
Research Article
Fault Detection for Wireless Networked Control Systems with
Stochastic Switching Topology and Time Delay

Pengfei Guo,1 Jie Zhang,1 Hamid Reza Karimi,2

Yurong Liu,3,4 Yunji Wang,5 and Yuming Bo1

1 School of Automation, Nanjing University of Science & Technology, Nanjing 210094, China
2Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway
3Department of Mathematics, Yangzhou University, Yangzhou 225002, China
4 Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5 Electrical and Computer Engineering Department, The University of Texas at San Antonio, One UTSA Circle,
San Antonio, TX 78249, USA

Correspondence should be addressed to Jie Zhang; zhangjie.njust@gmail.com

Received 10 April 2014; Revised 26 May 2014; Accepted 27 May 2014; Published 24 June 2014

Academic Editor: Derui Ding

Copyright © 2014 Pengfei Guo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by
switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own
measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can
be switched in a stochastic way, we aim to design 𝐻

∞
fault detection observers for nodes in the dynamic time-delay systems. By

using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the
filters satisfying the 𝐻

∞
performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an

illustrated example is provided to verify the effectiveness of the theoretical results.

1. Introduction

Dynamics analysis for wireless networked control systems
(WiNCS) has recently been a hot research issue that has been
attracting much attention from scholars [1–4], and fault det-
ection for WiNCS has got fruitful result in both theoretical
researches and practical cations [5–8]. Compared with the
traditional point to point control systems or the wired net-
worked control systems, using WiNCS can not only avoid a
lot of wired interconnections, but also meet some needs of
special occasions. Besides, WiNCS can serve as natural mod-
els for many practical systems such as power grid networks,
cooperate networks, neural networks, and environmental
monitoring systems [9–13]. Inspired by the 𝐵𝐴 scale-free
model proposed by Barabási and Albert in 1999, complex
networks have become a focus of research and have attracted
increasing attention in various fields of science and engineer-
ing [14–17]. From a rich body of literature, stochastic systems

associated with the complex networks played an impor-
tant role in network dynamics, and system failure usually
occurred when topology switched. In this case, research on
fault detection forWiNCSwith stochastic switching topology
is essential.

To the best of our knowledge, switching topology in sen-
sor networks is a hot topic, and great effort has been devoted
to dealing with this problem when designing observers
for state estimation or fault detection [18–23]. In [24],
synchronization problem for complex networks with switch-
ing topologywas studied. For both fixed and arbitrary switch-
ing topology, synchronization criteria were established and
stability condition and switching law designmethod for time-
varying switched systems were also presented. In [25], state
estimation problem for discrete-time stochastic system with
missing measurement was studied. Authors supposed that
there was no centralized processor to collect all the infor-
mation from the sensors, so nodes should estimate its own
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states according to certain topology, and sufficient conditions
were proposed to make sure that the augmented system was
asymptotical stable. In [26], stability problem of intercon-
nected multiagent system was investigated. Agents in system
were connected via a certain connection rule; two algebraic
sufficient conditions were derived under the circumstance
that the topology was uncontrollable. Reference [27] inves-
tigated the stability analysis problem on neural networks
with Markovian jumping parameters. Both of Lyapunov-
Krasovskii stability theory and Itô differential rule were
established to deal with global asymptotic stability and global
exponential stability. Sufficient conditions were acquired
based on linear matrix inequality to make the system both
stochastically globally exponentially stable and stochastically
globally asymptotically stable, respectively. Reference [28]
designed a decentralized guaranteed cost dynamic feedback
controller to achieve the synchronization of the network,
whose topology was randomly changing.

Information flow between sensor nodes is time consum-
ing, which leads to transmission delay in WiNCS; many
scholars focused on this problem because the time delay is a
common issue in many distributed systems [29–32]. Refer-
ence [33] designed a sliding mode observer for a class of
uncertain nonlinear neutral delay system. Both the reachable
motion and the sliding motion were investigated and a suffi-
cient condition of asymptotic stability was proposed in terms
of linear matrix inequality for the closed-loop system. Refer-
ence [34] focused on analyzing discrete-time Takagi-Sugeno
(T-S) fuzzy systems with time-varying delays, and a delay
partitioningmethodwas used to analyze the scaled small gain
of the model. Reference [35] studied the problem of uncer-
tain nonlinear singular time-delay systems, and a switching
surface function was designed by utilizing singular matrix.

Besides all what is mentioned above, another important
factor which arouses unstably in WiNCS is external distur-
bance. Since𝐻

∞
filtering does not need the accurate statistics

of disturbances and ensures an estimation error less than
a given disturbance attenuation level, many scholars were
devoted to the research of𝐻

∞
filtering; see, for example, [36–

38] and the references therein. Reference [36] proposed a
novel concept of bounded 𝐻

∞
synchronization, which cap-

tured the transient behavior of the time-varying complex
networks over a finite horizon. Reference [38] investigated the
robust filtering problem for time-varying Markovian jump
systems with randomly occurring nonlinearities and satura-
tion; a robust filter was designed such that the disturbance
attenuation level was guaranteed.

Motivated by the previous researches stated above, our
target is focused on the fault detection problem for WiNCS
described by discrete-time systems with switching topology
and uncertainties. The main contributions of this paper can
be summarized as follows. (1)The stochastic switching topol-
ogy of WiNCS is introduced to describe the binary switch
between two kinds of topologies governed by a Bernoulli-
distributed white noise sequence. (2) 𝐻

∞
observers are desi-

gned to ensure an estimation error less than a given dis-
turbance attenuation level. (3) Distributed fault detection
observers are designed for each individual node according to
the given topologies.

The rest of paper is organized as follows. In Section 2, the
fault detection problem ofWiNCS is formulated. In Section 3,
we present sufficient conditions to make the filtering error
system exponentially stable in the mean square, which also
satisfies 𝐻

∞
constraints. Furthermore, the gains of observers

are also designed through LMI. A numerical example is given
in Section 4 to show the effectiveness of proposed method.
Finally, we give our conclusions in Section 5.

Notations.The notations in this paper are quite standard. R𝑛
andR𝑛×𝑚 denote the 𝑛-dimensional Euclidean space and the
set of 𝑛×𝑚 realmatrices; the superscript “𝑇” stands formatrix
transposition; 𝐼 is the matrix of appropriate dimension; ‖ ⋅ ‖

denotes the Euclidean norm of a vector and its induced norm
of matrix; the notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for 𝑋 ∈ R𝑛×𝑛,
means that the matrix 𝑋 is real symmetric positive definite
(respective positive definite). E{⋅} stands for the expectation
operator. dim{⋅} is the dimension of a matrix. What is more,
we use (∗) to represent the entries implied by symmetry.
Matrices, if not explicitly specified, are assumed to have
compatible dimensions.

2. Problem Formulation

Consider a type of WiNCS, whose topology can be switched
at a random instant. In this case, the state of each individual
node is affected not only by itself, but also by the connection
relationship with other nodes. In this paper, we suppose
that the system structure can only be switched between two
topologies. The dynamic networks with stochastic switching
topology can be described by

𝑥
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥

𝑖
(𝑘) + 𝐵𝑥

𝑖
(𝑘 − 𝜏

𝑘
)

+ 𝛼

𝑁

∑

𝑗=1

𝐷
𝛼

𝑖𝑗
𝑥
𝑗
(𝑘) + (1 − 𝛼)

𝑁

∑

𝑗=1

𝐷
1−𝛼

𝑖𝑗
𝑥
𝑗
(𝑘)

+ 𝐸
𝑓
𝑓 (𝑘) + 𝐸VV (𝑘) ,

𝑦
𝑖
(𝑘) = 𝐶𝑥

𝑖
(𝑘) ,

𝑧
𝑖
(𝑘) = 𝐿𝑥

𝑖
(𝑘) ,

𝑥
𝑖
(𝑗) = 𝜑

𝑖
(𝑗) , 𝑗 = −𝜏, −𝜏 + 1, . . . , 0; 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑘) = (𝑥

𝑖1
(𝑘), 𝑥
𝑖2

(𝑘), . . . , 𝑥
𝑖𝑛

(𝑘))
𝑇

∈ R𝑛 is the system
state vector of the 𝑖th node, 𝑦

𝑖
(𝑘) is the measured output

vector of the 𝑖th node, 𝑧
𝑖
(𝑘) is the controlled output vector of

the 𝑖th node, V(𝑘) is the disturbance, and 𝑓(𝑘) is a fault. 𝐴, 𝐵,
𝐶, 𝐿, 𝐸

𝑓
, and 𝐸V are known constant matrices with appro-

priate dimensions, Δ𝐴 is the system uncertainty arising from
uncertain factors, and 𝐷

𝛼

= [𝐷
𝛼

𝑖𝑗
]
𝑛×𝑛

and 𝐷
1−𝛼

= [𝐷
1−𝛼

𝑖𝑗
]
𝑛×𝑛

are two coupled configuration matrices standing for different
topologies which can be switched to each other.𝐷𝛼

𝑖𝑗
is defined

as follows: if there is a connection from node 𝑖 to node
𝑗 (𝑖 ̸= 𝑗), then 𝐷

𝛼

𝑖𝑗
= 1; otherwise 𝐷

𝛼

𝑖𝑗
= 0 (𝑖 ̸= 𝑗),

and the diagonal elements of the matrix are defined as
𝐷
𝛼

𝑖𝑖
= − ∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝐷
𝛼

𝑖𝑗
= − ∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝐷
𝛼

𝑗𝑖
, and 𝐷

1−𝛼

𝑖𝑗
has the
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same notation as 𝐷
𝛼

𝑖𝑗
does. 𝛼 is a Bernoulli-distributed white

noise sequence with

Prob {𝛼 = 1} = E {𝛼} = 𝛼,

Prob {𝛼 = 0} = 1 − E {𝛼} = 1 − 𝛼,

(2)

where 𝛼 ∈ [0, 1] is a known constant.
For the system shown in (1), we make the following

assumption throughout the paper.

Assumption 1. The perturbation parameter of the system
satisfies

Δ𝐴 = 𝑀𝐷 (𝑘) 𝐻, (3)

where 𝑀 and 𝑁 are, respectively, known constant matrices,
𝐷(𝑘) is a time-varying delay uncertain matrix, yet Lebesgue
measurable, and 𝐷

𝑇

(𝑘)𝐷(𝑘) ≤ 𝐼.

Assumption 2. The function 𝜏
𝑘
describes the transmission

delay which satisfies

0 ≤ 𝜏
𝑘

≤ 𝜏. (4)

Remark 3. Sensor nodes in WiNCS are usually in dynamic
motion. When two nodes are within communication range,
the linkage between them can be established; otherwise, their
linkage may be broken off. The relative distance between
nodes arouses in the topology switches. For the purpose of
simplicity, we suppose that the system only switches between
two topologies, 𝐷

𝛼 and 𝐷
1−𝛼, and binary switches for a cer-

tain node occur according to a given probability distribution.

We construct the following state observer for node 𝑖:

𝑥
𝑖
(𝑘 + 1) = 𝐴𝑥

𝑖
(𝑘) +

𝑁

∑

𝑗=1

𝑘
𝑖𝑗

[𝑦
𝑗
(𝑘) − 𝑦

𝑗
(𝑘)] ,

𝑦
𝑖
(𝑘) = 𝐶𝑥

𝑖
(𝑘) ,

�̂�
𝑖
(𝑘) = 𝐿𝑥

𝑖
(𝑘) ,

(5)

where 𝑥
𝑖
(𝑘) ∈ R𝑛 is the estimation value of 𝑥

𝑖
(𝑘), 𝑦
𝑖
(𝑘) is the

estimation value of𝑦
𝑖
(𝑘), �̂�
𝑖
(𝑘) is the estimation value of 𝑧

𝑖
(𝑘),

and 𝑘
𝑖𝑗

∈ R𝑛×𝑛 is the gain of observer to be designed.
Define the state error 𝑒

𝑥𝑖
(𝑘), measured output error 𝑒

𝑦𝑖
(𝑘),

and the controlled output error �̃�
𝑖
(𝑘) of the system

𝑒
𝑥𝑖

(𝑘) = 𝑥
𝑖
(𝑘) − 𝑥

𝑖
(𝑘) ,

𝑒
𝑦𝑖

(𝑘) = 𝑦
𝑖
(𝑘) − 𝑦

𝑖
(𝑘) ,

�̃�
𝑖
(𝑘) = 𝑧

𝑖
(𝑘) − �̂�

𝑖
(𝑘) .

(6)

If system (1) has no fault, the residual is close to zero, and
we set up residual evaluation function 𝐽 and fault threshold 𝐽th
as follows:

𝐽 = {

𝑁

∑

𝑘=1

𝑒
𝑇

𝑦𝑖

(𝑘)𝑒
𝑦𝑖

(𝑘)}

1/2

𝐽th = sup
𝑓(𝑘)=0

𝐽.

(7)

So the system fault can be detected by comparing 𝐽 and 𝐽th as
follows:

𝐽 ≤ 𝐽th No fault happens,

𝐽 > 𝐽th Fault happens.
(8)

By utilizing the Kronecker product, the error system can
be obtained from (1) and (5) as follows:

𝑒 (𝑘 + 1) = (𝐴 − 𝐾𝐶) 𝑒 (𝑘) + Δ𝐴𝑥 (𝑘) + 𝐵𝑥 (𝑘 − 𝜏
𝑘
)

+ (𝛼 − 𝛼) (𝐷
1

− 𝐷
2
) 𝑥 (𝑘) + 𝛼𝐷

1
𝑥 (𝑘)

+ (1 − 𝛼) 𝐷
2
𝑥 (𝑘) + 𝐸

𝑓
𝑓 (𝑘) + 𝐸VV (𝑘) ,

�̃� (𝑘) = �̃�𝑒 (𝑘) ,

(9)

where

𝑥 (𝑘) = [𝑥
𝑇

1
(𝑘), 𝑥
𝑇

2
(𝑘), . . . , 𝑥

𝑇

𝑁
(𝑘)]
𝑇

,

𝑥 (𝑘) = [𝑥
𝑇

1
(𝑘), 𝑥
𝑇

2
(𝑘), . . . , 𝑥

𝑇

𝑁
(𝑘)]
𝑇

,

𝑦 (𝑘) = [𝑦
𝑇

1
(𝑘), 𝑦
𝑇

2
(𝑘), . . . , 𝑦

𝑇

𝑁
(𝑘)]
𝑇

,

𝑦 (𝑘) = [𝑦
𝑇

1
(𝑘), 𝑦
𝑇

2
(𝑘), . . . , 𝑦

𝑇

𝑁
(𝑘)]
𝑇

,

𝑧 (𝑘) = [𝑧
𝑇

1
(𝑘), 𝑧
𝑇

2
(𝑘), . . . , 𝑧

𝑇

𝑁
(𝑘)]
𝑇

,

�̂� (𝑘) = [�̂�
𝑇

1
(𝑘), �̂�
𝑇

2
(𝑘), . . . , �̂�

𝑇

𝑁
(𝑘)]
𝑇

,

𝐴 = 𝐼
𝑁

⊗ 𝐴, 𝐵 = 𝐼
𝑁

⊗ 𝐵,

𝐶 = 𝐼
𝑁

⊗ 𝐶, Δ𝐴 = 𝐼
𝑁

⊗ Δ𝐴,

𝐷
1

= 𝐷
𝛼

⊗ 𝐼dim(𝐴), 𝐷
2

= 𝐷
1−𝛼

⊗ 𝐼dim(𝐴),

𝐾 = (𝑘
𝑖𝑗
)
𝑛×𝑛

, 𝐸
𝑓

= 𝐼
𝑁

⊗ 𝐸
𝑓
,

𝐸V = 𝐼
𝑁

⊗ 𝐸V, �̃� = 𝐼
𝑁

⊗ 𝐿,

�̃� (𝑘) = 𝑧 (𝑘) − �̂� (𝑘) .

(10)
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By introducing an augmented vector 𝜂(𝑘) =

[𝑥
𝑇

(𝑘) 𝑒
𝑇

(𝑘)]
𝑇

, we have the following augmented system:

𝜂 (𝑘 + 1) = A𝜂 (𝑘) + ΔA𝜂 (𝑘) + B𝜂 (𝑘 − 𝜏
𝑘
)

+ (𝛼 − 𝛼)D𝜂 (𝑘) + 𝛼D
1
𝜂 (𝑘)

+ (1 − 𝛼)D
2
𝜂 (𝑘) + E

𝑓
𝑓 (𝑘) + EVV (𝑘) ,

�̃� (𝑘) = L𝜂 (𝑘) ,

(11)

where

A = [
𝐴 0

0 𝐴 − 𝐾𝐶
] , ΔA = [

Δ𝐴 0

Δ𝐴 0
] ,

B = [
𝐵 0

𝐵 0
] , D = [

𝐷
1

− 𝐷
2

0

𝐷
1

− 𝐷
2

0
] ,

D
1

= [
𝐷
1

0

𝐷
1

0
] , D

2
= [

𝐷
2

0

𝐷
2

0
] ,

E
𝑓

= [
𝐸
𝑓

𝐸
𝑓

] , EV = [
𝐸V
𝐸V

] ,

L = [0 �̃�] .

(12)

Definition 4 (see [39]). Filtering error system (11) is said to be
exponentially stable in the mean square for any initial con-
ditions when 𝑓(𝑘) = 0 and V(𝑘) = 0, if there exist constants
𝛿 > 0 and 0 < 𝜅 < 1 such that the following inequality holds:

E {
𝜂(𝑘)



2

} ≤ 𝛿
𝑘

𝜅
sup
−𝜏≤𝑖≤0

E {
𝜂 (𝑖)



2

} , ∀𝑘 ≥ 0. (13)

In this paper, we are going to design the fault detection
observers for a class of WiNCS with randomly switching
topology such that filtering error system (11) satisfies the
following requirements simultaneously.

(C1) Filtering error system (11) with 𝑓(𝑘) = 0, V(𝑘) = 0 is
exponentially stable in the mean square.

(C2) For any 𝑓(𝑘) = 0, V(𝑘) ̸= 0 under the zero initial
condition, the filtering error satisfies

∞

∑

𝑘=0

E {
1

𝑁
‖�̃�(𝑘)‖

2

} ≤ 𝛾
2

∞

∑

𝑘=0

E {‖V (𝑘)‖
2

} , (14)

where 𝛾 is a given scalar.
Besides, some useful and important lemmas that will be

used in deriving out results will be introduced below.

Lemma 5 (Schur complement [40]). Given a symmetric mat-
rix 𝑆 = [

𝑆11 𝑆12

𝑆21 𝑆22

], where 𝑆
11
is 𝑟 × 𝑟 dimensional, the following

three conditions are equivalent:

(1) 𝑆 < 0;
(2) 𝑆
11

< 0 and 𝑆
22

− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0;
(3) 𝑆
22

< 0 and 𝑆
11

− 𝑆
12

𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 6 (see [25]). For any 𝑥, 𝑦 ∈ 𝑅
𝑛, and 𝜇 > 0, the fol-

lowing inequality holds:

2𝑥
𝑇

𝑦 ≤ 𝜇𝑥
𝑇

𝑥 +
1

𝜇
𝑦
𝑇

𝑦. (15)

Lemma 7 (see [41]). Let 𝑌 = 𝑌
𝑇, 𝑀, 𝑁, and 𝐷(𝑡) be real

matrix of proper dimensions and 𝐷
𝑇

(𝑡)𝐷(𝑡) ≤ 𝐼; then inequ-
ality𝑌+𝑀𝐷𝑁+(𝑀𝐷𝑁)

𝑇

< 0 holds if there exists a constant 𝜀,
which makes the following inequality hold:

𝑌 + 𝜀𝑁𝑁
𝑇

+ 𝜀
−1

𝑀
𝑇

𝑀 < 0 (16)

or equivalently

[

[

𝑌 𝑀 𝜀𝑁
𝑇

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0. (17)

3. Main Results

In this section, by constructing a proper Lyapunov-Krasovskii
functional combined with linear matrix inequalities, we are
going to propose sufficient conditions such that filtering error
system (11) is asymptotically stable in the mean square.

Theorem 8. Consider system (1) and suppose that observer
gain 𝐾 is given. Filtering error system (11) is said to be asymp-
totically stable in themean square, if there exist positive definite
matrix 𝑃 = diag{𝑃

1
, 𝑃
2
} and 𝑄 > 0 with proper dimensions

satisfying the following inequality:

Π = [
Π
11

0

0 Π
22

] < 0, (18)

where

Π
11

= 4A
𝑇

𝑃A + 4ΔA
𝑇

𝑃ΔA + 𝛼 (1 − 𝛼)D
𝑇

𝑃D

+ 4𝛼D
𝑇

1
𝑃D
1

+ (4 − 4𝛼)D
𝑇

2
𝑃D
2

− 𝑃 + (1 + 𝜏) 𝑄,

Π
22

= 4B
𝑇

𝑃B − 𝑄.

(19)

Proof. For the stability analysis of system (11), we set𝑓(𝑘) = 0,
V(𝑘) = 0, and system (11) can be rewritten as

𝜂 (𝑘 + 1) = A𝜂 (𝑘) + ΔA𝜂 (𝑘) + B𝜂 (𝑘 − 𝜏
𝑘
)

+ (𝛼 − 𝛼)D𝜂 (𝑘) + 𝛼D
1
𝜂 (𝑘)

+ (1 − 𝛼)D
2
𝜂 (𝑘) .

(20)

Then, choose the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑘) = 𝑉
1

(𝑘) + 𝑉
2

(𝑘) + 𝑉
3

(𝑘) , (21)
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where

𝑉
1

(𝑘) = 𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) ,

𝑉
2

(𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏𝑘

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) ,

𝑉
3

(𝑘) =

0

∑

𝑗=1−𝜏

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) .

(22)

By calculating the difference of 𝑉(𝑘) along system (20),
we have

E {Δ𝑉
1
}

= E {𝜂
𝑇

(𝑘 + 1) 𝑃𝜂 (𝑘 + 1) − 𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘)}

= 𝜂
𝑇

(𝑘)A
𝑇

𝑃A𝜂 (𝑘) + 2𝜂
𝑇

(𝑘)A
𝑇

𝑃ΔA𝜂 (𝑘)

+ 2𝜂
𝑇

(𝑘)A
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
) + 2𝛼𝜂

𝑇

(𝑘)A
𝑇

𝑃D
1
𝜂 (𝑘)

+ 2 (1 − 𝛼) 𝜂
𝑇

(𝑘)A
𝑇

𝑃D
2
𝜂 (𝑘)

+ 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘)

+ 2𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
)

+ 2𝛼𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃D
1
𝜂 (𝑘)

+ 2 (1 − 𝛼) 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃D
2
𝜂 (𝑘)

+ 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
)

+ 2𝛼𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃D
1
𝜂 (𝑘)

+ 2 (1 − 𝛼) 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃D
2
𝜂 (𝑘)

+ 𝛼 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

𝑃D𝜂 (𝑘)

+ 𝛼
2

𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
1
𝜂 (𝑘)

+ 2𝛼 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
2
𝜂 (𝑘)

+ (1 − 𝛼)
2

𝜂
𝑇

(𝑘)D
𝑇

2
𝑃D
2
𝜂 (𝑘) − 𝜂

𝑇

(𝑘) 𝑃𝜂 (𝑘) .

(23)

In terms of Lemma 6, we have

2𝜂
𝑇

(𝑘)A
𝑇

𝑃ΔA𝜂 (𝑘)

≤ 𝜂
𝑇

(𝑘)A
𝑇

𝑃A𝜂 (𝑘)

+ 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘) ,

2𝜂
𝑇

(𝑘)A
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
)

≤ 𝜂
𝑇

(𝑘)A
𝑇

𝑃A𝜂 (𝑘)

+ 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
) ,

2𝛼𝜂
𝑇

(𝑘)A
𝑇

𝑃D
1
𝜂 (𝑘)

≤ 𝛼𝜂
𝑇

(𝑘)A
𝑇

𝑃A𝜂 (𝑘)

+ 𝛼𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
1
𝜂 (𝑘) ,

2 (1 − 𝛼) 𝜂
𝑇

(𝑘)A
𝑇

𝑃D
2
𝜂 (𝑘)

≤ (1 − 𝛼) 𝜂
𝑇

(𝑘)A
𝑇

𝑃A𝜂 (𝑘)

+ (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

2
𝑃D
2
𝜂 (𝑘) ,

2𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
)

≤ 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘)

+ 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
) ,

2𝛼𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃D
1
𝜂 (𝑘)

≤ 𝛼𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘)

+ 𝛼𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
1
𝜂 (𝑘) ,

2 (1 − 𝛼) 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃D
2
𝜂 (𝑘)

≤ (1 − 𝛼) 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘)

+ (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

2
𝑃D
2
𝜂 (𝑘) ,

2𝛼𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃D
1
𝜂 (𝑘)

≤ 𝛼𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
)

+ 𝛼𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
1
𝜂 (𝑘) ,

2 (1 − 𝛼) 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃D
2
𝜂 (𝑘)

≤ (1 − 𝛼) 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃B𝜂 (𝑘 − 𝜏
𝑘
)

+ (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

2
𝑃D
2
𝜂 (𝑘) ,

2𝛼 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
2
𝜂 (𝑘)

≤ 𝛼 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

1
𝑃D
1
𝜂 (𝑘)

+ 𝛼 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

2
𝑃D
2
𝜂 (𝑘) .

(24)

Next, we have derived that

E {Δ𝑉
2
} = E {𝑉

2
(𝑘 + 1) − 𝑉

2
(𝑘)}

=

𝑘

∑

𝑖=𝑘+1−𝜏𝑘+1

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) −

𝑘−1

∑

𝑖=𝑘−𝜏𝑘

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖)

= 𝜂
𝑇

(𝑘) 𝑄𝜂 (𝑘) − 𝜂
𝑇

(𝑘 − 𝜏
𝑘
) 𝑄𝜂 (𝑘 − 𝜏

𝑘
)

+

𝑘−1

∑

𝑖=𝑘+1−𝜏𝑘+1

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝜏𝑘

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖)
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≤ 𝜂
𝑇

(𝑘) 𝑄𝜂 (𝑘) − 𝜂
𝑇

(𝑘 − 𝜏
𝑘
) 𝑄𝜂 (𝑘 − 𝜏

𝑘
)

+

𝑘

∑

𝑖=𝑘+1−𝜏𝑘

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) ,

E {Δ𝑉
3
} = E {𝑉

3
(𝑘 + 1) − 𝑉

3
(𝑘)}

=

0

∑

𝑗=1−𝜏

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) −

0

∑

𝑗=1−𝜏

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖)

=

0

∑

𝑗=1−𝜏

{𝜂
𝑇

(𝑘) 𝑄𝜂 (𝑘) − 𝜂
𝑇

(𝑘 + 𝑗) 𝑄𝜂 (𝑘 + 𝑗)}

= 𝜏𝜂
𝑇

(𝑘) 𝑄𝜂 (𝑘) −

𝑘

∑

𝑖=𝑘+1−𝜏

𝜂
𝑇

(𝑖) 𝑄𝜂 (𝑖) .

(25)

Substituting (23)–(25) into (21), we have

E {Δ𝑉} = E {Δ𝑉
1

+ Δ𝑉
2

+ Δ𝑉
3
} = 𝛿
𝑇

(𝑘) Π𝛿 (𝑘) , (26)

where

𝛿 (𝑘) = [𝜂
𝑇

(𝑘) 𝜂
𝑇

(𝑘 − 𝜏
𝑘
)]
𝑇

. (27)

According to Theorem 8, we have Π < 0. For all the
𝛿(𝑘) ̸= 0, E{Δ𝑉} < 0, and there is a sufficiently small scalar
𝜀
0

> 0 such that

Π + 𝜀
0
diag {𝐼, 0} < 0. (28)

Therefore, we can conclude from (26) and (28) that

E {Δ𝑉} ≤ −𝜀
0
E {

𝜂(𝑘)


2

} . (29)

According to (21), we obtain that

E {𝑉 (𝑘)} ≤ 𝜆
1
E {

𝜂 (𝑘)


2

} + 𝜆
2

𝑘−1

∑

𝑖=𝑘−𝜏

E {
𝜂 (𝑖)



2

} , (30)

where 𝜆
1

= 𝜆max(𝑃) and 𝜆
2

= (𝜏 + 1)𝜆max(𝑄).
For any scalar 𝜎 > 1, taking (21) into consideration, we

have

𝜎
𝑘+1

E {𝑉 (𝑘 + 1)} − 𝜎
𝑘

E {𝑉 (𝑘)}

= 𝜎
𝑘+1

E {Δ𝑉} + 𝜎
𝑘

(𝜎 − 1)E {𝑉 (𝑘)}

≤ 𝜖
1

(𝜎) 𝜎
𝑘

E {
𝜂(𝑘)



2

}

+ 𝜖
2

(𝜎)

𝑘−1

∑

𝑖=𝑘−𝜏

𝜎
𝑘

E {
𝜂 (𝑖)



2

} ,

(31)

where 𝜖
1
(𝜎) = (𝜎 − 1)𝜆

1
− 𝜎𝜀
0
and 𝜖
2
(𝜎) = (𝜎 − 1)𝜆

2
.

Besides, for integer 𝑀 ≥ 𝜏 + 1, summing up both sides of
(31) from 0 to 𝑀 − 1, we have

𝜎
𝑀

E {𝑉 (𝑘 + 1)} − E {𝑉 (0)}

≤ 𝜖
1

(𝜎)

𝑀−1

∑

𝑘=0

𝜎
𝑘

E {
𝜂(𝑘)



2

}

+ 𝜖
2

(𝜎)

𝑀−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝜏

𝜎
𝑘

E {
𝜂(𝑖)



2

} .

(32)

For 𝜏 > 1,

𝑀−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝜏

𝜎
𝑘

E {
𝜂(𝑖)



2

}

≤ (

−1

∑

𝑖=−𝜏

𝑖+𝜏

∑

𝑘=0

+

𝑀−1−𝜏

∑

𝑖=0

𝑖+𝜏

∑

𝑘=𝑖+1

+

𝑀−1

∑

𝑖=𝑀−1−𝜏

𝑀−1

∑

𝑘=𝑖+1

)

× 𝜎
𝑘

E {
𝜂(𝑖)



2

}

≤ 𝜏

−1

∑

𝑖=−𝜏

𝜎
𝑖+𝜏

E {
𝜂(𝑖)



2

} + 𝜏

𝑀−1−𝜏

∑

𝑖=0

𝜎
𝑖+𝜏

E {
𝜂(𝑖)



2

}

+ 𝜏

𝑀−1

∑

𝑖=𝑀−1−𝜏

𝜎
𝑖+𝜏

E {
𝜂(𝑖)



2

}

≤ 𝜏𝜎
𝜏 max
−𝜏≤𝑖≤0

E {
𝜂(𝑖)



2

} + 𝜏𝜎
𝜏

𝑀−1

∑

𝑖=0

𝜎
𝑖

E {
𝜂(𝑖)



2

} .

(33)

Then from (32) and (33), we have

𝜎
𝑘

E {𝑉 (𝑘)}

≤ E {𝑉 (0)} + (𝜖
1

(𝜎) + 𝜖
2

(𝜎))

𝑘−1

∑

𝑖=0

𝜎
𝑖

E {
𝜂(𝑖)



2

}

+ 𝜖
2

(𝜎) ∑

−𝜏≤𝑖≤0

E {
𝜂(𝑖)



2

} ,

(34)

where

𝜖
2

(𝜎) = 𝜏𝜎
𝜏

(𝜎 − 1) 𝜆
2
. (35)

We set 𝜆
0

= 𝜆min(𝑃) and 𝜆 = max{𝜆
1
, 𝜆
2
}; it is easy to

follow that

E {𝑉 (𝑘)} ≥ 𝜆
0
E {

𝜂(𝑘)


2

} . (36)

Besides, we can conclude from (30) that

E {𝑉 (0)} ≤ 𝜆 max
−𝜏≤𝑖≤0

E {
𝜂(𝑖)



2

} . (37)

It can be verified that there exists 𝜎
0

> 1 that

𝜖
1

(𝜎
0
) + 𝜖
2

(𝜎
0
) = 0. (38)
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So it is clear to see from (34) to (38) that

E {
𝜂(𝑘)



2

} ≤ (
1

𝜎
0

)

𝑘

𝜆 + 𝜖
2

(𝜎
0
)

𝜆
0

max
−𝜏≤𝑖≤0

E {
𝜂 (𝑖)



2

} . (39)

So augmented system (11) is exponentially mean-square
stable according to Definition 4 when 𝑓(𝑘) = 0 and V(𝑘) = 0,
and the proof of Theorem 8 is complete.

In addition, we are going to analyze the 𝐻
∞
performance

of filtering error system (11).

Theorem 9. For the given disturbance attenuation level 𝛾 >

0 and observer gain 𝐾, filtering error system (11) is said to
be asymptotically stable in the mean square and satisfies 𝐻

∞

constraints in (14) with 𝑓(𝑘) = 0, V(𝑘) ̸= 0, if there exist
positive definite matrix 𝑃 = diag{𝑃

1
, 𝑃
2
}, 𝑄 > 0 with proper

dimensions, and 𝜀 > 0 satisfying the following inequality:

Γ = [

[

Γ
11

0 Γ
13

∗ Π
22

Γ
23

∗ ∗ Γ
33

− 𝛾
2

𝐼

]

]

< 0, (40)

where

Γ
11

= Π
11

+ ΔA
𝑇

𝑃ΔA +
1

𝑁
L
𝑇

L,

Γ
13

= A
𝑇

𝑃EV + 𝛼D
𝑇

1
𝑃EV + (1 − 𝛼)D

𝑇

2
𝑃EV,

Γ
23

= B
𝑇

𝑃EV,

Γ
33

= 2E
𝑇

V 𝑃EV.

(41)

Π
11
and Π

22
are defined in Theorem 8.

Proof. According to Theorem 8, filtering error system (11) is
asymptotically stable in the mean square with 𝑓(𝑘) = 0,
V(𝑘) = 0. By constructing the same Lyapunov-Krasovskii
functional as in Theorem 8 and setting 𝑓(𝑘) = 0, we have

E {Δ𝑉
𝑘
} ≤ E {𝛿

𝑇

(𝑘) Π𝛿 (𝑘) + 2𝜂
𝑇

(𝑘)A
𝑇

𝑃EVV (𝑘)

+ 2𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃EVV (𝑘)

+ 2𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃EVV (𝑘)

+ 2𝛼𝜂
𝑇

(𝑘)D
𝑇

1
𝑃EVV (𝑘)

+ 2 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

2
𝑃EVV (𝑘)

+ V𝑇 (𝑘)E
𝑇

V 𝑃EVV (𝑘)} ,

(42)

where 𝛿(𝑘) and Π are previously defined.
It follows from Lemma 6 that

2𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃EVV (𝑘)

≤ 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘)

+ V(𝑘)
𝑇

E
𝑇

V 𝑃EVV (𝑘) .

(43)

Substituting (43) into (42), we have

E {Δ𝑉
𝑘
} ≤ E {𝛿

𝑇

(𝑘) Π𝛿 (𝑘) + 2𝜂
𝑇

(𝑘)A
𝑇

𝑃EVV (𝑘)

+ 𝜂
𝑇

(𝑘) ΔA
𝑇

𝑃ΔA𝜂 (𝑘)

+ 2𝜂
𝑇

(𝑘 − 𝜏
𝑘
)B
𝑇

𝑃EVV (𝑘)

+ 2𝛼𝜂
𝑇

(𝑘)D
𝑇

1
𝑃EVV (𝑘)

+ 2 (1 − 𝛼) 𝜂
𝑇

(𝑘)D
𝑇

2
𝑃EVV (𝑘)

+ 2V𝑇 (𝑘)E
𝑇

V 𝑃EVV (𝑘)} .

(44)

By setting 𝛿(𝑘) = [𝛿
𝑇

(𝑘) V𝑇(𝑘)]
𝑇

, (44) can be written as

E {Δ𝑉 (𝑘)}

≤ E
{

{

{

𝛿
𝑇

(𝑘) [

[

Π
11

+ ΔA𝑇𝑃ΔA 0 Γ
13

∗ Π
22

Γ
23

∗ ∗ Γ
33

]

]

𝛿 (𝑘)

}

}

}

,

(45)

where Γ
13

= A𝑇𝑃EV + 𝛼D𝑇
1
𝑃EV + (1 − 𝛼)D𝑇

2
𝑃EV, Γ

23
=

B𝑇𝑃EV, and Γ
33

= 2E𝑇V 𝑃EV.
In order to deal with the 𝐻

∞
performance of (11), we

introduce the following index:

𝐽 (𝑛) = E
𝑛

∑

𝑘=0

{
1

𝑁
�̃�
𝑇

(𝑘) �̃� (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘)} , (46)

where 𝑛 is a nonnegative integer.
When the system is under zero initial condition, we have

𝐽 (𝑛) = E
𝑛

∑

𝑘=0

{
1

𝑁
�̃�
𝑇

(𝑘) �̃� (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉 (𝑘)}

− E {𝑉 (𝑛 + 1)}

≤ E
𝑛

∑

𝑘=0

{
1

𝑁
�̃�
𝑇

(𝑘) �̃� (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉 (𝑘)}

≤ E
𝑛

∑

𝑘=0

{𝛿
𝑇

(𝑘) Γ𝛿 (𝑘)} .

(47)

According toTheorem 9, we have 𝐽(𝑛) ≤ 0. Furthermore,
letting 𝑛 → ∞, we have

∞

∑

𝑘=0

E {
1

𝑁
‖�̃�(𝑘)‖

2

} ≤ 𝛾
2

∞

∑

𝑘=0

E {‖V (𝑘)‖
2

} , (48)

so the proof of Theorem 9 is complete.

Next, sufficient condition is proposed for designing 𝐻
∞

filter for WiNCS as shown in (1).
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Theorem 10. For the given disturbance attenuation level 𝛾 >

0, filtering error system (11) is said to be asymptotically stable
in the mean square and satisfies 𝐻

∞
constraints in (14) with

𝑓(𝑘) = 0, V(𝑘) ̸= 0, if there exist positive definite matrix
𝑃 = diag{𝑃

1
, 𝑃
2
}, 𝑄 > 0, a general matrix 𝑋 with proper

dimensions, and 𝜀 > 0 satisfying the following inequality:

Υ =

[
[
[
[
[

[

Υ
11

0 Υ
13

Υ
14

0

∗ −𝑄 Γ
23

Υ
24

0

∗ ∗ Γ
33

− 𝛾
2

𝐼 0 0

∗ ∗ ∗ Υ
44

Υ
45

∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]

]

< 0, (49)

where

Υ
11

= (1 + 𝜏) 𝑄 − 𝑃 +
1

𝑁
L
𝑇

L + 𝜀𝑁
𝑇

𝑁,

Υ
13

= ΩEV + 𝛼D
𝑇

1
𝑃EV + (1 − 𝛼)D

𝑇

2
𝑃EV,

Υ
14

= [2Ω 0 𝛼
1
D𝑇𝑃 𝛼

2
D𝑇
1
𝑃 𝛼
3
D𝑇
2
𝑃 0] ,

Υ
24

= [0 0 0 0 0 2B𝑇𝑃] ,

Υ
44

= diag {−𝑃, −𝑃, −𝑃, −𝑃, −𝑃, −𝑃} ,

Υ
𝑇

45
= [0 �̃�

𝑇

𝑃
𝑇

0 0 0 0] ,

𝛼
1

= √𝛼 (1 − 𝛼), 𝛼
2

= 2√𝛼, 𝛼
3

= 2√1 − 𝛼,

�̃� = 𝐼
𝑁

⊗ 𝑁, �̃� = 𝐼
𝑁

⊗ 𝑀,

𝑃 = [
𝑃
1

𝑃
2

] , 𝑁 = [�̃� 0] ,

Ω = [
𝐴
𝑇

𝑃
1

0

0 𝐴
𝑇

𝑃
2

− 𝐶
𝑇

𝑋
] .

(50)

Γ
23

and Γ
33

are defined in (41). So the gain of fault detection
observer is

𝐾 = 𝑃
−1

2
𝑋
𝑇

. (51)

Proof. According to Lemma 5, inequality (40) can be rewrit-
ten into the following:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(1 + 𝜏) 𝑄 − 𝑃 +
1

𝑁
L𝑇L 0 Γ

13
2A𝑇

5

2
ΔA𝑇 √𝛼 (1 − 𝛼)D𝑇 2√𝛼D𝑇

1
2√1 − 𝛼D𝑇

2
0

∗ −𝑄 Γ
23

0 0 0 0 0 2B𝑇

∗ ∗ Γ
33

− 𝛾
2

𝐼 0 0 0 0 0 0

∗ ∗ ∗ −𝑃
−1

0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃
−1

0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
−1

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (52)

Multiplying diag{𝐼, 𝐼, 𝐼, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃} on both sides of the
above matrix inequality, we have

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(1 + 𝜏) 𝑄 − 𝑃 +
1

𝑁
L𝑇L 0 Γ

13
2A𝑇𝑃

5

2
ΔA𝑇𝑃 √𝛼 (1 − 𝛼)D𝑇𝑃 2√𝛼D𝑇

1
𝑃 2√1 − 𝛼D𝑇

2
𝑃 0

∗ −𝑄 Γ
23

0 0 0 0 0 2B𝑇𝑃

∗ ∗ Γ
33

− 𝛾
2

𝐼 0 0 0 0 0 0

∗ ∗ ∗ −𝑃 0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (53)
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Figure 1: Two topology structures of WiNCS.

By the use of Lemma 7, inequality (53) can be rewritten into

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(1 + 𝜏) 𝑄 − 𝑃 +
1

𝑁
L𝑇L + 𝜀𝑁

𝑇

𝑁 0 Γ
13

2A𝑇𝑃 0 √𝛼 (1 − 𝛼)D𝑇𝑃 2√𝛼D𝑇
1
𝑃 2√1 − 𝛼D𝑇

2
𝑃 0 0

∗ −𝑄 Γ
23

0 0 0 0 0 2B𝑇𝑃 0

∗ ∗ Γ
33

− 𝛾
2

𝐼 0 0 0 0 0 0 0

∗ ∗ ∗ −𝑃 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃 0 0 0 0 𝑃�̃�

∗ ∗ ∗ ∗ ∗ −𝑃 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

<0.

(54)

We set 𝐾
𝑇

𝑃
2

= 𝑋, so 𝐾 = 𝑃
−1

2
𝑋
𝑇. Substituting it into (54),

we can get the result easily, and the proof of Theorem 10 is
complete.

4. Numerical Simulations

In this section, a simulation result is presented to show the
effectiveness of the proposed method. Consider system (1)
with

𝐴 = [
0.1910 0.1854

0.1742 0.1701
] , 𝐵 = [

−0.1075 0.0046

−0.0088 0.0288
] ,

𝐶 = [
0.8899 0.3414

0.4046 0.2373
] , 𝐸

𝑓
= [

0.1252

0.0880
] ,

𝑀 = [
0.0463 0.0927

0 0.1066
] ,

𝐷 (𝑘) = [
0.8 sin (0.7𝑘) 0

0 0.8 sin (0.7𝑘)
] ,

𝐻 = [
0.3337 0.2410

0.1947 −0.3245
] ,

𝐸V = [
0.2017

0.0512
] , 𝐿 = [0.92 0.41] ,

V (𝑘) = 3𝑒
−0.9𝑘 sin (0.2𝑘) .

(55)

Suppose that there are five nodes in WiNCS with inter-
connection topology as shown in Figure 1, and the coupled
configuration matrices are

𝐷
𝛼

=

[
[
[
[
[

[

−3 0 1 1 1

0 −2 1 0 1

1 1 −2 0 0

1 0 0 −1 0

1 1 0 0 −2

]
]
]
]
]

]

,

𝐷
1−𝛼

=

[
[
[
[
[

[

−2 1 0 0 1

1 −4 1 1 1

0 1 −3 1 1

0 1 1 −2 0

1 1 1 0 −3

]
]
]
]
]

]

(56)

with probability 𝛼 = 0.3 and disturbance attenuation level
𝛾 = 0.88.
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Figure 2: System residual evaluation function.
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Table 1: Gain matrices.

𝑘
𝑖𝑗

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 5

𝑖 = 1 [
−0.8360 2.2935

−0.4851 1.4932
] [

0.0671 −0.1090

0.0169 −0.0272
] [

−0.0226 0.0699

−0.0057 0.0176
] [

0.0468 −0.0874

0.0118 −0.0221
] [

0.1513 −0.2661

0.0384 −0.0675
]

𝑖 = 2 [
0.0590 −0.0896

0.0149 −0.0225
] [

−1.0733 2.7564

−0.5455 1.6103
] [

0.1716 −0.3058

0.0431 −0.0766
] [

0.0868 −0.1814

0.0231 −0.0478
] [

0.1625 −0.2788

0.0407 −0.0696
]

𝑖 = 3 [
−0.0165 0.0549

−0.0042 0.0140
] [

0.1671 −0.3039

0.0425 −0.0772
] [

−0.9403 2.4938

−0.5116 1.5439
] [

0.0765 −0.1160

0.0190 −0.0287
] [

0.1198 −0.2280

0.0305 −0.0581
]

𝑖 = 4 [
0.0413 −0.0747

0.0106 −0.0191
] [

0.0842 −0.1494

0.0213 −0.0376
] [

0.0786 −0.1313

0.0200 −0.0334
] [

−0.7223 2.0971

−0.4566 1.4440
] [

−0.0752 0.1590

−0.0190 0.0401
]

𝑖 = 5 [
0.1587 −0.2833

0.0402 −0.0717
] [

0.1616 −0.2933

0.0411 −0.0744
] [

0.1194 −0.2258

0.0304 −0.0575
] [

−0.0812 0.1885

−0.0210 0.0485
] [

−0.9518 2.5147

−0.5144 1.5490
]

The initial states of each sensor node are

𝑥
1

(0) = [
3.2

−3.5
] ,

𝑥
2

(0) = [
2.2

−1.6
] ,

𝑥
3

(0) = [
2.72

3.25
] ,

𝑥
4

(0) = [
−3.6

−1.36
] ,

𝑥
5

(0) = [
3.122

−1.45
] .

(57)

Parameters can be acquired based on the proposed theo-
rems, they are omitted here for brevity concern, and observer
gain matrices are listed in Table 1.

We make fault detection for the system shown in (1), and
we assume that fault only occurs in node 2 at time instant 𝑘 =

30, system fault can be delivered to other nodes by their inter-
connections, and simulation results are shown in Figure 2,
where red line and dotted line represent evaluation function 𝐽

and threshold value 𝐽th, respectively. From the results we can
see that 𝐽 rises quickly when fault happens, and threshold val-
ues are designed as 𝐽th1 = 1.1939, 𝐽th2 = 1.4556, 𝐽th3 = 4.0299,
𝐽th4 = 0.8139, and 𝐽th5 = 0.1127. Figure 3 indicates the stoch-
astic switching for two topologies associated with this exam-
ple.

In WiNCS, states of node are affected not only by itself,
but also by other nodes’ measurement according to the topol-
ogy, so node’s failure can be transmitted to other nodes via
signal channel. Intuitively, a node with more connection
means more importance in the system, and failure can be
spread to entire topology in a short time, so detecting failure
in time is quite important, which will affect the stability of the
system.

5. Conclusion

In this paper, we have considered the fault detection prob-
lem for a class of discrete-time wireless networked control
systems, which has stochastic switching topology, combined

0 5 10 15 20 25 30 35 40 45 50
0

1
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3

Time (k)

To
po

lo
gy

 sw
itc

he
s

Figure 3: Topology switches.

with uncertainty and disturbance. The states of each node
in WiNCS are affected not only by itself, but also by other
nodes’ measurements according to a certain topology.We get
sufficient conditions based on Lyapunov stability theory to
guarantee the existence of the filters satisfying the 𝐻

∞

performance constraint, and the gains of observers are also
acquired by solving linearmatrix inequalities. However, there
are only five nodes in the simulation and fault detection for
WiNCS composed of large number of nodes is still a difficult
problem, which is our future research task.
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