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This paper is concerned with the problem of finite-time 𝑙
1
-gain control for positive switched systems with time-varying delay via

delta operator approach. Firstly, sufficient conditions which can guarantee the 𝑙
1
-gain finite-time boundedness of the underlying

system are given by using the average dwell time approach and constructing an appropriate copositive type Lyapunov-Krasovskii
functional in delta domain.Moreover, the obtained conditions can unify somepreviously suggested relevant results seen in literature
of both continuous and discrete systems into the delta operator framework. Then, based on the results obtained, a state feedback
controller is designed to ensure that the resulting closed-loop system is finite-time bounded with an 𝑙

1
-gain performance. Finally,

a numerical example is presented to demonstrate the effectiveness and feasibility of the proposed method.

1. Introduction

Positive systems are dynamical systems where the states and
outputs are constrained to be nonnegative whenever the
initial conditions and inputs are nonnegative [1, 2]. Such
systems are applied in various areas, for instance, biomedicine
[3, 4], ecology [5], TCP-like Internet congestion control [6,
7], industrial engineering [8], and so on. Recently, positive
switched systems, which consist of a family of positive
subsystems and a switching signal coordinating the operation
of various subsystems to govern the switching among them,
have been highlighted and investigated by many researchers
due to the broad applications in communication systems
[7, 9], formation flying [10], the viral mutation dynamics
under drug treatment [2], and systems theories [11–13]. It has
been shown that a linear copositive Lyapunov functional is
powerful for the analysis and synthesis of positive systems
[14–16].

The delta operator, as a novel method of solving the
problem of system instability under fast sampling, has drawn
considerable attention in the past three decades. As we know,
most discrete-time signals and systems are the results of

sampling continuous-time signals and systems. When the
sampling period tends to zero, namely, data are taken at high
sampling rates, however, all resulting signals and systems tend
to be ill-conditioned and thus difficult to deal with using the
conventional algorithms. Until Goodwin et al. proposed a
delta-operator-based algorithm in [17] to take place of the
conventional algorithms, the above problem is avoided. It was
shown that delta-operator-based algorithms are numerically
better behaved under finite precision implementations for
fast sampling [17]. The delta operator model can be regarded
as a useful approach to deal with discrete-time systems
under high sampling rates through the analysis methods of
continuous-time systems [18–20]. Based on significant early
investigations such as [21–23], the numerical properties and
practical applications of the delta operator model have been
extensively investigated [24–26].The delta operator is defined
by

𝛿𝑥 (𝑡) =

{{{

{{{

{

𝑑𝑥 (𝑡)

𝑑𝑡
, 𝑇 = 0

(𝑥 (𝑡 + 𝑇) − 𝑥 (𝑡))

𝑇
, 𝑇 ̸= 0,

(1)
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where 𝑇 is a sampling period. When 𝑇 → 0, the delta
operator model will approach the continuous system before
discretization and reflect a quasicontinuous performance.

The stability of positive switched systems has been con-
cerned by many researchers [27–29]. Most of them are based
on the concept of Lyapunov stability, which is defined over
an infinite-time interval. In practice, however, not only the
system stability (generally refers to Lyapunov stability) but
also the state trajectory over a fixed short time is needed to be
considered. The finite-time stability, which is different from
Lyapunov stability, admits that the state does not exceed a
certain bound during a fixed finite-time interval. It should
be noted that a finite-time stable system may not be stable in
the sense of Lyapunov, and a Lyapunov stable systemmay not
be finite-time stable since its transient response may exceed
the bound [30]. Some early results on finite-time stability can
be found in [31–33]. And recently, many results on finite-
time control for switched systems have been presented in
the literature [34–36]. The definition of finite-time stability
for positive switched systems has been given in [37, 38].
In addition, exogenous disturbances are very common in
many kinds of engineering systems, and the outputs will be
inevitably affected by the disturbances. It is because of the
peculiar nonnegative property of positive systems, the 𝑙

1
-

gain index [39, 40] can characterize the disturbance rejection
property. Then we can limit the effect of disturbance in a
prescribed level by means of 𝑙

1
-gain. Moreover, it should be

noted that delays are universal in practice and their existence
may give rise to the deterioration of system performance and
instability [41–44]. To the best of our knowledge, few results
on the issues of finite-time stability and 𝑙

1
-gain finite-time

boundedness of positive switched systems with time-varying
delay via delta operator approach have been proposed to date,
which motivates the present research.

In this paper, we focus our attention on investigating
the problem of finite-time 𝑙

1
-gain control for a class of

positive switched systems with time-varying delay via delta
operator approach. The main contributions of this paper are
threefold: (1) definitions of finite-time boundedness and 𝑙

1
-

gain performance are for the first time extended to positive
switched delta operator systems with time-varying delay;
(2) by applying the average dwell time approach, sufficient
conditions for the existence of finite-time boundedness
of the underlying system are given. Moreover, the results
obtained can degenerate into the corresponding ones both
in continuous-time systems and discrete-time systems; (3)
a state feedback controller design scheme is proposed to
guarantee that the closed-loop system is finite-time bounded
with 𝑙

1
-gain performance.

The remainder of the paper is organized as follows.
The problem formulation and some necessary lemmas are
provided in Section 2. In Section 3, 𝑙

1
-gain finite-time

boundedness analysis and controller design are developed. A
numerical example is presented to demonstrate the feasibility
of the obtained results in Section 4. Section 5 concludes this
paper.

Notations. 𝐴 ⪰ 0(⪯, ≻, ≺) means that all entries of matrix 𝐴
are nonnegative (nonpositive, positive, and negative); 𝐴 ≻

𝐵(𝐴 ⪰ 𝐵) means that 𝐴 − 𝐵 ≻ 0(𝐴 − 𝐵 ⪰ 0); 𝐴𝑇 means
the transpose of matrix𝐴; 𝑅(𝑅

+
) is the set of all real (positive

real) numbers; 𝑅𝑛 is the 𝑛-dimensional real vector space; 𝑅𝑛

+

is the set of all 𝑛-dimensional positive real vectors; 𝑅𝑚×𝑛 is
the set of all 𝑚 × 𝑛-dimensional real matrices. The vector
1-norm is denoted by ‖𝑥‖ = ∑

𝑛

𝑘=1
|𝑥

𝑘
|, where 𝑥

𝑘
is the 𝑘th

element of 𝑥 ∈ 𝑅𝑛. Given V : 𝑅 → 𝑅
𝑛, the 𝑙

1
-norm is defined

by ‖V‖
𝐿
1

= ∑
∞

𝑘
0

‖V(𝑘)‖; 1
𝑛
∈ 𝑅

𝑛 denotes a column vector
with 𝑛 rows containing only 1 entry; 𝑙

1
[𝑘

0
,∞) is the space of

absolute integrable vector-valued functions on [𝑘
0
,∞); that

is, we say 𝑧 : [𝑘
0
,∞) → 𝑅

𝑘 is in 𝑙
1
[𝑘

0
,∞) if ∑∞

𝑘
0

‖𝑧(𝑘)‖ < 0.

2. Problem Formulation

Consider the following switched delta operator system with
time-varying delay:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑

𝑘
) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐸

𝜎(𝑘)
𝑤 (𝑘) ,

(2)

where 𝑥(𝑘) ∈ 𝑅𝑛 denotes the state; 𝑧(𝑘) ∈ 𝑅𝑧 is the controlled
output; 𝑘 represents the time 𝑡 = 𝑘𝑇; 𝑇 > 0 is the sampling
period. 𝑤(𝑘) ∈ 𝑅𝑤 is the disturbance input satisfying

𝑇
𝑓

∑

𝑘=0

‖𝑤 (𝑘)‖ < 𝑑, 𝑑 ≥ 0, (3)

and 𝜎(𝑘) : [0,∞) → 𝑚 = {1, 2, . . . , 𝑚} is the switching
signal with 𝑚 representing the number of subsystems. 𝐴

𝑝
,

𝐴
𝑑𝑝
, 𝐶

𝑝
, 𝐷

𝑝
, and 𝐸

𝑝
are constant matrices with appropriate

dimensions.𝑑
𝑘
denotes the time-varying discrete delaywhich

satisfies 0 ≤ 𝑑 ≤ 𝑑
𝑘
≤ 𝑑 for known constants 𝑑 and 𝑑;

{𝜑(𝑘), 𝑘 = −𝑑, −𝑑 + 1, . . . , 0} is a given discrete vector-valued
initial condition. The switch is assumed to only occur at the
sampling time in this paper.

Remark 1. Since a delta operator system can be regarded as a
quasicontinuous system when 𝑇 → 0, the term 𝛿𝑥(𝑘) can be
applicable in normal continuous-time systems.

Definition 2. System (2) is said to be positive if, for any initial
conditions 𝜑(𝑘) ⪰ 0, 𝑘 = −𝑑, −𝑑 + 1, . . . , 0, any inputs 𝑤(𝑘) ⪰
0, and any switching signals 𝜎(𝑘), the system satisfies 𝑥(𝑘) ⪰
0 and 𝑧(𝑘) ⪰ 0 for all 𝑘 ≥ 0.

Lemma 3. System (2) is positive if and only if (𝐼 + 𝑇𝐴
𝑝
) ⪰ 0,

𝐴
𝑑𝑝
⪰ 0,𝐷

𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

Proof. From the definition of delta operator 𝛿, the discrete
form of system (2) can be obtained as follows:

𝑥 (𝑘 + 1) = (𝐼 + 𝑇𝐴
𝜎(𝑘)
) 𝑥 (𝑘)

+ 𝑇𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) + 𝑇𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐸

𝜎(𝑘)
𝑤 (𝑘) ,

(4)
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Combining Lemma 2 in [45] and Lemma 1 in [28], one can
obtain the remaining proof easily.

Remark 4. When𝑇 → 0, system (2) degenerates to a general
continuous-time positive switched system as follows:

𝑥̇ (𝑡) = 𝐴
𝜎(𝑡)
𝑥 (𝑡) + 𝐴

𝑑𝜎(𝑡)
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷

𝜎(𝑡)
𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0]

𝑧 (𝑡) = 𝐶
𝜎(𝑡)
𝑥 (𝑡) + 𝐸

𝜎(𝑡)
𝑤 (𝑡) ,

(5)

where 𝑑(𝑡) denotes the time-varying delay which is every-
where time differentiable and satisfies 0 ≤ 𝑑 ≤ 𝑑(𝑡) ≤ 𝑑,
and ̇𝑑(𝑡) ≤ 𝑑

𝑑
< 1 for known constants 𝑑, 𝑑, and 𝑑

𝑑
. Then,

according to [39], system (5) is positive if and only if 𝐴
𝑝
are

Metzler matrices, and 𝐴
𝑑𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, 𝐷

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0,

for all 𝑝 ∈ 𝑚.

Definition 5 (see [46]). For any switching signal 𝜎(𝑘) and any
𝑘

2
> 𝑘

1
≥ 0, let𝑁

𝜎
(𝑘

1
, 𝑘

2
) denote the number of switches of

𝜎(𝑘) over the interval [𝑘
1
, 𝑘

2
). For given 𝜏

𝑎
> 0 and𝑁

0
≥ 0, if

the inequality

𝑁
𝜎
(𝑘

1
, 𝑘

2
) ≤ 𝑁

0
+
𝑘

2
− 𝑘

1

𝜏
𝑎

(6)

holds, then the positive constant 𝜏
𝑎
is called the average dwell

time and𝑁
0
is called the chattering bound.

Without lose of generality, we choose𝑁
0
= 0 in this paper.

In order to obtain the main results, we need to give the
definitions of finite-time stability, finite-time boundedness
and 𝑙

1
-gain finite-time boundedness for positive system (2).

Definition 6 (finite-time stability). For a given time constant
𝑇

𝑓
and two vectors 𝜍 ≻ 𝜀 ≻ 0, positive switched delta

operator system (2) with 𝑤(𝑘) = 0 is said to be finite-time
stable with respect to (𝜍, 𝜀, 𝑇

𝑓
, 𝜎(𝑘)), if sup

−𝑑≤𝑘≤0
{𝑥

𝑇
(𝑘)𝜍} ≤

1 ⇒ 𝑥
𝑇
(𝑘)𝜀 < 1, for all 𝑘 ∈ [0, 𝑇

𝑓
). If the above condition

is satisfied for any switching signals 𝜎(𝑘), positive system
(2) is said to be uniformly finite-time stable with respect to
(𝜍, 𝜀, 𝑇

𝑓
).

Remark 7. As can be seen from Definition 6, the concept
of finite-time stability is different from the one of Lya-
punov asymptotic stability. A Lyapunov asymptotically stable
switched system may not be finite-time stable because its
states may exceed the prescribed bounds during the interval
time.

Definition 8 (finite-time boundedness). For a given time
constant 𝑇

𝑓
and two vectors 𝜍 ≻ 𝜀 ≻ 0, positive switched

delta operator system (2) is said to be finite-time bounded
with respect to (𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘)), if sup

−𝑑≤𝑘≤0
{𝑥

𝑇
(𝑘)𝜍} ≤ 1 ⇒

𝑥
𝑇
(𝑘)𝜀 < 1, for all 𝑘 ∈ [0, 𝑇

𝑓
).

Definition 9 (𝑙
1
-gain finite-time boundedness). For a given

time constant 𝑇
𝑓
and two vectors 𝜍 ≻ 𝜀 ≻ 0, positive switched

delta operator system (2) is said to be 𝑙
1
-gain finite-time

bounded with respect to (𝜍, 𝜀, 𝑇
𝑓
, 𝑑, 𝜎(𝑘)), if the following

conditions are satisfied.

(1) Positive switched delta operator system (2) is finite-
time bounded with respect to (𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘)).

(2) Under zero-initial condition, that is, 𝜑(𝑘) = 0, 𝑘 =
−𝑑, −𝑑 + 1, . . . , 0, the output 𝑧(𝑘) satisfies

𝑇
𝑓

∑

𝑘=0

(1 + 𝑇𝜌)
−𝑘

‖𝑧 (𝑘)‖ ≤ 𝛾

𝑇
𝑓

∑

𝑘=0

‖𝑤 (𝑘)‖ , (7)

where 𝜌 > 0 and 𝛾 > 0 are constants.

Remark 10. In Definition 9, as proposed in [39], 𝑙
1
-gain

performance characterizes system’s suppression to exogenous
disturbance.

The aim of this paper is to find a class of switching
signals 𝜎(𝑘) and determine a state feedback controller 𝑢(𝑘) =
𝐾

𝜎(𝑘)
𝑥(𝑘) for the following positive switched delta operator

system with time-varying delay:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑

𝑘
)

+ 𝐵
𝜎(𝑘)
𝑢 (𝑘) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐸

𝜎(𝑘)
𝑤 (𝑘)

(8)

such that the resulting closed-loop system is positive and
finite-time bounded with 𝑙

1
-gain performance.

3. Main Results

3.1. Finite-Time Stability and Boundedness Analysis. This
section will focus on the problem of finite-time boundedness
for positive switched delta operator system (2).

Theorem 11. Consider positive system (2); for a given positive
constant 𝛼 > 0, a sampling period 𝑇, a time constant 𝑇

𝑓
, and

two vectors 𝜍 ≻ 𝜀 ≻ 0, if there exist positive vectors ]
𝑝
and 𝜐

𝑝
,

for all 𝑝 ∈ 𝑚, and positive constants 𝜉
1
, 𝜉

2
, and 𝜉

3
, such that

the following inequalities hold:

𝐴
𝑇

𝑝
]

𝑝
− 𝛼]

𝑝
+ (1 + 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
⪯ 0, (9)

𝐴
𝑇

𝑑𝑝
]

𝑝
− (1 + 𝑇𝛼)

𝑑+1
𝜐

𝑝
⪯ 0, (10)

𝜉
1
𝜀 ≺ ]

𝑝
≺ 𝜉

2
𝜍, 𝜐

𝑝
≺ 𝜉

3
𝜍, (11)

(1 + 𝑇𝛼)
𝑇
𝑓
(𝜉

2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1) +𝑇𝑑𝜛) < 𝜉

1
,

(12)

where ]
𝑝
= []

𝑝1
, ]

𝑝2
, . . . , ]

𝑝𝑛
]
𝑇 and 𝜐

𝑝
= [𝜐

𝑝1
, 𝜐

𝑝2
, . . . , 𝜐

𝑝𝑛
]
𝑇,

then the system is finite-time bounded with respect to
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(𝜍, 𝜀, 𝑇
𝑓
, 𝑑, 𝜎(𝑘)) under the following average dwell time

scheme:

𝜏
𝑎

> 𝜏
∗

𝑎

=

𝑇
𝑓
ln𝜇

ln 𝜉
1

− ln [(1 + 𝑇𝛼)
𝑇𝑓 (𝜉
2

+ 𝜉
3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1) + 𝑇𝑑𝜛)]

,

(13)

where 𝜛 = max
(𝑟,𝑝)∈𝑤×𝑚

(𝜛
𝑝𝑟
), 𝑤 = {1, 2, . . . , 𝑤}, 𝜛

𝑝𝑟
is the 𝑟th

element of the vector 𝜛
𝑝
= 𝜉

2
𝐷

𝑇

𝑝
𝜍, and 𝜇 ≥ 1 satisfies

]
𝑝
⪯ 𝜇]

𝑞
, 𝜐

𝑝
⪯ 𝜇𝜐

𝑞
, ∀𝑝, 𝑞 ∈ 𝑚. (14)

Proof. Choose the following piecewise copositive type Lya-
punov functional for positive system (2):

𝑉 (𝑘, 𝑥 (𝑘)) = 𝑉
𝜎(𝑘)

(𝑘, 𝑥 (𝑘)) . (15)

The form of each 𝑉
𝑝
(𝑘, 𝑥(𝑘)) (∀𝑝 ∈ 𝑚) is given by

𝑉
𝑝
(𝑘, 𝑥 (𝑘)) = 𝑉

𝑝1
(𝑘, 𝑥 (𝑘))

+ 𝑉
𝑝2
(𝑘, 𝑥 (𝑘)) + 𝑉

𝑝3
(𝑘, 𝑥 (𝑘)) ,

(16)

where

𝑉
𝑝1
(𝑘, 𝑥 (𝑘)) = 𝑥

𝑇
(𝑘) ]

𝑝
,

𝑉
𝑝2
(𝑘, 𝑥 (𝑘)) = 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑
𝑘

(1 + 𝑇𝛼)
𝑘−𝑠
𝑥

𝑇
(𝑠) 𝜐

𝑝
,

𝑉
𝑝3
(𝑘, 𝑥 (𝑘)) = 𝑇

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 + 𝑇𝛼)
𝑘−𝑠
𝑥

𝑇
(𝑠) 𝜐

𝑝
, ∀𝑝 ∈ 𝑚.

(17)

For simplicity, 𝑉
𝑝
(𝑘, 𝑥(𝑘)) is written as 𝑉

𝑝
(𝑘) (corre-

spondingly, 𝑉(𝑘, 𝑥(𝑘)) is written as 𝑉(𝑘)) in the later section
of the paper.

Along the state decay of positive system (2), the Lyapunov
function in delta domain has the following form:

𝛿𝑉
𝑝1
(𝑘, 𝑥 (𝑘))

= 𝛿 (𝑥
𝑇
(𝑘) ]

𝑝
) = (𝛿𝑥

𝑇
(𝑘)) ]

𝑝

= 𝑥
𝑇
(𝑘) 𝐴

𝑇

𝑝
]

𝑝
+ 𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝐴

𝑇

𝑑𝑝
]

𝑝
+ 𝑤

𝑇
(𝑘)𝐷

𝑇

𝑝
]

𝑝

𝛿𝑉
𝑝2
(𝑘, 𝑥 (𝑘))

=
1

𝑇
[𝑉

𝑝2
(𝑘 + 1) − 𝑉

𝑝2
(𝑘)]

=
1

𝑇

[

[

𝑇

(𝑘+1)−1

∑

𝑠=𝑘+1−𝑑
𝑘+1

(1 + 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

−𝑇

𝑘−1

∑

𝑠=𝑘−𝑑
𝑘

(1 + 𝑇𝛼)
𝑘−𝑠
𝑥

𝑇
(𝑠) 𝜐

𝑝
]

]

≤ 𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝑑
𝑘

(1 + 𝑇𝛼)
𝑘−𝑠
𝑥

𝑇
(𝑠) 𝜐

𝑝

+ (1 + 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜐

𝑝
− (1 + 𝑇𝛼)

𝑑+1
𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝜐

𝑝

+

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 + 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

𝛿𝑉
𝑝3
(𝑘, 𝑥 (𝑘))

=
1

𝑇
[𝑉

𝑝3
(𝑘 + 1) − 𝑉

𝑝3
(𝑘)]

=
1

𝑇

[

[

𝑇

−𝑑

∑

𝑙=−𝑑+1

(𝑘+1)−1

∑

𝑠=𝑘+1+𝑙

(1 + 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

−𝑇

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 + 𝑇𝛼)
𝑘−𝑠
𝑥

𝑇
(𝑠) 𝜐

𝑝
]

]

= 𝑇𝛼

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 + 𝑇𝛼)
𝑘−𝑠
𝑥

𝑇
(𝑠) 𝜐

𝑝

+ (1 + 𝑇𝛼) (𝑑 − 𝑑) 𝑥
𝑇
(𝑘) 𝜐

𝑝

−

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 + 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
.

(18)

According to (18), we have

𝛿𝑉
𝑝
(𝑘, 𝑥 (𝑘)) − 𝛼𝑉

𝑝
(𝑘, 𝑥 (𝑘))

≤ 𝑥
𝑇
(𝑘) 𝐴

𝑇

𝑝
]

𝑝
+ 𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝐴

𝑇

𝑑𝑝
]

𝑝

+ 𝑤
𝑇
(𝑘)𝐷

𝑇

𝑝
]

𝑝
− 𝛼𝑥

𝑇
(𝑘) ]

𝑝

+ (1 + 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜐

𝑝
− (1 + 𝑇𝛼)

𝑑+1
𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝜐

𝑝

+

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 + 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 + 𝑇𝛼) (𝑑 − 𝑑) 𝑥
𝑇
(𝑘) 𝜐

𝑝

−

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 + 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
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≤ 𝑥
𝑇
(𝑘) [𝐴

𝑇

𝑝
]

𝑝
− 𝛼]

𝑝
+ (1 + 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
]

+ 𝑥
𝑇
(𝑘 − 𝑑

𝑘
) [𝐴

𝑇

𝑑𝑝
]

𝑝
− (1 + 𝑇𝛼)

𝑑+1
𝜐

𝑝
] + 𝑤

𝑇
(𝑘)𝐷

𝑇

𝑝
]

𝑝
.

(19)

According to (9)–(11), we can easily obtain

𝛿𝑉
𝑝
(𝑘) − 𝛼𝑉

𝑝
(𝑘) ≤ 𝑤

𝑇
(𝑘)𝐷

𝑇

𝑝
]

𝑝
≤ 𝑤

𝑇
(𝑘)𝐷

𝑇

𝑝
𝜍𝜉

2
. (20)

Denoting 𝜛
𝑝
= 𝐷

𝑇

𝑝
𝜍𝜉

2
, it follows from (20) that

𝛿𝑉
𝑝
(𝑘) − 𝛼𝑉

𝑝
(𝑘) ≤ 𝑤

𝑇
(𝑘) 𝜛

𝑝

󳨐⇒ 𝛿𝑉
𝑝
(𝑘) =

𝑉
𝑝
(𝑘 + 1) − 𝑉

𝑝
(𝑘)

𝑇

≤ 𝛼𝑉
𝑝
(𝑘) + 𝑤

𝑇
(𝑘) 𝜛

𝑝

󳨐⇒ 𝑉
𝑝
(𝑘 + 1) ≤ 𝑉

𝑝
(𝑘) + 𝑇𝛼𝑉

𝑝
(𝑘) + 𝑇𝑤

𝑇
(𝑘) 𝜛

𝑝

󳨐⇒ 𝑉
𝑝
(𝑘 + 1) ≤ (1 + 𝑇𝛼)𝑉

𝑝
(𝑘) + 𝑇𝑤

𝑇
(𝑘) 𝜛

𝑝
.

(21)

Then, along the trajectory of positive system (2), for 𝑘 ∈

[𝑘
𝑖
, 𝑘

𝑖+1
),

𝑉
𝜎(𝑘)

(𝑘) ≤ (1 + 𝑇𝛼)
𝑘−𝑘
𝑖
𝑉

𝜎(𝑘
𝑖
)
(𝑘

𝑖
)

+

𝑘−1

∑

𝑠=𝑘
𝑖

(1 + 𝑇𝛼)
𝑘−𝑠−1

𝑇𝑤
𝑇
(𝑠) 𝜛

𝑝
.

(22)

From (14) and (16), we can obtain

𝑉
𝜎(𝑘
𝑖
)
(𝑘

𝑖
) ≤ 𝜇𝑉

𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
) . (23)

Let𝑀 be the switching number of 𝜎(𝑘) over [0, 𝑇
𝑓
), and

denote 𝑘
1
, 𝑘

2
, 𝑘

3
, . . . , 𝑘

𝑀
as the switching instants over the

interval [0, 𝑇
𝑓
). Then, for 𝑘 ∈ [0, 𝑇

𝑓
), we obtain from (22),

and (23) and the relation𝑁
𝜎(𝑘)
(0, 𝑘) ≤ 𝑘/𝜏

𝑎
that

𝑉 (𝑘) ≤ (1 + 𝑇𝛼)
(𝑘−𝑘
𝑀

)
𝑉

𝜎(𝑘
𝑀

)
(𝑘

𝑀
)

+

𝑘−1

∑

𝑠=𝑘
𝑀

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑘
𝑀

)

≤ 𝜇 (1 + 𝑇𝛼)
(𝑘−𝑘
𝑀

)
𝑉

𝜎(𝑘
−

𝑀
)
(𝑘

−

𝑀
)

+

𝑘−1

∑

𝑠=𝑘
𝑀

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑘
𝑀

)

≤ 𝜇(1 + 𝑇𝛼)
(𝑘−𝑘
𝑀−1

)
𝑉

𝜎(𝑘
𝑀−1

)
(𝑘

𝑀−1
)

+ 𝜇

𝑘
𝑀

−1

∑

𝑠=𝑘
𝑀−1

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑘
𝑀−1

)

+

𝑘−1

∑

𝑠=𝑘
𝑀

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑘
𝑀

)

≤ ⋅ ⋅ ⋅

≤ 𝜇
𝑀
(1 + 𝑇𝛼)

𝑘
𝑉

𝜎(0)
(0)

+ 𝜇
𝑀

𝑘
1
−1

∑

𝑠=0

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(0)

+ 𝜇
𝑀−1

𝑘
2
−1

∑

𝑠=𝑘
1

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑘
1
)

+ ⋅ ⋅ ⋅ +

𝑘−1

∑

𝑠=𝑘
𝑀

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑘
𝑀

)

= 𝜇
𝑀
(1 + 𝑇𝛼)

𝑇
𝑓
𝑉

𝜎(0)
(0)

+

𝑘−1

∑

𝑠=0

𝜇
𝑁
𝜎(𝑘)

(𝑠,𝑘)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
𝑇𝑤

𝑇
(𝑠) 𝜛

𝜎(𝑠)

≤ 𝜇
𝑀
(1 + 𝑇𝛼)

𝑇
𝑓
𝑉

𝜎(0)
(0)

+ 𝜇
𝑀
(1 + 𝑇𝛼)

𝑇
𝑓

𝑘−1

∑

𝑠=0

𝑇𝑤
𝑇
(𝑠) 𝜛

𝜎(𝑠)

≤ 𝜇
𝑀
(1 + 𝑇𝛼)

𝑇
𝑓
(𝑉

𝜎(0)
(0) + 𝑇𝑑𝜛) .

(24)

Considering the definition of 𝑉
𝜎(𝑘)
(𝑘), it yields that

𝑉
𝜎(𝑘)

(𝑘) ≥ 𝜉
1
𝑥

𝑇
(𝑘) 𝜀,

𝑉
𝜎(0)

(0)

≤ 𝜉
2
𝑥

𝑇
(0) 𝜍 + 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑

× [ sup
−𝑑≤𝜃≤−1

{𝑥
𝑇
(𝜃) 𝜍} + (𝑑 − 𝑑) sup

−𝑑+1≤𝜃≤−1

{𝑥
𝑇
(𝜃) 𝜍}]

≤ [𝜉
2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1)] sup

−𝑑≤𝜃≤0

{𝑥
𝑇
(𝜃) 𝜍}

≤ [𝜉
2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1)] .

(25)

Combining (24)-(25), we obtain

𝑥
𝑇
(𝑘) 𝜀 ≤

1

𝜉
1

[𝜇
1/𝜏
𝑎
(1 + 𝑇𝛼)]

𝑇
𝑓

× (𝜉
2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1) + 𝑇𝑑𝜛) .

(26)

Substituting (13) into (26) leads to

𝑥
𝑇
(𝑘) 𝜀 < 1. (27)
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According to Definition 8, we can conclude that the
positive switched delta operator system (2) is finite-time
bounded with respect to (𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘)).

The proof is completed.

Remark 12. It should be noted that there is no requirement of
negative definitiveness on 𝛿𝑉(𝑘), which is different from the
case of classical Lyapunov stability.

Remark 13. When 𝜇 = 1 in (14), which leads to ]
𝑝
= ]

𝑞
, 𝜐

𝑝
=

𝜐
𝑞
, for all 𝑝, 𝑞 ∈ 𝑚, and 𝜏∗

𝑎
= 0 by (13), system (2) possesses

a common co-positive type Lyapunov-Krasovskii functional,
and the switching signal can be arbitrary.

When 𝑤(𝑘) = 0, the result on finite-time stability can be
obtained as follows.

Corollary 14. Consider positive system (2) with 𝑤(𝑘) = 0; for
a given positive constant 𝛼 > 0, a sampling period 𝑇, a time
constant 𝑇

𝑓
, and two vectors 𝜍 ≻ 𝜀 ≻ 0, if there exist positive

vectors ]
𝑝
and 𝜐

𝑝
, for all 𝑝 ∈ 𝑚, and positive constants 𝜉

1
, 𝜉

2
,

and 𝜉
3
, such that (9)–(11) and the following inequality hold:

(1 + 𝑇𝛼)
𝑇
𝑓
(𝜉

2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1)) < 𝜉

1
, (28)

then, the system is finite-time stable with respect to
(𝜍, 𝜀, 𝑇

𝑓
, 𝜎(𝑘)) under the following average dwell time

scheme

𝜏
𝑎
> 𝜏

∗

𝑎

=

𝑇
𝑓
ln 𝜇

ln 𝜉
1
− ln [(1 + 𝑇𝛼)𝑇𝑓 (𝜉

2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1))]

,

(29)

where 𝜇 ≥ 1 satisfies (14).

Remark 15. As stated in [38], the general idea of finite-time
stability concerns the boundedness of the state of a system
over a finite interval for given initial conditions. On the
other hand, the idea of finite-time boundedness concerns the
behaviors of the state in the presence of both given initial
conditions and external disturbances. It is easy to see from
Definitions 6 and 8 that finite-time stability can be regarded
as a special case by setting 𝑑 = 0.

Remark 16. When the sampling period 𝑇 → 0, positive
system (2) becomes a continuous-time positive system as (5).
In this case, Theorem 11 will generate to Theorem 1 proposed
in [38].

Let 𝐴
𝜎(𝑘)

= 𝐴
𝜎(𝑘)

+ 𝐼. When the sampling period 𝑇 = 1,
positive system (2) becomes a discrete-time positive system
as follows:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)
𝑥 (𝑘) + 𝐴

𝑑𝜎(𝑘)
𝑥 (𝑘 − 𝑑

𝑘
)

+ 𝐷
𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐸

𝜎(𝑘)
𝑤 (𝑘) ,

(30)

where 𝐴
𝑝
⪰ 0, 𝐴

𝑑𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

Then we have the following result.

Corollary 17. Consider positive system (30); for a given
positive constant 𝛼 > 0, a time constant 𝑇

𝑓
, and two vectors

𝜍 ≻ 𝜀 ≻ 0, if there exist positive vectors ]
𝑝
and 𝜐

𝑝
, for all

𝑝 ∈ 𝑚, and positive constants 𝜉
1
, 𝜉

2
, and 𝜉

3
, such that (11) and

the following inequalities hold:

𝐴
𝑇

𝑝
]

𝑝
− 𝛼]

𝑝
+ (1 + 𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]

𝑝
− (1 + 𝛼)

𝑑+1
𝜐

𝑝
⪯ 0,

(1 + 𝛼)
𝑇
𝑓
(𝜉

2
+ 𝜉

3
𝑑(1 + 𝛼)

𝑑
(𝑑 − 𝑑 + 1) + 𝑑𝜛) < 𝜉

1
,

(31)

then the system is finite-time bounded with respect to
(𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘)) under the following average dwell time

scheme:

𝜏
𝑎
> 𝜏

∗

𝑎

=

𝑇
𝑓
ln 𝜇

ln 𝜉
1
− ln [(1 + 𝛼)𝑇𝑓 (𝜉

2
+ 𝜉

3
𝑑(1 + 𝛼)

𝑑
(𝑑 − 𝑑 + 1) + 𝑑𝜛)]

,

(32)

where 𝜛 has been defined in Theorem 11 and 𝜇 ≥ 1 satisfies
(14).

3.2. 𝑙
1
-Gain Finite-Time Boundedness Analysis. In this sec-

tion, we will consider the problem of 𝑙
1
-gain finite-time

boundedness for positive system (2).

Theorem 18. Consider positive system (2); for a given positive
constant 𝛼 > 0, a sampling period 𝑇, a given time constant 𝑇

𝑓

and two vectors 𝜍 ≻ 𝜀 ≻ 0, if there exist positive vectors ]
𝑝
and

𝜐
𝑝
, for all 𝑝 ∈ 𝑚, and positive constants 𝛾, 𝜉

1
, 𝜉

2
and 𝜉

3
, such

that (10), (11), and the following inequalities hold:

𝐴
𝑇

𝑝
]

𝑝
− 𝛼]

𝑝
+ (1 + 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
+ 𝑐

𝑝
⪯ 0, (33)

𝐷
𝑇

𝑝
]

𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0, 𝜛 < 𝛾, (34)

(1 + 𝑇𝛼)
𝑇
𝑓
(𝜉

2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1) + 𝑇𝑑𝛾) < 𝜉

1
,

(35)

where 𝜛 has been defined in Theorem 11, ]
𝑝

=

[]
𝑝1
, ]

𝑝2
, . . . , ]

𝑝𝑛
]
𝑇, 𝜐

𝑝
= [𝜐

𝑝1
, 𝜐

𝑝2
, . . . , 𝜐

𝑝𝑛
]
𝑇, 1

𝑤
=

[1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑤

]
𝑇, 𝑐

𝑝
= [‖𝑐

𝑝1
‖, ‖𝑐

𝑝2
‖, . . . , ‖𝑐

𝑝𝑛
‖]

𝑇, 𝑐
𝑝𝑗

represents

the 𝑗th column of matrix 𝐶
𝑝
, 𝑗 ∈ 𝑛 = {1, 2, . . . , 𝑛}.

𝑒
𝑝
= [‖𝑒

𝑝1
‖, ‖𝑒

𝑝2
‖, . . . , ‖𝑒

𝑝𝑤
‖]

𝑇, 𝑒
𝑝𝑗
represents the 𝑗th column

of matrix 𝐸
𝑝
, and 𝑗 ∈ 𝑤 = {1, 2, . . . , 𝑤}, then the system is



Abstract and Applied Analysis 7

𝑙
1
-gain finite-time bounded with respect to (𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘))

under the following average dwell time scheme:

𝜏
𝑎
> 𝜏

∗

𝑎

= max{ (𝑇
𝑓
ln 𝜇)

× ( ln 𝜉
1

− ln [(1 + 𝑇𝛼)
𝑇
𝑓

× (𝜉
2
+ 𝜉

3
𝑇𝑑(1 + 𝑇𝛼)

𝑑
(𝑑 − 𝑑 + 1)

+𝑇𝑑𝛾)])

−1

,

ln 𝜇
ln (1 + 𝑇𝛼)

} ,

(36)

where 𝜇 ≥ 1 satisfies (14).

Proof. Equation (9) can be directly derived from (33). By
Theorem 11, we can easily obtain from (10)-(11) and (33)–
(35) that system (2) is finite-time bounded with respect
to (𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘)). To show the weighted 𝑙

1
-gain perfor-

mance, we choose the piecewise co-positive type Lyapunov-
Krasovskii functional (15). Following the proof line of Theo-
rem 11, we can get from (10), (33), and (34) that

𝛿𝑉
𝑝
(𝑘) − 𝛼𝑉

𝑝
(𝑘) + ‖𝑧 (𝑘)‖ − 𝛾 ‖𝑤 (𝑘)‖ < 0. (37)

Let Λ(𝑠) = 𝑇‖𝑧(𝑠)‖ − 𝑇𝛾‖𝑤(𝑠)‖; then, for 𝑘 ∈ [𝑘
𝑖
, 𝑘

𝑖+1
),

(37) gives rise to

𝑉 (𝑘) ≤ (1 + 𝑇𝛼)
(𝑘−𝑘
𝑖
)
𝑉

𝜎(𝑘
𝑖
)
(𝑘

𝑖
) −

𝑘−1

∑

𝑠=𝑘
𝑖

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

Λ (𝑠) .

(38)

Following the proof line of (24), for any 𝑘 ∈ [0, 𝑇
𝑓
), we can

obtain

𝑉
𝜎(𝑘)

(𝑘) ≤ 𝜇
𝑁
𝜎(𝑘)

(0,𝑘)
(1 + 𝑇𝛼)

𝑘
𝑉

𝜎(0)
(0)

−

𝑘−1

∑

𝑠=0

𝜇
𝑁
𝜎(𝑘)

(𝑠,𝑘)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
Λ (𝑠) .

(39)

Under the zero initial condition, we have from (39) that

0 ≤ −

𝑘−1

∑

𝑠=0

𝜇
𝑁
𝜎(𝑘)

(𝑠,𝑘)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
Λ (𝑠) . (40)

Namely,
𝑘−1

∑

𝑠=0

𝜇
𝑁
𝜎(𝑘)

(𝑠,𝑘)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
‖𝑧 (𝑠)‖

≤ 𝛾

𝑘−1

∑

𝑠=0

𝜇
𝑁
𝜎(𝑘)

(𝑠,𝑘)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
‖𝑤 (𝑠)‖ .

(41)

Multiplying both sides of (41) by 𝜇−𝑁
𝜎(𝑘)

(0,𝑘) yields

𝑘−1

∑

𝑠=0

𝜇
−𝑁
𝜎(𝑘)

(0,𝑠)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
‖𝑧 (𝑠)‖

≤ 𝛾

𝑘−1

∑

𝑠=0

𝜇
−𝑁
𝜎(𝑘)

(0,𝑠)
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
‖𝑤 (𝑠)‖ .

(42)

Noticing that𝑁
𝜎(𝑘)
(0, 𝑠) ≤ 𝑠/𝜏

𝑎
and 𝜏

𝑎
> ln 𝜇/ ln(1 + 𝑇𝛼),

we have

𝜇
−𝑁
𝜎(𝑘)

(0,𝑠)
≥ (1 + 𝑇𝛼)

−𝑠
. (43)

Combining (42) and (43) leads to

𝑘−1

∑

𝑠=0

(1 + 𝑇𝛼)
−𝑠
(1 + 𝑇𝛼)

(𝑘−𝑠−1)
‖𝑧 (𝑠)‖

≤ 𝛾

𝑘−1

∑

𝑠=0

(1 + 𝑇𝛼)
(𝑘−𝑠−1)

‖𝑤 (𝑠)‖ .

(44)

Let 𝑘 − 1 = 𝑇
𝑓
; then multiplying both sides of (44) by (1 +

𝑇𝛼)
−𝑇
𝑓 leads to

𝑇
𝑓

∑

𝑠=0

(1 + 𝑇𝛼)
−2𝑠
‖𝑧 (𝑠)‖ ≤ 𝛾

𝑇
𝑓

∑

𝑠=0

‖𝑤 (𝑠)‖ . (45)

Setting (1 + 𝑇𝛼)2 = 1 + 𝑇𝜌, we can obtain that positive
system (2) is 𝑙

1
-gain finite-time bounded with respect to

(𝜍, 𝜀, 𝑇
𝑓
, 𝑑, 𝜎(𝑘)).

The proof is completed.

3.3. 𝑙
1
-Gain Controller Design. In this section, we are inter-

ested in designing a state feedback controller 𝑢(𝑘) =

𝐾
𝜎(𝑘)
𝑥(𝑘) for positive switched delta operator system (8) such

that the corresponding closed-loop system

𝛿𝑥 (𝑘) = (𝐴
𝜎(𝑘)

+ 𝐵
𝜎(𝑘)
𝐾

𝜎(𝑘)
) 𝑥 (𝑘)

+ 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘) = 𝜑 (𝑘) , 𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)
𝑥 (𝑘) + 𝐸

𝜎(𝑘)
𝑤 (𝑘) ,

(46)

is 𝑙
1
-gain finite-time bounded with respect to

(𝜍, 𝜀, 𝑇
𝑓
, 𝑑, 𝜎(𝑘)). By Lemma 3, in order to guarantee

the positivity of system (46), 𝐼 + 𝑇(𝐴
𝑝
+ 𝐵

𝑝
𝐾

𝑝
) ⪰ 0, for all

𝑝 ∈ 𝑚, should be satisfied.

Theorem 19. Consider positive system (8); for a given positive
constant 𝛼 > 0, a sampling period 𝑇, a given time constant 𝑇

𝑓
,

and two vectors 𝜍 ≻ 𝜀 ≻ 0, if there exist positive vectors ]
𝑝

and 𝜐
𝑝
, for all 𝑝 ∈ 𝑚, and positive constants 𝛾, 𝜉

1
, 𝜉

2
, and 𝜉

3
,

such that (10)-(11), (34)-(35), and the following conditions are
satisfied:

𝐴
𝑇

𝑝
]

𝑝
− 𝛼]

𝑝
+ 𝑔

𝑝
+ (1 + 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
+ 𝑐

𝑝
⪯ 0, (47)

𝐼 + 𝑇 (𝐴
𝑝
+ 𝐵

𝑝
𝐾

𝑝
) ⪰ 0, (48)
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where 𝑔
𝑝
= 𝐾

𝑇

𝑝
𝐵

𝑇

𝑝
]

𝑝
, then the resulting closed-loop system (46)

is 𝑙
1
-gain finite-time bounded with respect to (𝜍, 𝜀, 𝑇

𝑓
, 𝑑, 𝜎(𝑘))

under the average dwell time scheme (36), where 𝜇 ≥ 1 satisfies
(14).

Proof. Denote 𝑔
𝑝
= 𝐾

𝑇

𝑝
𝐵

𝑇

𝑝
]

𝑝
. Following the proof line of

Theorem 18, one can exactly obtainTheorem 19. It is omitted
here.

The proof is completed.

Based onTheorem 19, we are now in a position to present
an effective algorithm for constructing the desired controller.

Algorithm 20.

Step 1. Input the matrices 𝐴
𝑝
, 𝐴

𝑑𝑝
, 𝐵

𝑝
, 𝐶

𝑝
,𝐷

𝑝
, and 𝐸

𝑝
.

Step 2. Choose the parameters 𝛼 > 0 and 𝛾 > 0. By solving
(10)-(11), (34)-(35), and (47), one can obtain the solutions of
]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
, and 𝑔

𝑝
.

Step 3. By the equation 𝑔
𝑝
= 𝐾

𝑇

𝑝
𝐹

𝑇

𝑝
]

𝑝
with the obtained 𝑔

𝑝

and ]
𝑝
, one can get the gain matrices𝐾

𝑝
.

Step 4. Check condition (48) in Theorem 19. If it holds, go to
Step 5; otherwise, adjust the parameter 𝛼 and return to Step
2.

Step 5. Construct the feedback controller 𝑢(𝑘) = 𝐾
𝑝
𝑥(𝑘),

where𝐾
𝑝
are the gain matrices.

4. Numerical Example

Consider positive switched delta operator system (2) consist-
ing of two subsystems described by

subsystem 1:

𝐴
1
= [
−4 1

2 −3.5
] , 𝐴

𝑑1
= [
0.2 0.1

0.1 0.2
] , 𝐵

1
= [
0.2

0.1
] ,

𝐶
1
= [0.1 0.2] , 𝐷

1
= [
0.1

0.2
] , 𝐸

1
= [0.1] ,

(49)

subsystem 2:

𝐴
2
= [
−4.5 2

2 −3
] , 𝐴

𝑑2
= [
0.3 0.2

0.1 0.2
] , 𝐵

2
= [
0.1

0.2
] ,

𝐶
2
= [0.1 0.1] , 𝐷

2
= [
0.2

0.1
] , 𝐸

2
= [0.2] .

(50)

Choosing 𝑇 = 0.2, 𝑇
𝑓
= 15, 𝛼 = 0.4, 𝛾 = 10, 𝑑 = 2.0,

𝑑 = 0, 𝑑 = 0.01, 𝜍 = [3 6]
𝑇, and 𝜀 = [0.01 0.01]

𝑇, then, by

0  5 10 15
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2

3
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ste

m
 m

od
e

k (sample)

Figure 1: Switching signal.
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Figure 2: State response of the closed-loop system.

solving (10)-(11), (34)-(35), and (47) in Theorem 19, we can
obtain the following solutions:

]
1
=[
17.9620

20.8488
] , 𝜐

1
=[

7.3656

11.2371
] , 𝑔

1
=[

6.6854

13.3700
] ,

]
2
= [
17.8294

24.6985
] , 𝜐

2
= [
8.3105

9.9876
] , 𝑔

2
= [
5.4706

7.9281
] ,

(51)

and the state feedback gain matrices can be given by 𝑔
𝑝
=

𝐾
𝑇

𝑝
𝐵

𝑇

𝑝
]

𝑝
as follows:

𝐾
1
= [1.1776 2.3550] , 𝐾

2
= [0.8138 1.1793] . (52)

Obviously, condition (48) is satisfied. From (14) and (36),
we have 𝜇 = 1.1961 and 𝜏∗

𝑎
= 2.3272. Choosing 𝜏

𝑎
=

3, the simulation results are shown in Figures 1–4, where
the initial conditions are 𝑥(0) = [0.1 0.12]

𝑇 and 𝑥(𝜃) =
[0 0]

𝑇, 𝜃 = −2, −1, 0, and the exogenous disturbance input
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Figure 3: State feedback control law 𝑢(𝑘) = 𝐾
𝜎(𝑘)
𝑥(𝑘).
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Figure 4: The evolution of 𝑥𝑇
(𝑘)𝜀.

is 𝑤(𝑘) = 0.001𝑒−0.5𝑘 which satisfies (3). The switching signal
with average dwell time 𝜏

𝑎
= 3 is shown in Figure 1 and the

state response of the closed-loop system is given in Figure 2.
The corresponding control law is given in Figures 3 and 4
plots the evolution of 𝑥𝑇

(𝑘)𝜀.
It is easy to see from Figures 1–4 that 𝑥𝑇

(𝑘)𝜀 < 1, for all
𝑘 ∈ [0, 𝑇

𝑓
), is satisfied for the given time constant 𝑇

𝑓
= 15.

Thus, according to Definition 9, the closed-loop system is 𝑙
1
-

gain finite-time bounded with respect to (𝜍, 𝜀, 𝑇
𝑓
, 𝑑, 𝜎(𝑘)).

5. Conclusions

In this paper, finite-time boundedness and 𝑙
1
-gain finite-time

boundedness for a class of positive switched systems with
time-varying delays via delta operator approach have been
investigated. By constructing a co-positive type Lyapunov-
Krasovskii functional and using the average dwell time
approach, we have proposed sufficient conditions to ensure
the finite-time stability and 𝑙

1
-gain finite-time boundedness

of the considered system. Based on the results obtained, a

state feedback controller and a class of switching signals
with the average dwell time are designed to guarantee that
the corresponding closed-loop system is finite-time stable
with an 𝑙

1
-gain performance. Finally, a numerical example

is presented to demonstrate the feasibility of the obtained
results.
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