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The technique of approximate partition of unity, the way of Fourier series, and inequality technique are used to construct a neural
network with two weights and with sigmoidal functions. Furthermore by using inequality technique, we prove that the neural
network with two weights can more precisely approximate any nonlinear continuous function than BP neural network constructed
in (Chen et al., 2012).

1. Introduction

Many neural network models have been presented and
applied in pattern recognition, automatic control, signal
processing, artificial life, and aided decision. Among these
models, BPneural networks andRBFneural networks are two
classes of neural networks which are widely used in control
because of their approximation ability to any continuous
nonlinear function. Up to now, these two classes of neural
networks have successfully been applied to approach any
nonlinear continuous function [1–11].

Wang and Zhao [12] and Cao and Zhao [13] presented a
class of neural network called the neural network with two
weights by combining the advantage of BP neural networks
with that of RBF neural networks. This model can not only
simulate BP neural network and RBF neural network, but
also simulate neural networks with higher order. This neural
network contains not only directionweight valuewith respect
to BP network, but also core weight value with respect to RBF
network.The function of neurons of this neural network is of
the following form:
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, (1)

where 𝑦 is the output of neurons,𝑓 is the activation function,
𝜃 is threshold value, 𝜔

𝑗
is direction weight value, 𝑧

𝑗
is core

weight value, 𝑥
𝑗
is input, and 𝑠, 𝑝 are two parameters.

In (1), when 𝑧
𝑗
= 0, 𝑠 = 1, and 𝑝 = 1, then (1) reduces

to mathematical model of neurons of BP networks; when 𝜔
𝑗

takes a fixed value, 𝑠 = 0, and 𝑝 = 2, then (1) becomes
mathematical model of neurons of RBF networks.

Since Wang and Zhao [12] presented the neural network
with two weights, the network had caused already domestic
and international wide attention. So far, the network has
been successfully applied in many studying fields such as
the research fields of face recognition, voice recognition, and
protein structure [13]. However, as a complete system, the
theoretical research of approximation ability of the neural
network with two weights to nonlinear functions is still in
its initial stage. Because the function of its neurons is of
very complicated form (see (1)), so far, the approximation
results have been rarely found to any nonlinear function
in the present literature. This motivates us to study the
approximation ability of the neural network with two weights
to any nonlinear continuous function.

In [14], the approximation operators with logarithmic
sigmoidal function of a neural network with two weights (1)
and a class of quasi-interpolation operators are investigated.
Using these operators as approximation tools, the upper
bounds of estimate errors are estimated for approximating
continuous functions.
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In [3], Bochner-Riesz means operators of double Fourier
series are used to construct network operators for approxi-
mating nonlinear functions, and the errors of approximation
by the operators are estimated.

However, so far, the approximation results of the neural
network with two-weight operators and with sigmoidal func-
tions obtained by using the way of Fourier series have not
been found. So, in this paper, our objective is to prove that
by adjusting the values of parameters𝑤

𝑖
, 𝑧
𝑖
, and 𝑝, the neural

network with two weights and with sigmoidal functions can
approximate any nonlinear continuous function arbitrarily
and prove that the neural network with two weights is
of better approximation ability than BP neural networks
constructed in [3].

To help readers know the mathematical symbols used in
the paper, we cite the following notations.
‖𝑓‖
∞

denotes the uniform norm of 𝑓 in 𝑅, | ⋅ | denotes
the Euclidean norm of 𝑥 in 𝑅, and 𝐶([𝑎, 𝑏], 𝑅) is set of the
continuous functions defined on [𝑎, 𝑏] and takes values in
𝑅. 𝜔(𝑓, ℎ) is the modulus of continuity of 𝑓 defined by

𝜔 (𝑓, ℎ) = sup
0<𝑡≤ℎ

max
𝑥+𝑡∈[−1,1]

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥 + 𝑡)
󵄨󵄨󵄨󵄨 , (2)

where sign(𝑥) is the sign function defined by

sign (𝑥) =
{{

{{

{

1, 𝑥 > 0,

−1, 𝑥 < 0,

0, 𝑥 = 0.

(3)

2. Construction and Approximation of the
Network Operators with Sigmoidal Function

A function 𝜎 : 𝑅 → 𝑅 is called a sigmoidal function if
the following conditions are satisfied: lim

𝑥→+∞
𝜎(𝑥) = 𝐴

and lim
𝑥→−∞

𝜎(𝑥) = 𝐵, where 𝐴 and 𝐵 are constants. The
sigmoidal functions are a class of important functions, which
play an important role in the research of neural networks.

One of the most familiar sigmoidal functions is the
logarithmic type function defined by

𝑠 (𝑥) =
1

1 + 𝑒−𝑥
, 𝑥 ∈ 𝑅. (4)

For the logarithmic type function, if we define

𝜙 (𝑥) =
1

2
(𝑠 (𝑥 + 1) − 𝑠 (𝑥 − 1)) , 𝑥 ∈ 𝑅, (5)

then some better properties such that ∫+∞
−∞

𝜙(𝑥)𝑑𝑥 = 1, the
Fourier transform of 𝜙 is equal to 0, and ∑+∞

𝑘=−∞
𝜙(𝑥 − 𝑘) = 1

can be implied (see [6]).
In this paper, we assume that the sigmoidal function is

central symmetrical with respect to the point (0, 𝜎(0)). Let 𝜎
be a sigmoidal function and

𝑆 (𝑥) =
1

2
(𝜎 (𝑥 + 1) − 𝜎 (𝑥 − 1)) . (6)

Then
lim
𝑥→+∞

𝑆 (𝑥) = lim
𝑥→−∞

𝑆 (𝑥) = 0 (7)

and 𝑆(𝑥) is an even function. From Poisson summation
formula (see [15]), we can obtain the following Lemma.

Lemma 1 (see [3]). Assume that 𝜎 is a sigmoidal function and
central symmetrical with respect to the point (0, 𝜎(0)), and 𝑆(𝑥)
is given by (6). If there exist positive constants𝐶 and 𝛿 such that

|𝑆 (𝑥)| ≤ 𝐶(1 + |𝑥|)
−1−𝛿

,

󵄨󵄨󵄨󵄨𝑆
∗

(𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶(1 + |𝑥|)

−1−𝛿

,

𝑥 ∈ 𝑅,

∫

+∞

−∞

𝑆 (𝑥) 𝑑𝑥 = 1,

(8)

then

+∞

∑

𝑘=−∞

𝑆 (𝑥 − 𝑘) = 1 + 2

+∞

∑

𝑘=1

𝑆
∗

(𝑘) cos 2𝑘𝜋𝑥, (9)

where 𝑆∗(𝑘) denotes the 𝑘th Fourier transform of 𝑆(𝑥) (see
[15]).

If (9)

+∞

∑

𝑘=−∞

𝑆 (𝑥 − 𝑘) = 1 + 2

+∞

∑

𝑘=1

𝑆
∗

(𝑘) cos 2𝑘𝜋𝑥, (10)

holds, then one has, for 𝑤
𝑖
∈ 𝑅,

+∞

∑

𝑘=−∞

𝑆 (𝑤
𝑖
𝑥 − 𝑘) = 1 + 2

∞

∑

𝑘=1

𝑆
∗

(𝑘) cos 2𝑘𝑤
𝑖
𝜋𝑥. (11)

Let 𝑆
𝐴
(𝑥) = (1/𝐴)𝑆(𝑥/𝐴) (𝐴 > 0). Then using the property

of Fourier transform, it follows that

+∞

∑

𝑘=−∞

𝑆
𝐴
(𝑤
𝑖
𝑥 − 𝑘) = 1 + 2

∞

∑

𝑘=1

𝑆
∗

(𝐴𝑘) cos 2𝑘𝜋𝑤
𝑖
𝑥. (12)

Thus one has

+∞

∑

𝑘=−∞

𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

= 1 + 2

∞

∑

𝑘=1

𝑆
∗

(𝐴𝑘) cos 2𝑘𝜋 [(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

] .

(13)

Lemma 2. If 𝑥 > 0, then, when 0 < 𝑎 < 1, 𝑥𝑎 − 𝑎𝑥 ≤ 1 − 𝑎.

Proof. Let𝑓(𝑥) = 𝑥𝑎−𝑎𝑥, and then𝑓󸀠(𝑥) = 𝑎(𝑥𝑎−1−1). Since
𝑎 < 1, thus, when 0 < 𝑥 < 1, 𝑓󸀠(𝑥) > 0; when 𝑥 > 1, 𝑓󸀠(𝑥) <
0. Hence, 𝑓(1) = 1−𝑎 = max

𝑥>0
{𝑓(𝑥)}. Namely, when 𝑥 > 0,

𝑓(𝑥) ≤ 1 − 𝑎.



Journal of Applied Mathematics 3

For each 𝑓 ∈ 𝐶([−1, 1], 𝑅), ∀𝑛 ∈ 𝑁, we construct net-
works operators as follows:

𝐺
𝑛,𝐴
(𝑓, 𝑥)

=

2𝑛

∑

𝑘=−2𝑛

𝑓
1,𝑒
(𝑔 (𝑛, 𝑥))

× 𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘] ,

(14)

where𝑤
𝑖
= ((2𝑛+𝑝−𝑝𝑛

3/4𝑝

)/4𝑝), 𝑧
𝑖
= 1+(5𝑝𝑛

3/4𝑝

/(2𝑛+𝑝−

𝑝𝑛
3/4𝑝

)) (𝑖 = 1, 2, . . . , 𝑛), 𝑔(𝑛, 𝑥) = 𝑘𝑥/([𝑤
𝑖
(𝑥 − 𝑧

𝑖
)]
𝑝

[sign(𝑤
𝑖

(𝑥 − 𝑧
𝑖
))]
𝑝−𝑠

), and 𝑓
1,𝑒

is the extension of 𝑓 defined by

𝑓
1,𝑒
(𝑥) = {

𝑓 (𝑥) , 𝑥 ∈ [−1, 1] ,

𝑓 (sign (𝑥)) , 1 < |𝑥| .
(15)

Now we give the first main result as follows.

Theorem 3. Assume that 𝜎 satisfies the conditions of Lemma 1
and 𝑝 satisfies (3/4) < 𝑝 ≤ 1. If 𝑓 ∈ 𝐶([−1, 1], 𝑅), then there
exists a positive constant 𝐶 such that

󵄩󵄩󵄩󵄩𝑓 − 𝐺𝑛.𝐴 (𝑓)
󵄩󵄩󵄩󵄩∞

≤ 2𝐶𝐴
𝛿
1

𝛿
(𝑛 +

𝑝

2
)

−𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ +

2𝐶

𝐴1+𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+ 𝐶𝜔(𝑓,
1

√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

4

5
)

𝑝𝛿
1

𝑛𝛿/2
.

(16)

Proof. From (13) and (14), we have

𝑓 (𝑥) − 𝐺
𝑛,𝐴
(𝑓, 𝑥)

=

+∞

∑

𝑘=−∞

𝑓 (𝑥) 𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

− 𝐺
𝑛,𝐴
(𝑓, 𝑥) − 2𝑓 (𝑥)

∞

∑

𝑘=1

𝑆
∗

(𝐴𝑘)

× cos 2𝑘𝜋 [(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨]

=

−2𝑛−1

∑

𝑘=−∞

𝑓 (𝑥) 𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

+

+∞

∑

𝑘=2𝑛+1

𝑓 (𝑥) 𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

− 2𝑓 (𝑥)

+∞

∑

𝑘=1

𝑆
∗

(𝐴𝑘)

× cos 2𝑘𝜋 [(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

]

+

2𝑛

∑

𝑘=−2𝑛

(𝑓 (𝑥) − 𝑓
1,𝑒
(𝑔 (𝑛, 𝑥)))

× 𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

= 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
.

(17)

Since 𝑤
𝑖
= ((2𝑛 + 𝑝 − 𝑝𝑛

3/4𝑝

)/4𝑝), 𝑧
𝑖
= 1 + (5𝑝𝑛

3/4𝑝

/(2𝑛 +

𝑝 − 𝑝𝑛
3/4𝑝

)), then from Lemma 2 for 𝑘 ∈ (−∞, −2𝑛 − 1], 𝑥 ∈
[−1, 1], we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ −𝑘 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ −𝑘 −
󵄨󵄨󵄨󵄨𝑤𝑖 (1 +

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨
𝑝

≥ −𝑘 − 𝑝
󵄨󵄨󵄨󵄨𝑤𝑖 (1 +

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨 + 𝑝 − 1

≥ −𝑘 +
𝑝

2
− 1 − 𝑛 −

3𝑝𝑛
3/4𝑝

4

≥ 𝑛 +
𝑝

2
−
3𝑝𝑛
3/4𝑝

4

≥ 𝑛 +
𝑝

2
−
3𝑝

4
(
3𝑛

4𝑝
+ 1 −

3

4𝑝
)

=
7𝑛

16
−
𝑝

4
+
9

16

≥ 1 −
𝑝

4

≥
3

4

> 0.

(18)

Hence
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨

=

−2𝑛−1

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑥) 𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞𝐴
𝛿

×

−2𝑛−1

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
( [(𝑤
𝑖
(𝑥 − 𝑧

𝑖
) /
󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)

󵄨󵄨󵄨󵄨)
𝑠

×
󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)

󵄨󵄨󵄨󵄨
𝑝

−𝑘]
1+𝛿

)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞𝐴
𝛿

×

−2𝑛−1

∑

𝑘=−∞

1

(−𝑘 − 1 + (𝑝/2) − 𝑛 − (3𝑝𝑛3/4𝑝/4))
1+𝛿

≤ 𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

× ∫

−2𝑛−1

−∞

𝑑𝑥

(−𝑥 + (𝑝/2) − 1 − 𝑛 − (3𝑝𝑛3/4𝑝/4))
1+𝛿

= 𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

1

𝛿
(𝑛 +

𝑝

2
−
3𝑝𝑛
3/4𝑝

4
)

−𝛿

.

(19)

Since 𝑤
𝑖
= ((2𝑛 + 𝑝 − 𝑝𝑛

3/4𝑝

)/4𝑝), 𝑧
𝑖
= 1 + (5𝑝𝑛

3/4𝑝

/(2𝑛 +

𝑝 − 𝑝𝑛
3/4𝑝

)), then from Lemma 2 for 𝑘 ∈ [2𝑛 + 1, +∞), 𝑥 ∈
[−1, 1], we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝑘 −
󵄨󵄨󵄨󵄨𝑤𝑖 (1 +

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨
𝑝

≥ 𝑘 − 𝑝
󵄨󵄨󵄨󵄨𝑤𝑖 (1 +

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨 + 𝑝 − 1

≥ 𝑘 +
𝑝

2
− 1 − 𝑛 −

3𝑝𝑛
3/4𝑝

4

≥ 𝑛 +
𝑝

2
−
3𝑝𝑛
3/4𝑝

4

≥ 𝑛 +
𝑝

2
−
3𝑝

4
(
3𝑛

4𝑝
+ 1 −

3

4𝑝
)

=
7𝑛

16
−
𝑝

4
+
9

16

≥ 1 −
𝑝

4

≥
3

4

> 0.

(20)

Hence
󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+∞

∑

𝑘=2𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑆
𝐴
[(
𝑤
𝑖
(𝑥 − 𝑧

𝑖
)

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨

)

𝑠

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)
󵄨󵄨󵄨󵄨
𝑝

− 𝑘]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

1

𝐴

×

+∞

∑

𝑘=2𝑛+1

𝐴
1+𝛿

󵄨󵄨󵄨󵄨󵄨
(𝑤
𝑖
(𝑥−𝑧
𝑖
)/
󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥− 𝑧𝑖)

󵄨󵄨󵄨󵄨)
𝑠󵄨󵄨󵄨󵄨𝑤𝑖 (𝑥 − 𝑧𝑖)

󵄨󵄨󵄨󵄨 𝑝 − 𝑘
󵄨󵄨󵄨󵄨󵄨

1+𝛿

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞𝐴
𝛿

+∞

∑

𝑘=2𝑛+1

1

(𝑘 + (𝑝/2) − 1 − 𝑛 − (3𝑝𝑛3/4𝑝/4))
1+𝛿

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞𝐴
𝛿

∫

+∞

2𝑛+1

𝑑𝑥

(𝑥 + (𝑝/2) − 1 − 𝑛 − (3𝑝𝑛3/4𝑝/4))
1+𝛿

= 𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

1

𝛿
(𝑛 +

𝑝

2
−
3𝑝𝑛
3/4𝑝

4
)

−𝛿

.

(21)

It is easy to see that

󵄨󵄨󵄨󵄨𝐼3
󵄨󵄨󵄨󵄨 ≤ 2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+∞

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑆
∗

(𝐴𝑘)
󵄨󵄨󵄨󵄨

≤ 2𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+∞

∑

𝑘=1

1

(𝐴𝑘)
1+𝛿

≤
2𝐶

𝐴1+𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞.

(22)

Next we estimate 𝐼
4
. Consider

󵄨󵄨󵄨󵄨𝐼4
󵄨󵄨󵄨󵄨

= ∑

|𝑥−𝑔(𝑛,𝑥)|≤(1/ 4√𝑛)

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓1,𝑒 (𝑔 (𝑛, 𝑥))
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑆
𝐴
([𝑤
𝑖
(𝑥 − 𝑧

𝑖
)]
𝑝

[sign (𝑤
𝑖
(𝑥 − 𝑧

𝑖
))]
𝑝−𝑠

− 𝑘)
󵄨󵄨󵄨󵄨󵄨

+ ∑

|𝑥−𝑔(𝑛,𝑥)|>(1/ 4√𝑛)

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓1,𝑒 (𝑔 (𝑛, 𝑥))
󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑆
𝐴
([𝑤
𝑖
(𝑥 − 𝑧

𝑖
)]
𝑝

[sign (𝑤
𝑖
(𝑥 − 𝑧

𝑖
))]
𝑝−𝑠

− 𝑘)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜔(𝑓,
1

4√𝑛
)

×

+∞

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨
𝑆
𝐴
([𝑤
𝑖
(𝑥 − 𝑧

𝑖
)]
𝑝

[sign (𝑤
𝑖
(𝑥 − 𝑧

𝑖
))]
𝑝−𝑠

− 𝑘)
󵄨󵄨󵄨󵄨󵄨

+ Δ

≤ 𝐶𝜔(𝑓,
1

4√𝑛
)𝐴
𝛿

+ Δ,

(23)

where

Δ ≤ 2
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

× ∑

|(𝑘𝑥/𝑔(𝑛,𝑥))−𝑘|>(
󵄨
󵄨
󵄨
󵄨
󵄨
[𝑤𝑖(𝑥−𝑧𝑖)]

𝑝󵄨
󵄨
󵄨
󵄨
󵄨
/|𝑥|
4
√𝑛)

×
󵄨󵄨󵄨󵄨󵄨
𝑆
𝐴
([𝑤
𝑖
(𝑥 − 𝑧

𝑖
)]
𝑝

[sign (𝑤
𝑖
(𝑥 − 𝑧

𝑖
))]
𝑝−𝑠

− 𝑘)
󵄨󵄨󵄨󵄨󵄨
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≤ 2
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

× ∑

|(𝑘𝑥/𝑔(𝑛,𝑥))−𝑘|>(
󵄨
󵄨
󵄨
󵄨
󵄨
[𝑤𝑖(𝑥−𝑧𝑖)]

𝑝󵄨
󵄨
󵄨
󵄨
󵄨
/|𝑥|
4
√𝑛)

×
𝐶𝐴
𝛿

󵄨󵄨󵄨󵄨󵄨
[𝑤
𝑖
(𝑥 − 𝑧

𝑖
)]
𝑝

[sign (𝑤
𝑖
(𝑥 − 𝑧

𝑖
))]
𝑝−𝑠

− 𝑘
󵄨󵄨󵄨󵄨󵄨

1+𝛿

.

(24)

Since

Δ ≤ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ ∫

+∞

(|𝑤
𝑝

𝑖 ||𝑥−𝑧𝑖|
𝑝

/|𝑥|
4
√𝑛)

𝑑𝑡

𝑡1+𝛿

= 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

𝑤
𝑝

𝑖
|𝑥 − 𝑧

𝑖
|
𝑝

|𝑥|
4√𝑛

)

−𝛿

,

(25)

substituting (25) into (23) gives

󵄨󵄨󵄨󵄨𝐼4
󵄨󵄨󵄨󵄨 ≤ 𝐶𝜔(𝑓,

1

4√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

𝑤
𝑝

𝑖

󵄨󵄨󵄨󵄨𝑥 − 𝑧𝑖
󵄨󵄨󵄨󵄨
𝑝

|𝑥|
4√𝑛

)

−𝛿

≤ 𝐶𝜔(𝑓,
1

4√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞[

4√𝑛

𝑤
𝑝

𝑖
(
󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨 − 1)
𝑝
]

𝛿

≤ 𝐶𝜔(𝑓,
1

4√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

4

5
)

(𝑝𝛿)
1

𝑛𝛿/2
.

(26)

Substituting (19)–(22) and (26) into (17) gives
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝐺𝑛,𝐴 (𝑓, 𝑥)

󵄨󵄨󵄨󵄨

≤ 2𝐶𝐴
𝛿
1

𝛿
(𝑛 +

𝑝

2
)

−𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+
2𝐶

𝐴1+𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ + 𝐶𝜔(𝑓,

1

4√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

4

5
)

(𝑝𝛿)
1

𝑛𝛿/2
.

(27)

This finishes the proof of Theorem 3.

Theorem 4. Assume that 𝜎 satisfies the conditions of Lemma 1
and p satisfies 2(4/5)𝑝𝛿 < 1 + (1/𝛿), 3/4 < 𝑝 ≤ 1. If 𝑓 ∈
𝐶([−1, 1], 𝑅), then the neural network with two weights can
more precisely approximate any nonlinear continuous function
than BP neural networks constructed in [3].

Proof. From Theorem 3, the error of approximation of the
neural networkwith twoweights to any nonlinear continuous
function 𝑓(𝑥) is

2𝐶𝐴
𝛿
1

𝛿
(𝑛 +

𝑝

2
)

−𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+
2𝐶

𝐴1+𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ + 𝐶𝜔(𝑓,

1

4√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

4

5
)

(𝑝𝛿)
1

𝑛𝛿/2
.

(28)

By choosing 𝑛 and 𝐴 such that 𝐴𝑛−1 → 0, 1/𝐴 → 0,
𝐴/𝑛
1/2

→ 0, and 𝜔(𝑓, 1/ 4√𝑛)𝐴𝛿 → 0, this guarantees that
the limit of the above error is zero. From [3, Theorem 2.2],
the error of approximation of BP neural networks to the same
nonlinear continuous function is

𝐶[
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ ((1 +

1

𝛿
)(

𝐴

√𝑛
)

𝛿

+
2𝐶

𝐴1+𝛿
) + 𝜔(𝑓,

1

√𝑛
)𝐴
𝛿

] .

(29)

Since 2(4/5)𝑝𝛿 < 1 + (1/𝛿), then we obtain as 𝑛 sufficiently
large

2𝐶𝐴
𝛿
1

𝛿
(𝑛 +

𝑝

2
)

−𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

+
𝐶

𝐴1+𝛿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ + 𝐶𝜔(𝑓,

1

√𝑛
)𝐴
𝛿

+ 2𝐶𝐴
𝛿󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞(

4

5
)

(𝑝𝛿)
1

𝑛𝛿/2

− 𝐶[
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞ ((1 +

1

𝛿
)(

𝐴

√𝑛
)

𝛿

+
2

𝐴1+𝛿
)

+ 𝜔(𝑓,
1

√𝑛
)𝐴
𝛿

]

= 𝐶𝐴
𝛿

𝑛
−𝛿/2

(
2

𝛿
[

√𝑛

𝑛 + (𝑝/2)
]

𝛿

+ 2(
4

5
)

𝑝𝛿

− 1 −
1

𝛿
)
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

< 0,

(30)

which tells us that the approximation error of the neural
networkwith twoweights is smaller than that of the BPneural
networks constructed in [3]. Hence, from (30), the neural
network with two weights can more precisely approximate
any nonlinear continuous function than BP neural networks
constructed in [3].

Remark 5. We can choose 𝐶 and 𝛿 such that the two param-
eters satisfy all inequalities in [3, Theorem 2.1], Theorems 3,
and 4. Now we give an example to illustrate the result. Let

𝜎 (𝑥) =
1

𝜋
arctan𝑥, 𝑥 ∈ 𝑅. (31)

Since

𝑆 (𝑥) =
1

2𝜋
[arctan (𝑥 + 1) − arctan (𝑥 − 1)] , (32)

we have

tan (arctan (𝑥 + 1) − arctan (𝑥 − 1)) = 2
𝑥2
, 𝑥 ̸= 0,

𝑆 (𝑥) =
1

2𝜋
arctan 2

𝑥2
, 𝑥 ̸= 0,

𝑆 (0) =
1

𝜋
[arctan 1 − arctan (−1)] = 1

4
= lim
𝑥→0

1

2𝜋
arctan 2

𝑥2
.

(33)
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Hence

𝑆 (𝑥) =

{{{

{{{

{

1

2𝜋
arctan 2

𝑥2
, 𝑥 ̸= 0,

1

4
, 𝑥 = 0.

(34)

Obviously, for some positive constant 𝐶,

|𝑆 (𝑥)| ≤ 𝐶(1 + |𝑥|)
−2

, 𝑥 ∈ 𝑅. (35)

Thus, 𝛿 = 1. Obviously it satisfies all inequalities in [3,
Theorem 2.1] andTheorems 3 and 4.

Remark 6. The method used to obtain approximation errors
for the neural network with two weights in our paper is
different from that used for BP neural networks in [3]. In
our paper, we show and apply the inequality in Lemma 1 and
other inequalities techniques which are different from those
used in [3] to obtain more precisely approximation errors
than BP neural networks.

Remark 7. Theorem 4 tells us, when parameters 𝑧
𝑖
, 𝑤
𝑖
take

some values and 𝑝 satisfies two inequalities conditions, the
neural network with two weights is of better approximation
ability than BP neural networks constructed in [3].

3. Conclusions

By adjusting the values of two parameters 𝑤
𝑖
, 𝑧
𝑖
and parame-

ter 𝑝, we show that the neural network with two weights can
more precisely approximate any nonlinear continuous func-
tion than BP neural network constructed in [3]. Hence, the
neural network with two weights is of better approximation
ability to any nonlinear continuous function than BP neural
network constructed in [3]. In our approximation result, the
parameter 𝑠 without restriction condition, hence, our future
direction is that under the conditions which the parameter
𝑠 and other parameters satisfy, we will show that the neural
network with two weights can more precisely approximate
any nonlinear continuous function than BP neural network
constructed in [3].
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