinitely many breaking wave solutions, are obtained.

1. Introduction

A hydrodynamic system of balance equations for mass and
momentum is considered by Vladimirov et al. [1]:
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where ] = 𝑛 − 2, 𝑛 = 1 + Γ
𝑉
∞, Γ
𝑉
∞ is the isochoric

Gruneisen coefficient [2], and 𝜏, 𝛽, and 𝜎 are parameters.
This system is closed by the dynamic equation of state, taking
into account the effects of spatiotemporal nonlocalities. Using
group theory reduction, the authors of [1] obtained the
following system of the ordinary differential equations:
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(2)

which describes a set of approximate travellingwave solutions
to the source system (1) (see the initial system (1) of PDEs in
[1]), where 𝜏, 𝜉 and 𝐶

1
,𝐷 are constant parameters; 𝜖 ≪ 0.

When 𝜖 = 0, it immediately obtains that 𝐺 = 𝐺
1
= const,

and the system (2) reduces to the following two-dimensional
system:
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(3)

where 𝜁 = 𝑥 − 𝐷𝑡.
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Assume that 𝐴
𝑗
(𝑅
𝑗
, 0), 𝑗 = 1, 2, are two equilibrium

points of system (3). Vladimirov et al. obtained the following
conclusion (see [1, 3]).

Theorem A. If ] > −2 and 𝐷
2

> 𝛽𝑅
]+3
1

, then sys-
tem (3) possesses a one-parameter family of periodic solu-
tions, localized around the critical point 𝐴

2
(𝑅
2
, 0) in a

bounded set 𝑀. The boundary of this set is formed by the
homoclinic intersection of separatrices of the saddle point
𝐴
1
(𝑅
1
, 0).

Wenotice that for a fixed ], system (3) is a four-parameter
system depending on the parameter group (𝛽, 𝜎, 𝐷, 𝐺

1
). The

bifurcations and dynamical behavior of solutions of system
(3) have not be studied by [1, 3]. The conclusion of Theorem
A is incomplete (see Theorems 1–3 of Section 3 below). In
fact, system (3) is the first class of singular travelling wave
systems defined by [4, 5], which has the singular straight
line 𝑅 = 0. Depending on the changes of parameters, there
are very interesting bifurcations and dynamical behaviors of
the travelling wave solutions in this kind of singular systems,
for example, it gives rise to so-called peakons, compactons,
loop solutions, and others. As Fokas stated that peakons are
peaked solitons [6], that is, solitons with discontinuous first
derivative, compactons are solitons with compact support.

In this paper, we will give complete description for the
dynamics of solutions of system (3).

Instead of ], we use 𝑛 = ] + 2 to rewrite (3) as follows:
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This system has the first integral:
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(5)

Clearly, in order to make 𝐻(𝑅, 𝑌) well defined, we assume
that 𝑛 > 1; that is, ] > −1.

This paper is organized as follows. In Section 2, we
analyse the bifurcations of phase portraits of system (4)
under different parameter conditions. Section 3 discusses
the existence of periodic solutions in different parameter
conditions. In particular, it discusses the existence of solitary
cusp wave solutions (peakons) and periodic cusp wave
solutions. In Section 4, for the case 𝑛 = ] + 2 = 2, namely,
let the isochoric Gruneisen coefficient equal 1, we figure
out explicit parametric expressions for the solitary wave
solutions, periodic wave solutions, and uncountably infinitely
many breaking wave solutions (compactons). Finally, we give
a conclusion of this paper.

2. Bifurcations of the Phase Portraits of
System (4)

In this section, we study the phase portraits of system (4)
in the (𝑅, 𝑌)-phase plane. Consider the associated regular
system of (4):
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(6)

where 𝑑𝜁 = 𝜎𝑅
𝑛
𝑑𝜂. Clearly, now the straight line 𝑅 = 0 is a

solution of system (6). On the straight line 𝑅 = 0, system (6)
has no equilibrium point.

Consider the following formulas:
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Since every real root 𝑅
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to an equilibrium point 𝐴
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, 0) of system (6), by using (7),

we can analyse the equilibrium points 𝐴
𝑗
(𝑅
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, 0) of system

(6) in different parameter conditions and have the following
conclusions.

2.1. In the Case of 𝑛 = 2𝑚. Consider the following.
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Figure 1: The phase portraits of system (6) for 𝑛 = 2𝑚, 𝛽 > 0, 𝐺
1
> 0, and 𝜎 > 0.
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Figure 2: The phase portraits of system (6) for 𝑛 = 2𝑚, 𝛽 > 0, 𝐺
1
> 0, and 𝜎 < 0.
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< 𝑅
1
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∞.
(3) For 𝛽 > 0, 𝐺

1
< 0, and any given 𝐷, 𝜎, because the

number 𝑅
𝑀

is not real, there exists one equilibrium
point 𝐴

1
(𝑅
1
, 0) of system (6), satisfying −∞ < 𝑅

1
<

0.
(4) For 𝛽 < 0,𝐺

1
> 0, and any given𝐷, 𝜎, there exists one

equilibrium point 𝐴
1
(𝑅
1
, 0) of system (6), satisfying

0 < 𝑅
1
< ∞.

Let 𝑀(𝑅
𝑗
, 0) be the coefficient matrix of the linearized

system of system (6) at an equilibrium point 𝐴
𝑗
(𝑅
𝑗
, 0). We

have

𝐽 (𝑅
𝑗
, 0) = det𝑀(𝑅

𝑗
, 0) = 𝜎𝑅

𝑛

𝑗
𝑓

(𝑅
𝑗
) . (8)

By the theory of planar dynamical systems, for an equi-
librium point of a planar integrable system, if 𝐽 < 0, then
the equilibrium point is a saddle point; if 𝐽 > 0, and
(Trace𝑀(𝑅

𝑗
, 0))
2
− 4𝐽(𝑅

𝑗
, 0) > 0, then it is a node point; if

𝐽 > 0, and Trace𝑀(𝑅
𝑗
, 0) = 0, then, it is a center point; if

𝐽 = 0 and the Poincaré index of the equilibrium point is 0,
then this equilibrium point is cusp [5].

According to formula (5), we write that ℎ
0
= 𝐻(0, 0) =

0 and ℎ
𝑗
= 𝐻(𝑅

𝑗
, 0), 𝑗 = 1, 2, 3.

By using the above results, we have the following bifurca-
tions of phase portraits of system (6) shown in Figures 1–5.

For the case of 𝛽 < 0, and 𝐺
1
< 0, we see from system (6)

thatwhen 𝑛 = 2𝑚, by the transformation𝑅 → −𝑅,𝑌 → −𝑌,
and 𝜎 → −𝜎, it can become the case of 𝛽 > 0, 𝐺

1
> 0.Thus,

the phase portraits of system (6) in the case of 𝛽 < 0, and
𝐺
1
< 0 just are the reflections of the phase portraits in Figures

1 and 2 with respect to the𝑌-axis, which are shown in Figures
3 and 4.

2.2. In the Case of 𝑛 = 2𝑚+1. Consider the following.

(1) For 𝛽 > 0, and 𝐺
1
> 0, when 𝐷2 < (𝑛𝐺
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𝑀
,

and 𝑓(𝑅
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𝐴
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𝑀
, and𝑓(𝑅

𝑀
) > 0, system

(6) has no equilibrium point.
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1
< 0, and 𝜎 > 0.

−2

2

y

−3

−2 −1

−1

1

1

2 3

3

x

(a) 𝐷2 > 𝐷2
𝑐𝑟

−2

2

y

−3

−1

−1

1

1

2 3

3

x

(b) 𝐷2 = 𝐷2
𝑐𝑟

−2

2

y

−3

−2 −1

−1

1

1

2 3

3

x

(c) 𝐷2 < 𝐷2
𝑐𝑟
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1
< 0, and 𝜎 < 0.

(2) For 𝛽 > 0, 𝐺
1
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2
< (𝑛𝐺

1
/(𝑛 + 1))𝑅

𝑀
,

and 𝑓(𝑅
𝑀
) < 0, there exist two equilibrium points

𝐴
𝑗
(𝑅
𝑗
, 0), 𝑗 = 1, 2, of system (6), satisfying −∞ <

𝑅
1
< 𝑅
𝑀

< 𝑅
2
< 0. When 𝐷

2
= (𝑛𝐺

1
/(𝑛 + 1))𝑅

𝑀
,

and 𝑓(𝑅
𝑀
) = 0, there exists one equilibrium point

𝐴
1
(𝑅
1
, 0) of (6), satisfying −∞ < 𝑅

1
= 𝑅
𝑀

< 0.
When𝐷2 > (𝑛𝐺

1
/(𝑛+1))𝑅

𝑀
, and𝑓(𝑅

𝑀
) > 0, system

(6) has no equilibrium point.

(3) For 𝛽 < 0, 𝐺
1
> 0, and any given𝐷, 𝜎, there exist two

equilibrium points 𝐴
𝑗
(𝑅
𝑗
, 0), 𝑗 = 1, 2, of system (6),

satisfying −∞ < 𝑅
1
< 𝑅
𝑀
< 0 < 𝑅

2
.

(4) For 𝛽 < 0, 𝐺
1
< 0, and any given𝐷, 𝜎, there exist two

equilibrium points 𝐴
𝑗
(𝑅
𝑗
, 0), 𝑗 = 1, 2, of system (6),

satisfying −∞ < 𝑅
1
< 0 < 𝑅

𝑀
< 𝑅
2
< ∞.

Same as Section 2.1, we have the following bifurcations of
phase portraits of system (6) shown in Figures 6–10.

3. The Existence of Solutions of System (4)
Because system (6) has the same phase orbits as system (4),
therefore, to sum up, by the above discussion, we have the
following results.

3.1. The Existence of Periodic Solutions

Theorem 1. (1) If 𝛽 > 0, 𝐺
1
> 0, 𝜎 > 0, and 𝐷2 < 𝐷

2

𝑐𝑟
≡

(𝑛𝐺
1
/(𝑛 + 1))(𝑛𝐺

1
/(𝑛 + 1)𝛽)

1/𝑛, then, for any 𝑛 = ] − 2 =

2𝑚 > 1, system (4) possesses a one-parameter family of periodic
solutions defined by 𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

3
, ℎ
2
), enclosing the

center point𝐴
3
(𝑅
3
, 0).The boundary of this set is formed by the

homoclinic orbit defined by 𝐻(𝑅, 𝑌) = ℎ
2
to the saddle point

𝐴
2
(𝑅
2
, 0) (see Figure 1(c)).

And for any 𝑛 = ]−2 = 2𝑚+1, system (4) possesses a one-
parameter family of periodic solutions defined by 𝐻(𝑅, 𝑌) =

ℎ, ℎ ∈ (ℎ
2
, ℎ
1
), enclosing the center point 𝐴

2
(𝑅
2
, 0). The

boundary of this set is formed by the homoclinic orbit defined
by𝐻(𝑅, 𝑌) = ℎ

1
to the saddle point𝐴

1
(𝑅
1
, 0) (see Figure 6(c)).
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1
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1
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1/𝑛, then, for any 𝑛 = ] − 2 =
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Figure 5: The phase portraits of system (6) for 𝑛 = 2𝑚, and 𝛽𝐺
1
< 0.
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Figure 6: The phase portraits of system (6) for 𝑛 = 2𝑚 + 1, 𝛽 > 0, 𝐺
1
> 0, and 𝜎 > 0.

2𝑚 > 1, system (4) possesses a one-parameter family of periodic
solutions defined by 𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

2
, ℎ
3
), enclosing the

center point𝐴
2
(𝑅
2
, 0).The boundary of this set is formed by the

homoclinic orbit defined by 𝐻(𝑅, 𝑌) = ℎ
3
to the saddle point

𝐴
3
(𝑅
3
, 0) (see Figure 2(c)).

And for any 𝑛 = ] − 2 = 2𝑚 + 1, system (4) possesses
a one-parameter family of periodic solutions defined by
𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

1
, ℎ
2
), enclosing the center point

𝐴
1
(𝑅
1
, 0). The boundary of this set is formed by the homoclinic

orbit defined by 𝐻(𝑅, 𝑌) = ℎ
2
to the saddle point 𝐴

2
(𝑅
2
, 0)

(see Figure 7(c)).

Theorem 2. (1) If 𝛽 < 0, 𝐺
1
< 0, 𝜎 < 0 (or 𝛽 > 0, 𝐺

1
< 0, 𝜎 >

0), and 𝐷
2
< 𝐷
2

𝑐𝑟
≡ (𝑛𝐺

1
/(𝑛 + 1))(𝑛𝐺

1
/(𝑛 + 1)𝛽)

1/𝑛, then, for
any 𝑛 = ]− 2 > 1, system (4) possesses a one-parameter family
of periodic solutions defined by 𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

1
, ℎ
2
),
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Figure 7: The phase portraits of system (6) for 𝑛 = 2𝑚 + 1, 𝛽 > 0, 𝐺
1
> 0, and 𝜎 < 0.
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Figure 8: The phase portraits of system (6) for 𝑛 = 2𝑚 + 1, 𝛽 > 0, 𝐺
1
< 0, and 𝜎 > 0.
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Figure 9: The phase portraits of system (6) for 𝑛 = 2𝑚 + 1, 𝛽 > 0, 𝐺
1
< 0, and 𝜎 < 0.

enclosing the center point 𝐴
1
(𝑅
1
, 0). The boundary of this set

is formed by the homoclinic orbit defined by 𝐻(𝑅, 𝑌) = ℎ
2
to

the saddle point 𝐴
2
(𝑅
2
, 0) (see Figure 4(c) or Figure 8(c)).

(2) If 𝛽 < 0, 𝐺
1
< 0, 𝜎 > 0 (or 𝛽 > 0, 𝐺

1
< 0, 𝜎 < 0), and

𝐷
2

𝑚
< 𝐷
2
< 𝐷
2

𝑐𝑟
≡ (𝑛𝐺

1
/(𝑛 + 1))(𝑛𝐺

1
/(𝑛 + 1)𝛽)

1/𝑛, then, for

any 𝑛 = ]−2 > 1, system (4) possesses a one-parameter family
of periodic solutions defined by 𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

2
, ℎ
1
),

enclosing the center point 𝐴
2
(𝑅
2
, 0). The boundary of this set

is formed by the homoclinic orbit defined by 𝐻(𝑅, 𝑌) = ℎ
1
to

the saddle point 𝐴
1
(𝑅
1
, 0) (see Figure 3(c) or Figure 9(c)).
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Figure 10: The phase portraits of system (6) for 𝑛 = 2𝑚 + 1, and 𝛽 < 0.

Theorem 3. (1) If one of the following conditions holds:

(a) 𝛽 > 0, 𝐺
1
> 0, 𝜎 > 0;

(b) 𝛽 < 0, G
1
< 0, 𝜎 < 0;

(c) 𝛽 > 0, 𝐺
1
< 0, 𝜎 > 0;

(d) 𝛽 < 0, 𝐺
1
> 0, 𝜎 < 0,

then, for any 𝑛 = 2𝑚 > 1 and 𝐷
2

> 0, system (4)
possesses a one-parameter family of periodic solutions defined
by 𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

𝑗
, 0), enclosing the center point

𝐴
𝑗
(𝑅
𝑗
, 0) (see Figures 1, 4, and 5(a), 5(d)). As ℎ → 0, the

closed orbits of system (4) expand outwards and approach to
the singular straight line 𝑅 = 0.

(2) If one of the following conditions holds:

(a) 𝛽 < 0, 𝐺
1
> 0, 𝜎 < 0;

(b) 𝛽 < 0, 𝐺
1
< 0, 𝜎 < 0,

then, for any 𝑛 = 2𝑚 + 1 and 𝐷
2
> 0, system (4) possesses

two families of periodic solutions defined by𝐻(𝑅, 𝑌) = ℎ, ℎ ∈

(ℎ
𝑗
, 0), 𝑗 = 1, 2, enclosing the center point 𝐴

𝑗
(𝑅
𝑗
, 0), 𝑗 = 1, 2

(see Figures 10(b) and 10(d)). As ℎ → 0, the closed orbits
of system (4) expand outwards and approach to the singular
straight line 𝑅 = 0.

3.2. The Existence of Uncountably Infinitely Periodic
Cusp Wave Solutions and Pseudo-Peakons. We consider
Figure 3(c), for every fixed 𝑛, 𝛽, 𝜎, and 𝐺

1
, when parameter

𝐷
2 decreases from 𝐷

2

𝑐𝑟
to 0, there exists a value 𝐷2 = 𝐷

2

𝑚

(where 𝐷2
𝑚
satisfies 𝐻(𝑅

1
, 0) = ℎ

1
= 0) such that when

𝐷
2
< 𝐷
2

𝑚
, the stable and unstable manifolds to a saddle point

cannot connect in 𝑅-axis. Corresponding to Figure 3(c),
the changes of phase portraits of system (6) are shown in
Figure 11. For a fixed parameter group of 𝑛, 𝛽, 𝐺

1
, and 𝜎, the

value of𝐷2
𝑚
can be numerically determined.

We see from Section 2 that if 𝑛 = 2𝑚, when 𝛽 > 0, 𝐺
1
>

0, 𝜎 < 0, and 𝐷
𝑚

< 𝐷
2
< 𝐷
2

𝑐𝑟
, system (4) has the phase

portrait Figure 2(c), while when 𝛽 < 0, 𝐺
1
< 0, 𝜎 > 0, and

𝐷
𝑚
< 𝐷
2
< 𝐷
2

𝑐𝑟
, system (4) has the phase portrait Figure 3(c).

Similarly, if 𝑛 = 2𝑚 + 1, when 𝛽 > 0, 𝐺
1
> 0, 𝜎 < 0, and

𝐷
𝑚
< 𝐷
2
< 𝐷
2

𝑐𝑟
, system (4) has the phase portrait Figure 7(c),

while when 𝛽 > 0,𝐺
1
< 0, 𝜎 < 0 and𝐷

𝑚
< 𝐷
2
< 𝐷
2

𝑐𝑟
, system

(4) has the phase portrait Figure 9(c).
According to all the above, for a fixed parameter group

(𝑛, 𝛽, 𝐺
1
, 𝜎), when parameter 𝐷

2 decreases from 𝐷
2

𝑐𝑟
to

𝐷
𝑚
, the homoclinic orbit loop will gradually expand and

approache to the straight line 𝑅 = 0 (see Figure 11). By
using the rapid-jump property of 𝑑𝑅/𝑑𝜁 near the straight line
given by [4], it implies that depending on 𝐷

2
∈ (𝐷
2

𝑚
, 𝐷
2

𝑐𝑟
),
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Figure 11: The changes of phase portraits of system (6) when𝐷2 are decreased. Parameters: 𝑛 = 2𝑚, 𝛽 < 0, 𝐺
1
< 0, and 𝜎 > 0.

there exists a family of solitary cusp wave solutions (peakons)
of (1). For example, corresponding to the homoclinic orbit
in Figure 11(b), we have the peakon shown in Figure 12(a).
Corresponding to the periodic orbits defined by𝐻(𝑅, 𝑌) = ℎ,
ℎ ∈ (ℎ

2
, ℎ
1
) in Figure 11(b), when ℎ is varied from ℎ

2
to ℎ
1
,

the periodic wave solutions gradually lose their smoothness,
from smooth periodic waves become periodic cusp waves
(see Figures 12(b)–12(d)).

Hence, we have the following conclusion.

Theorem4. Under the abovementioned parameter conditions
of Figure 2(c), Figure 3(c), Figure 7(c), and Figure 8(c), for a
fixed parameter group (𝑛, 𝛽, 𝐺

1
, 𝜎), depending on the param-

eter 𝐷2, closing to the value 𝐷
𝑚
, there exist solitary cusp wave

solutions (pseudo-peakons) and periodic cusp wave solutions of
(1).

4. Analytical Travelling Wave Solutions
for 𝑛 = 2

According to (5), for a fixed integral constant ℎ, we have

𝑦 =

1

𝑅
𝑛−1

(ℎ −

2𝑅
𝑛−1

𝑛𝜎

[

𝑛𝐷
2

𝑛 − 1

− 𝐺
1
𝑅 +

𝛽

2𝑛

𝑅
𝑛+1

])

1/2

. (9)

Using the first equation of (4) and taking integration on a
branch of the invariant curve 𝐻(𝑅, 𝑌) = ℎ with initial value
𝑅(𝜁
0
) = 𝑅
0
, we have

𝜁 − 𝜁
0

= ∫

𝑅

𝑅0

𝑅
𝑛−1

𝑑𝑅

√𝐹 (𝑅)

≡∫

𝑅

𝑅0

𝑅
𝑛−1

𝑑𝑅

√ℎ−(2𝑅
𝑛−1

/𝑛𝜎) [𝑛𝐷
2
/ (𝑛−1)−𝐺

1
𝑅+(𝛽/2𝑛) 𝑅

𝑛+1
]

.

(10)

In general, for 𝑛 ≥ 3, the right side of (10) cannot be
integrated explicitly. However, for 𝑛 = 2, introducing a new

parametric variable 𝜒, we can obtain analytical parametric
representations for solitary wave solutions, breaking wave
solutions and periodic wave solutions of (4).

4.1. In the Case 𝛽> 0, 𝐺
1
> 0, and 𝜎> 0. Suppose that 𝐷2 <

𝐷
2

𝑐𝑟
≡ (2𝐺

1
/3)(2𝐺

1
/3𝛽)
1/2 (see Figure 1(c)).

(1) Corresponding to the homoclinic orbit to the saddle
point 𝐴

2
(𝑅
2
, 0), as a closed branch of the level set𝐻(𝑅, 𝑌) =

ℎ
2
, enclosing the center 𝐴

3
(𝑅
3
, 0) in Figure 1(c), it gives rise

to a bright solitary wave solution of (1). Now, we have 𝐹(𝑅) =
(1/2)√𝛽/𝜎(𝑅

𝑚
−𝑅)(𝑅−𝑅

2
)
2
(𝑅−𝑅

𝑙
)with 𝑅

𝑙
< 0 < 𝑅

2
< 𝑅
3
<

𝑅
𝑚
. Thus, (10) has the following form:

1

2

√
𝛽

𝜎

𝜁 = ∫

𝑅

𝑅𝑚

𝑅𝑑𝑅

(𝑅 − 𝑅
2
)√(𝑅

𝑚
− 𝑅) (𝑅 − 𝑅

𝑙
)

= ∫

𝑅

𝑅𝑚

[

[

[

1

√(𝑅
𝑚
− 𝑅) (𝑅 − 𝑅

𝑙
)

+

𝑅
2

(𝑅 − 𝑅
2
)√(𝑅

𝑚
− 𝑅) (𝑅 − 𝑅

𝑙
)

]

]

]

𝑑𝑅.

(11)

The following analytical parametric representation of the
bright solitary wave solution of (1) can be obtained:

𝑅 (𝜒) = 𝑅
2
+

2 (𝑅
𝑚
− 𝑅
2
) (𝑅
2
− 𝑅
𝑙
)

(𝑅
𝑚
− 𝑅
𝑙
) cosh (𝜔𝜁) − (𝑅

𝑚
− 2𝑅
2
+ 𝑅
𝑙
)

,

𝜁 (𝜒) = 2√

𝜎

𝛽

[𝑅
2
𝜒 −

𝜋

2

− arcsin(
𝑅
𝑚
+ 𝑅
𝑙
− 2𝑅 (𝜒)

𝑅
𝑚
− 𝑅
𝑙

)] ,

for 𝜒 ∈ (−∞, 0] ,
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Figure 12: The profiles of pseudo-peakon and periodic cusp wave solutions of (1).

𝜁 (𝜒) = 2√

𝜎

𝛽

[𝑅
2
𝜒 +

𝜋

2

+ arcsin(
𝑅
𝑚
+ 𝑅
𝑙
− 2𝑅 (𝜒)

𝑅
𝑚
− 𝑅
𝑙

)] ,

for 𝜒 ∈ [0,∞) ,

(12)

where 𝜔 = √(𝑅
𝑚
− 𝑅
2
)(𝑅
2
− 𝑅
𝑙
).

(2) Corresponding to the periodic orbits defined by
𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

3
, ℎ
2
), enclosing the center 𝐴

3
(𝑅
3
, 0) in

Figure 1(c), we have a family of periodic wave solutions of (1).
Now, 𝐹(𝑅) = (1/2)√𝛽/𝜎(𝑟

1
− 𝑅)(𝑅 − 𝑟

2
)(𝑅 − 𝑟

3
)(𝑅 − 𝑟

4
) with

𝑟
4
< 0 < 𝑟

3
< 𝑅
2
< 𝑟
2
< 𝑅
3
< 𝑟
1
< 𝑅
𝑚
.

Hence, (10) gives that

1

2

√
𝛽

𝜎

𝜁

= ∫

𝑅

𝑟2

𝑅𝑑𝑅

√(𝑟
1
− 𝑅) (𝑅 − 𝑟

2
) (𝑅 − 𝑟

3
) (𝑅 − 𝑟

4
)

= ∫

𝑅

𝑟2

[

[

[

√

𝑅 − 𝑟
3

(𝑟
1
− 𝑅) (𝑅 − 𝑟

2
) (𝑅 − 𝑟

4
)

+

𝑟
3

√(𝑟
1
− 𝑅) (𝑅 − 𝑟

2
) (𝑅 − 𝑟

3
) (𝑅 − 𝑟

4
)

]

]

]

𝑑𝑅.

(13)

It implies the following analytical parametric representation
of periodic wave solutions of (1):

𝑅 (𝜒) = 𝑟
3
+

𝑟
2
− 𝑟
3

1 − 𝛼
2sn2 (𝜒, 𝑘)

,

𝜁 (𝜒)

= 2√

𝜎

𝛽

[𝑟
3
𝑔𝜒 + (𝑟

2
− 𝑟
3
)Π (arcsin (sn (𝜒, 𝑘)) , 𝛼2, 𝑘)] ,

(14)



10 Abstract and Applied Analysis

where 𝑔 = 2/√(𝑟
1
− 𝑟
3
)(𝑟
2
− 𝑟
4
), 𝛼2 = (𝑟

1
− 𝑟
2
)/(𝑟
1
− 𝑟
3
),

𝑘
2
= (𝑟
1
− 𝑟
2
)(𝑟
3
− 𝑟
4
)/(𝑟
1
− 𝑟
3
)(𝑟
2
− 𝑟
4
) and Π(⋅, 𝛼

2
, 𝑘) is

the elliptic integral of the third kind, sn(𝑢, 𝑘) is the Jacobian
elliptic function (see [7]).

(3) Corresponding to two families of the periodic orbits
defined by 𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

1
, ℎ
3
), ℎ
1
< ℎ
3
< 0 < ℎ

2

enclosing the center 𝐴
1
(𝑅
1
, 0) and 𝐴

3
(𝑅
3
, 0), respectively, in

Figure 1(c), we have 𝐹(𝑅) = (1/2)√𝛽/𝜎(𝑟
1
− 𝑅)(𝑅 − 𝑟

2
)(𝑅 −

𝑟
3
)(𝑅−𝑟

4
) and𝐹(𝑅) = (1/2)√𝛽/𝜎(𝑟

1
−𝑅)(𝑟

2
−𝑅)(𝑟

3
−𝑅)(𝑅−𝑟

4
),

respectively, with 𝑟
4
< 𝑅
1
< 𝑟
3
< 0 < 𝑅

2
< 𝑟
2
< 𝑅
3
< 𝑟
1
<

𝑅
𝑚
. In this case, the right family of the periodic orbits has the

same parametric representation as (14). For the left family of
periodic orbits, formula (10) has the following form:

1

2

√
𝛽

𝜎

𝜁

= ∫

𝑟3

𝑅

𝑅𝑑𝑅

√(𝑟
1
− 𝑅) (𝑟

2
− 𝑅) (𝑟

3
− 𝑅) (𝑅 − 𝑟

4
)

= ∫

𝑟3

𝑅

[

[

[

− √

𝑟
2
− 𝑅

(𝑟
1
− 𝑅) (𝑟

3
− 𝑅) (𝑅 − 𝑟

4
)

+

𝑟
2

√(𝑟
1
− 𝑅) (𝑟

2
− 𝑅) (𝑟

3
− 𝑅) (𝑅 − 𝑟

4
)

]

]

]

𝑑𝑅.

(15)

It implies the following analytical parametric representation
of the left family of periodic wave solutions of (1):

𝑅 (𝜒) = 𝑟
3
−

𝛼
2

1
(𝑟
2
− 𝑟
3
) sn2 (𝜒, 𝑘)

1 − 𝛼
2

1
sn2 (𝜒, 𝑘)

,

𝜁 (𝜒)

= 2√

𝜎

𝛽

[𝑟
2
𝑔𝜒 − (𝑟

2
− 𝑟
3
)Π (arcsin (sn2 (𝜒, 𝑘)) , 𝛼2

1
, 𝑘)] ,

(16)

where 𝑔 = 2/√(𝑟
1
− 𝑟
3
)(𝑟
2
− 𝑟
4
), 𝛼2
1
= (𝑟
3
− 𝑟
4
)/(𝑟
2
− 𝑟
4
), 𝑘2 =

(𝑟
1
− 𝑟
2
)(𝑟
3
− 𝑟
4
)/(𝑟
1
− 𝑟
3
)(𝑟
2
− 𝑟
4
).

(4) Corresponding to two families of open level curves
defined by𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (0, ℎ

2
), ℎ
2
> 0 in the two sides of

the straight line 𝑅 = 0 in Figure 1(c) (see also Figure 13(a)),
we have 𝐹(𝑅) = (1/2)√𝛽/𝜎(𝑟

1
− 𝑅)(𝑟

2
− 𝑅)(𝑟

3
− 𝑅)(𝑅 − 𝑟

4
)

with 𝑟
4
< 𝑅
1
< 𝑟
3
< 0 < 𝑅

2
< 𝑟
2
< 𝑅
3
< 𝑟
1
<

𝑅
𝑚
. Thus, the left family of open level curves has the same

parametric representation as (16) with −𝜒
0
< 𝜒 < 𝜒

0
, 𝜒
0
=

sn−1(√𝑟
3
/𝛼
2

1
𝑟
2
, 𝑘).

Figures 13(b) and 13(c) show the two families of uncount-
ably infinitelymany breaking wave solutions (compactons) of
(1).

4.2. In the Case 𝛽>0, 𝐺
1
>0, 𝜎<0. Suppose that 𝐷

𝑚
< 𝐷
2
<

𝐷
2

𝑐𝑟
≡ (2𝐺

1
/3)(2𝐺

1
/3𝛽)
1/2 (see Figure 2(c)).

(1) Corresponding to the homoclinic orbit to the saddle
point 𝐴

3
(𝑅
3
, 0), as a closed branch of the level set𝐻(𝑅, 𝑌) =

ℎ
2
, enclosing the center 𝐴

2
(𝑅
2
, 0) in Figure 2(c), it gives rise

to a dark solitary wave solution of (1). In this case, we have
𝐹(𝑅) = (1/2)√𝛽/|𝜎|(𝑅

3
− 𝑅)
2
(𝑅 − 𝑅

𝑀
)(𝑅 − 𝑅

𝑙
) with 𝑅

𝑙
< 0 <

𝑅
𝑚
< 𝑅
2
< 𝑅
3
. Thus, formula (10) has the following form:

1

2

√

𝛽

|𝜎|

𝜁

= ∫

𝑅

𝑅𝑚

𝑅𝑑𝑅

(𝑅
3
− 𝑅)√(𝑅 − 𝑅

𝑚
) (𝑅 − 𝑅

𝑙
)

= ∫

𝑅

𝑅𝑚

[

[

[

−

1

√(𝑅 − 𝑅
𝑚
) (𝑅 − 𝑅

𝑙
)

+

𝑅
3

(𝑅
3
− 𝑅)√(𝑅 − 𝑅

𝑚
) (𝑅 − 𝑅

𝑙
)

]

]

]

𝑑𝑅.

(17)

It implies the following analytical parametric representa-
tion of the dark solitary wave solution of (1):

𝑅 (𝜒)

= 𝑅
3
−

2 (𝑅
3
− 𝑅
𝑚
) (𝑅
3
− 𝑅
𝑙
)

(𝑅
𝑚
− 𝑅
𝑙
) cosh (𝜔

1
𝜁) + (2𝑅

3
− R
𝑚
− 𝑅
𝑙
)

,

for 𝜒 ∈ (−∞, 0] , 𝜒 ∈ [0,∞) , respectively,

𝜁 (𝜒)

= 2√

|𝜎|

𝛽

[𝑅
3
𝜒 ∓ ( ln(

𝑅
𝑚
− 𝑅
𝑙

2

)

− ln(√(𝑅 (𝜒) − 𝑅
𝑚
) (𝑅 (𝜒) − 𝑅

𝑙
)

+𝑅 (𝜒) −

𝑅
𝑚
+ 𝑅
𝑙

2

))] .

(18)

(2) Corresponding to the periodic orbits defined by
𝐻(𝑅, 𝑌) = ℎ, ℎ ∈ (ℎ

2
, ℎ
3
), enclosing the center 𝐴

2
(𝑅
2
, 0) in

Figure 2(c), we have a family of periodic wave solutions of (1).
Now, 𝐹(𝑅) = (1/2)√𝛽/|𝜎|(𝑟

1
−𝑅)(𝑟

2
−𝑅)(𝑅−𝑟

3
)(𝑅−𝑟

4
) with

𝑟
4
< 0 < 𝑟

3
< 𝑅
2
< 𝑟
2
< 𝑅
3
< 𝑟
1
.
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Figure 13: The level curves and profiles of breaking wave solutions of (1).

Hence, (10) gives that

1

2

√
𝛽

𝜎

𝜁

= ∫

𝑅

𝑟3

𝑅𝑑𝑅

√(𝑟
1
− 𝑅) (𝑟

2
− 𝑅) (𝑅 − 𝑟

3
) (𝑅 − 𝑟

4
)

= ∫

𝑅

𝑟3

[

[

[

√

𝑅 − 𝑟
4

(𝑟
1
− 𝑅) (𝑟

2
− 𝑅) (𝑅 − 𝑟

3
)

+

𝑟
4

√(𝑟
1
− 𝑅) (𝑟

2
− 𝑅) (𝑅 − 𝑅

3
) (𝑅 − 𝑟

4
)

]

]

]

𝑑𝑅.

(19)

It implies the following analytical parametric representation
of periodic wave solutions of (1):

𝑅 (𝜒) = 𝑟
3
+

𝛼
2

2
(𝑟
3
− 𝑟
4
) sn2 (𝜒, 𝑘)

1 − 𝛼
2

2
sn2 (𝜒, 𝑘)

,

𝜁 (𝜒)

= 2√

|𝜎|

𝛽

[𝑟
4
𝑔𝜒 + (𝑟

3
− 𝑟
4
)Π (arcsin (sn (𝜒, 𝑘)) , 𝛼2

2
, 𝑘)] ,

(20)

where 𝑔 = 2/√(𝑟
1
− 𝑟
3
)(𝑟
2
− 𝑟
4
), 𝛼2
2
= (𝑟
2
− 𝑟
3
)/(𝑟
2
− 𝑟
4
), 𝑘2 =

(𝑟
2
− 𝑟
3
)(𝑟
1
− 𝑟
4
)/(𝑟
1
− 𝑟
3
)(𝑟
2
− 𝑟
4
).

Notice that for a given parameter group of (𝛽, 𝐺
1
, 𝜎),

when 𝐷
2 is close to 𝐷

2

𝑚
value, (18) and (20) give rise to

solitary cusp wave solution (antipeakon) and periodic cusp
wave solutions (see Section 3), respectively.

5. Conclusion

In this paper, we use the method of dynamical systems to
investigate the bifurcations of phase portraits of nonlocal
hydrodynamic-type models. Depending on the different
parameters conditions of the systems, the existence of various
travelling wave solutions is discussed. Specially, for 𝑛 = 2,
namely, let the isochoric Gruneisen coefficient equal 1, some
analytical parametric representations of solutions such as
smooth bright solitary, smooth and nonsmooth dark solitary
wave, and periodic wave solutions, as well as uncountably
infinitely many breaking wave solutions are obtained. These
results develop and complete the corresponding studies for
the nonlocal hydrodynamic-type models.
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