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The aim of this work is to introduce an extension for 𝑞-standard notations.The 𝑞-Apostol type polynomials and study some of their
properties. Besides, some relations between the mentioned polynomials and some other known polynomials are obtained.

1. Introduction, Preliminaries, and Definitions

Throughout this research we always apply the following
notations.N indicates the set of natural numbers,N

0
indicates

the set of nonnegative integers, R indicates the set of all real
numbers, andCdenotes the set of complex numbers.We refer
the readers to [1] for all the following 𝑞-standard notations.
The 𝑞-shifted factorial is defined as

(𝑎; 𝑞)
0
= 1,

(𝑎; 𝑞)
𝑛
=

𝑛−1

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎) , 𝑛 ∈ N,

(𝑎; 𝑞)
∞
=

∞

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎) ,

𝑞
 < 1, 𝑎 ∈ C.

(1)

The 𝑞-numbers and 𝑞-factorials are defined by

[𝑎]𝑞 =
1 − 𝑞
𝑎

1 − 𝑞
(𝑞 ̸= 1) ;

[0]! = 1;

[𝑛]𝑞! = [1]𝑞[2]𝑞 ⋅ ⋅ ⋅ [𝑛]𝑞,

𝑛 ∈ N, 𝑎 ∈ C,

(2)

respectively. The 𝑞-polynomial coefficient is defined by

[
𝑛

𝑘
]

𝑞

=
[𝑛]𝑞!

[𝑘]𝑞![𝑛 − 𝑘]𝑞!
. (3)

The 𝑞-analogue of the function (𝑥 + 𝑦)𝑛 is defined by

(𝑥 + 𝑦)
𝑛

𝑞
:=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑞
(1/2)𝑘(𝑘−1)

𝑥
𝑛−𝑘
𝑦
𝑘
, 𝑛 ∈ N

0
. (4)

The 𝑞-binomial formula is known as

(1 − 𝑎)
𝑛

𝑞
=

𝑛−1

∏

𝑗=0

(1 − 𝑞
𝑗
𝑎) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝑞
(1/2)𝑘(𝑘−1)

(−1)
𝑘
𝑎
𝑘
. (5)

In the standard approach to the 𝑞-calculus, two exponential
functions are used:

𝑒
𝑞
(𝑧) =

∞

∑

𝑛=0

𝑧
𝑛

[𝑛]𝑞!
=

∞

∏

𝑗=0

1

(1 − (1 − 𝑞) 𝑞𝑗𝑧)
,

0 <
𝑞
 < 1, |𝑧| <

1
1 − 𝑞



,

(6)

𝐸
𝑞 (𝑧) =

∞

∑

𝑘=0

𝑞
(1/2)𝑘(𝑘−1)

𝑧
𝑘

[𝑘]𝑞!
=

∞

∏

𝑗=0

(1 + (1 − 𝑞) 𝑞
𝑗
𝑧) ,

0 <
𝑞
 < 1, 𝑧 ∈ C.

(7)
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As an immediate result of these two definitions, we have
𝑒
𝑞
(𝑧)𝐸
𝑞
(−𝑧) = 1.

Recently, Luo and Srivastava [2] introduced and studied
the generalized Apostol-Bernoulli polynomials 𝐵𝛼

𝑛
(𝑥; 𝜆) and

the generalized Apostol-Euler polynomials 𝐸𝛼
𝑛
(𝑥; 𝜆). Kurt

[3] gave the generalization of the Bernoulli polynomials
𝐵
[𝑚−1,𝛼]

𝑛
(𝑥) of order 𝛼 and studied their properties. They also

studied these polynomials systematically; see [2, 4–9]. There
are numerous recent investigations on this subject by many
other authors; see [3, 10–20]. More recently, Tremblay et al.
[10] further gave the definition of 𝐵[𝑚−1,𝛼]

𝑛
(𝑥; 𝜆) and studied

their properties. On the other hand, Mahmudov and Kelesh-
teri [21, 22] studied various two dimensional 𝑞-polynomials.
Motivated by these papers, we define generalized Apostol
type 𝑞-polynomials as follows.

Definition 1. Let 𝑞, 𝛼 ∈ C, 𝑚 ∈ N, and 0 < |𝑞| < 1.
The generalized 𝑞-Apostol-Bernoulli numbers 𝐵[𝑚−1,𝛼]

𝑛,𝑞
and

polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) in 𝑥, 𝑦 of order 𝛼 are defined, in
a suitable neighborhood of 𝑡 = 0, by means of the generating
functions:

(
𝑡
𝑚

𝜆𝑒
𝑞
(𝑡) − 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

=

∞

∑

𝑛=0

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(𝜆)

𝑡
𝑛

[𝑛]𝑞!
,

(
𝑡
𝑚

𝜆𝑒
𝑞
(𝑡) − 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!
,

(8)

where 𝑇
𝑚−1,𝑞

(𝑡) = ∑
𝑚−1

𝑘=0
(𝑡
𝑘
/[𝑘]𝑞!).

Definition 2. Let 𝑞, 𝛼 ∈ C, 0 < |𝑞| < 1, and 𝑚 ∈

N. The generalized 𝑞-Apostol-Euler numbers 𝐸[𝑚−1,𝛼]
𝑛,𝑞

and
polynomials 𝐸[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) in 𝑥, 𝑦 of order 𝛼 are defined, in

a suitable neighborhood of 𝑡 = 0, by means of the generating
functions:

(
2
𝑚

𝜆𝑒
𝑞 (𝑡) + 𝑇𝑚−1,𝑞 (𝑡)

)

𝛼

=

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝜆)

𝑡
𝑛

[𝑛]𝑞!
,

(
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!
.

(9)

Definition 3. Let 𝑞, 𝛼 ∈ C, 0 < |𝑞| < 1, and 𝑚 ∈ N.
The generalized 𝑞-Apostol-Genocchi numbers 𝐺[𝑚−1,𝛼]

𝑛,𝑞
and

polynomials𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) in 𝑥, 𝑦 of order 𝛼 are defined, in

a suitable neighborhood of 𝑡 = 0, by means of the generating
functions:

(
2
𝑚
𝑡
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

=

∞

∑

𝑛=0

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(𝜆)

𝑡
𝑛

[𝑛]𝑞!
,

(
2
𝑚
𝑡
𝑚

𝜆𝑒
𝑞 (𝑡) + 𝑇𝑚−1,𝑞 (𝑡)

)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!
.

(10)

Clearly, for𝑚 = 1, one has

𝐵
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) = 𝐵

(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) ,

𝐸
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) = 𝐸

(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) ,

𝐺
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) = 𝐺

(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) .

(11)

For𝑚 = 1 and 𝜆 = 1, one has

𝐵
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 1) = 𝐵

(𝛼)

𝑛,𝑞
(𝑥, 𝑦) ,

𝐸
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 1) = 𝐸

(𝛼)

𝑛,𝑞
(𝑥, 𝑦) ,

𝐺
[0,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 1) = 𝐺

(𝛼)

𝑛,𝑞
(𝑥, 𝑦) .

(12)

For 𝑥 = 𝑦 = 0, one has

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(0, 0; 𝜆) = 𝐵

[𝑚−1,𝛼]

𝑛,𝑞
(𝜆) ,

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(0, 0; 𝜆) = 𝐸

[𝑚−1,𝛼]

𝑛,𝑞
(𝜆) ,

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(0, 0; 𝜆) = 𝐺

[𝑚−1,𝛼]

𝑛,𝑞
(𝜆) .

(13)

2. Properties of the Apostol
Type 𝑞-Polynomials

In this section, we show some basic properties of the general-
ized 𝑞-polynomials. We only prove the facts for one of them.
Obviously, by applying the similar technique, other ones can
be proved.
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Proposition 4. The generalized 𝑞-polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥,

𝑦; 𝜆), 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆), and𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) satisfy the follow-
ing relations:

𝐵
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐵
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆)

× 𝐵
[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆) ,

𝐸
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆)

× 𝐸
[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆) ,

𝐺
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐺
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆)

× 𝐺
[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆) .

(14)

Proof. We only prove the second identity. By using
Definition 2, we have

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼+𝛽]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼+𝛽

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞 (𝑡𝑥)

× (
2
𝑚

𝜆𝑒
𝑞 (𝑡) + 𝑇𝑚−1,𝑞 (𝑡)

)

𝛽

𝐸
𝑞
(𝑡𝑦)

=

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 0; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛽]

𝑛,𝑞
(0, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛽]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!
.

(15)

Comparing the coefficients of the term 𝑡
𝑛
/[𝑛]
𝑞
! in both sides

gives the result.

Corollary 5. The generalized 𝑞-polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆),
𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆), and 𝐺

[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) satisfy the following

relations:

𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐵
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝑥

𝑛−𝑘
,

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝑥

𝑛−𝑘
,

𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐺
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝑥

𝑛−𝑘
.

(16)

Proposition 6. The generalized 𝑞-polynomials 𝐵[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦;

𝜆), 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆), and 𝐺[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) satisfy the following
relations:

𝜆𝐵
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) − 𝐵

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

[𝑘]𝑞𝐵
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐵

[0,−1]

𝑛−𝑘,𝑞
(𝜆) , for 𝑛 ≥ 1,

(17)

𝜆𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) + 𝐸

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

= 2

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐸

[0,−1]

𝑛−𝑘,𝑞
(𝜆) ,

(18)

𝜆𝐺
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) + 𝐺

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

= 2

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

[𝑘]𝑞𝐺
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐺

[0,−1]

𝑛−𝑘,𝑞
(𝜆) , for 𝑛 ≥ 1.

(19)

Proof. We only prove (18). By using Definition 2 and starting
from the left hand side of the relation (18), we have
∞

∑

𝑛=0

(𝜆𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(1, 𝑦; 𝜆) + 𝐸

[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆))

𝑡
𝑛

[𝑛]𝑞!

= 𝜆(
2
𝑚

𝜆𝑒
𝑞 (𝑡) + 𝑇𝑚−1,𝑞 (𝑡)

)

𝛼

𝑒
𝑞
(𝑡) 𝐸
𝑞
(𝑡𝑦)

+ (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦)

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦) (𝜆𝑒

𝑞 (𝑡) + 1)

= 2(
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦) (

2

𝜆𝑒
𝑞
(𝑡) + 1

)

−1

= 2

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

𝐸
[0,−1]

𝑛,𝑞
(𝜆)

𝑡
𝑛

[𝑛]𝑞!
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∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐸

[0,−1]

𝑛−𝑘,𝑞
(𝜆)

𝑡
𝑛

[𝑛]𝑞!
.

(20)

Comparing the coefficients of the term 𝑡
𝑛
/[𝑛]
𝑞
! in both sides

gives the result.

3. 𝑞-Analogue of the Luo-Srivastava
Addition Theorem

In this section, we state and prove a 𝑞-generalization of the
Luo-Srivastava addition theorem.

Theorem 7. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Apostol-Bernoulli polynomials:

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑

𝑗=0

1

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

× (𝜆

𝑛−𝑗+1

∑

𝑘=0

1

[𝑛 + 1]𝑞

[
𝑛 − 𝑗 + 1

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼−1]

𝑘,𝑞
(0, 𝑦; 𝜆)

− 𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞 (𝑥, 0; 𝜆) +

𝜆 − 1

[𝑛 + 1]𝑞

× (
2
𝑚

𝜆 + 1
)

𝛼

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) .

(21)

Proof. We take aid of the following identity to prove (21):

𝜆
𝑡

𝜆𝑒
𝑞 (𝑡) − 1

𝑒
𝑞
(𝑡𝑥) 𝑒
𝑞
(𝑡) −

𝑡

𝜆𝑒
𝑞 (𝑡) − 1

𝑒
𝑞
(𝑡𝑥)

=
𝑡𝑒
𝑞
(𝑡𝑥)

𝜆𝑒
𝑞
(𝑡) − 1

(𝜆𝑒
𝑞 (𝑡) − 1) = 𝑡𝑒𝑞 (𝑡𝑥) .

(22)

Therefore, we can write

𝜆

∞

∑

𝑛=0

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐵
𝑘,𝑞
(𝑥, 0; 𝜆)

𝑡
𝑛

[𝑛]𝑞!
−

∞

∑

𝑛=0

𝐵
𝑛,𝑞
(𝑥, 0; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

𝑥
𝑛 𝑡
𝑛+1

[𝑛 + 1]𝑞!
[𝑛 + 1]𝑞

=

∞

∑

𝑛=0

[𝑛]𝑞𝑥
𝑛−1 𝑡
𝑛

[𝑛]𝑞!
.

(23)

From that we can conclude the following:

𝜆

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐵
𝑘,𝑞
(𝑥, 0; 𝜆) − 𝐵

𝑛,𝑞
(𝑥, 0; 𝜆) = [𝑛]𝑞𝑥

𝑛−1
. (24)

That is,

𝑥
𝑛
=

1

[𝑛 + 1]𝑞

(𝜆

𝑛+1

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

𝐵
𝑘,𝑞
(𝑥, 0; 𝜆) − 𝐵

𝑛+1,𝑞
(𝑥, 0; 𝜆)) .

(25)

Substituting (25) into the right hand side of (16), we obtain

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

1

[𝑛 − 𝑘 + 1]𝑞

× (𝜆

𝑛−𝑘+1

∑

𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

−𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆))

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

1

[𝑛 − 𝑘 + 1]𝑞

× (𝜆

𝑛−𝑘

∑

𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

+ (𝜆 − 1) 𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆))

=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆

[𝑛 − 𝑘 + 1]𝑞

×

𝑛−𝑘

∑

𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

+

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆 − 1

[𝑛 − 𝑘 + 1]𝑞

× 𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) := 𝐼
1
+ 𝐼
2
.

(26)

Thus, from one hand, we can write

𝐼
1
=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆

[𝑛 − 𝑘 + 1]𝑞

×

𝑛−𝑘

∑

𝑗=0

[
𝑛 − 𝑘 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

=

𝑛

∑

𝑗=0

𝑛−𝑗

∑

𝑘=0

𝜆

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑛 − 𝑘 + 1
]

𝑞

[
𝑛 − 𝑘 + 1

𝑗
]

𝑞

× 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐵

𝑗,𝑞 (𝑥, 0; 𝜆) .

(27)

As we know that

[
𝑚

𝑙
]

𝑞

[
𝑙

𝑛
]

𝑞

= [
𝑚

𝑛
]

𝑞

[
𝑚 − 𝑛

𝑚 − 𝑙
]

𝑞

, for 𝑚 ≥ 𝑙 ≥ 𝑛, (28)
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we can continue as

𝐼
1
=

𝑛

∑

𝑗=0

𝑛−𝑗

∑

𝑘=0

𝜆

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

[
𝑛 − 𝑗 + 1

𝑘
]

𝑞

× 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) 𝐵

𝑗,𝑞
(𝑥, 0; 𝜆)

=

𝑛

∑

𝑗=0

𝜆

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

×

𝑛−𝑗

∑

𝑘=0

[
𝑛 − 𝑗 + 1

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑

𝑗=0

𝜆

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

× (𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)) .

(29)

On the other hand, for 𝐼
2
, we can write

𝐼
2
=

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

𝜆 − 1

[𝑛 − 𝑘 + 1]𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆)

=

𝑛

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

=

𝑛+1

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑛−𝑘+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

−
𝜆 − 1

[𝑛 + 1]𝑞

𝐵
0,𝑞 (𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆) ,

(30)

and, as 𝐵
0,𝑞
(𝑥, 0; 𝜆) = 0, we have

𝐼
2
=

𝑛+1

∑

𝑘=0

[
𝑛 + 1

𝑘
]

𝑞

𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑛−𝑘+1,𝑞 (𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

=

𝑛+1

∑

𝑗=0

[
𝑛 + 1

𝑗
]

𝑞

𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑

𝑗=0

[
𝑛 + 1

𝑗
]

𝑞

𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

+
𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆) .

(31)

Adding 𝐼
2
to 𝐼
1
we obtain

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

= 𝐼
1
+ 𝐼
2

=

𝑛

∑

𝑗=0

𝜆

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

𝐵
𝑗,𝑞
(𝑥, 0; 𝜆)

× (𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

+

𝑛

∑

𝑗=0

[
𝑛 + 1

𝑗
]

𝑞

𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑗,𝑞 (𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

+
𝜆 − 1

[𝑛 + 1]𝑞

𝐵
𝑛+1,𝑞

(𝑥, 0; 𝜆) 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆) .

(32)

Consequently,

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

=

𝑛

∑

𝑗=0

1

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

× (𝜆𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝜆𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

+ (𝜆 − 1) 𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞 (𝑥, 0; 𝜆) +

𝜆 − 1

[𝑛 + 1]𝑞

× 𝐵
𝑛+1,𝑞 (𝑥, 0; 𝜆) 𝐸

[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑

𝑗=0

1

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

× (𝜆𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(1, 𝑦; 𝜆) − 𝐸

[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞 (𝑥, 0; 𝜆) +

(𝜆 − 1)

[𝑛 + 1]𝑞

𝐵
𝑛+1,𝑞 (𝑥, 0; 𝜆)

× 𝐸
[𝑚−1,𝛼]

0,𝑞
(0, 𝑦; 𝜆)

=

𝑛

∑

𝑗=0

1

[𝑛 + 1]𝑞

[
𝑛 + 1

𝑗
]

𝑞

× (𝜆

𝑛−𝑗+1

∑

𝑘=0

[
𝑛 − 𝑗 + 1

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆)

−𝐸
[𝑚−1,𝛼]

𝑛−𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑗,𝑞 (𝑥, 0; 𝜆) +

(𝜆 − 1)

[𝑛 + 1]𝑞

(
2
𝑚

𝜆 + 1
)

𝛼

𝐵
𝑛+1,𝑞 (𝑥, 0; 𝜆) .

(33)
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Taking 𝑚 = 1 in Theorem 7, we get a 𝑞-generalization of
the Luo-Srivastava addition theorem [2].

Corollary 8. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Apostol-Bernoulli polynomials:

𝐸
(𝛼)

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑

𝑗=0

2

[𝑗 + 1]
𝑞

[
𝑛

𝑗
]

𝑞

× (𝐸
(𝛼)

𝑗+1,𝑞
(0, 𝑦; 𝜆) − 𝐸

(𝛼)

𝑗+1,𝑞
(0, 𝑦; 𝜆))

× 𝐵
𝑛−𝑗,𝑞

(𝑥, 0; 𝜆) +
𝜆 − 1

[𝑛 + 1]𝑞

(
2

𝜆 + 1
)

𝛼

× 𝐵
𝑛+1,𝑞 (𝑥, 0; 𝜆) .

(34)

Letting 𝑞 ↑ 1, we get the Luo-Srivastava addition theorem
(see [12]):

𝐸
(𝛼)

𝑛
(𝑥 + 𝑦; 𝜆) =

𝑛

∑

𝑗=0

2

𝑗 + 1
(
𝑛

𝑗
)

× (𝐸
(𝛼)

𝑗+1
(𝑦; 𝜆) − 𝐸

(𝛼)

𝑗+1
(𝑦; 𝜆))

× 𝐵
𝑛−𝑗,𝑞 (𝑥; 𝜆) +

𝜆 − 1

𝑛 + 1
(

2

𝜆 + 1
)

𝛼

× 𝐵
𝑛+1
(𝑥; 𝜆) .

(35)

Next theorem gives relationship between 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆)

and 𝐺
𝑛,𝑞
(𝑥, 0).

Theorem 9. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Apostol-Genocchi polynomials:

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

1

2

𝑛

∑

𝑘=0

1

[𝑘 + 1]𝑞

× (𝜆

𝑛

∑

𝑗=𝑘

[
𝑛

𝑗
]

𝑞

[
𝑗

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑛−𝑗,𝑞
(0, 𝑦; 𝜆)

+

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑛−𝑘,𝑞
(0, 𝑦; 𝜆))

× 𝐺
𝑘+1,𝑞 (𝑥, 0) .

(36)

Proof. The proof follows from the following identity:

(
2
𝑚

𝜆𝑒
𝑞 (𝑡) + 𝑇𝑚−1,𝑞 (𝑡)

)

𝛼

𝑒
𝑞
(𝑡𝑥) 𝐸

𝑞
(𝑡𝑦)

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦)

2𝑡

𝑒
𝑞
(𝑡) + 1

× 𝑒
𝑞 (𝑡𝑥)

𝑒
𝑞 (𝑡) + 1

2𝑡
.

(37)

Theorem 10. The following relation holds between generalized
𝑞-Apostol-Euler and 𝑞-Stirling polynomials 𝑆

𝑞
(𝑖, 𝑗) of the sec-

ond kind:

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑

𝑘=0

𝑛

∑

𝑗=𝑘

[
𝑛

𝑛 − 𝑗
]

𝑞

× 𝐸
[𝑚−1,𝛼]

𝑛−𝑗,𝑞
(0, 𝑦; 𝜆) 𝑆

𝑞
(𝑗, 𝑘) 𝑥

𝑘
(𝑥) .

(38)

Proof. The 𝑞-Stirling polynomials 𝑆
𝑞
(𝑛, 𝑘) of the second kind

are defined by means of the following generating function:

𝑥
𝑛
=

𝑛

∑

𝑘=0

𝑆
𝑞 (𝑛, 𝑘) 𝑥𝑘 (𝑥) , (39)

where 𝑥
𝑘
(𝑥) = 𝑥(𝑥− [1]

𝑞
)(𝑥− [2]

𝑞
) ⋅ ⋅ ⋅ (𝑥− [𝑘−1]

𝑞
); see [23].

Replacing identity (39) in the right hand side of (16), we have

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

𝑛

∑

𝑘=0

[
𝑛

𝑘
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑘,𝑞
(0, 𝑦; 𝜆)

×

𝑛−𝑘

∑

𝑘=0

𝑆
𝑞
(𝑛 − 𝑘, 𝑘) 𝑥

𝑘
(𝑥)

=

𝑛

∑

𝑘=0

𝑛

∑

𝑗=𝑘

[
𝑛

𝑛 − 𝑗
]

𝑞

× 𝐸
[𝑚−1,𝛼]

𝑛−𝑗,𝑞
(0, 𝑦; 𝜆) 𝑆

𝑞
(𝑗, 𝑘) 𝑥

𝑘
(𝑥) .

(40)

Theorem 11. The relationship

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆) =

[𝑛/2]

∑

𝑘=0

𝑛−2𝑘

∑

𝑗=0

[
𝑛

𝑘
]

𝑞

[
𝑛 − 2𝑘

𝑗
]

𝑞

[𝑘]𝑞!

[2]
𝑛

𝑞
[𝑘]𝑞2 !

× 𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−2𝑘−𝑗,𝑞 (𝑥)

(41)

holds between the polynomials 𝐸[𝑚−1,𝛼]
𝑛,𝑞

(𝑥, 𝑦; 𝜆) and the 𝑞-
Hermite polynomials defined by (see [24])

𝑒
𝑞 (𝑡𝑥) 𝐸𝑞2 (−

𝑡
2

[2]𝑞

) =

∞

∑

𝑛=0

𝐻
𝑛,𝑞 (𝑥)

𝑡
𝑛

[𝑛]𝑞!
. (42)
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Proof. Indeed,

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(𝑥, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝑒
𝑞 (𝑡𝑥) 𝐸𝑞 (𝑡𝑦)

= (
2
𝑚

𝜆𝑒
𝑞
(𝑡) + 𝑇

𝑚−1,𝑞
(𝑡)
)

𝛼

𝐸
𝑞
(𝑡𝑦) 𝑒
𝑞
(𝑡𝑥)

× 𝐸
𝑞
2 (−

𝑡
2

[2]𝑞

) 𝑒
𝑞
2 (

𝑡
2

[2]𝑞

)

=

∞

∑

𝑛=0

𝐸
[𝑚−1,𝛼]

𝑛,𝑞
(0, 𝑦; 𝜆)

𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

𝐻
𝑛,𝑞 (𝑥)

𝑡
𝑛

[𝑛]𝑞!

∞

∑

𝑛=0

𝑡
2𝑛

[2]
𝑛

𝑞
[𝑛]𝑞2 !

=

∞

∑

𝑛=0

𝑛

∑

𝑗=0

[
𝑛

𝑗
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−𝑗,𝑞 (𝑥)
𝑡
𝑛

[𝑛]𝑞!

×

∞

∑

𝑛=0

𝑡
2𝑛

[2]
𝑛

𝑞
[𝑛]𝑞2 !

=

∞

∑

𝑛=0

[𝑛/2]

∑

𝑘=0

[𝑛]𝑞!

[2]
𝑛

𝑞
[𝑘]𝑞2 ![𝑛 − 2𝑘]𝑞!

×

𝑛−2𝑘

∑

𝑗=0

[
𝑛 − 2𝑘

𝑗
]

𝑞

𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−2𝑘−𝑗,𝑞
(𝑥)

𝑡
𝑛

[𝑛]𝑞!

=

∞

∑

𝑛=0

[𝑛/2]

∑

𝑘=0

𝑛−2𝑘

∑

𝑗=0

[
𝑛

𝑘
]

𝑞

[
𝑛 − 2𝑘

𝑗
]

𝑞

[𝑘]𝑞!

[2]
𝑛

𝑞
[𝑘]𝑞2 !

× 𝐸
[𝑚−1,𝛼]

𝑗,𝑞
(0, 𝑦; 𝜆)𝐻

𝑛−2𝑘−𝑗,𝑞
(𝑥)

𝑡
𝑛

[𝑛]𝑞!
.

(43)
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