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Maddox defined the space £(p) of the sequences x = (x;) such that Y, |x|?* < co, in Maddox, 1967. In the present paper, the
Nérlund sequence space N*(p) of nonabsolute type is introduced and proved that the spaces N*(p) and €(p) are linearly isomorphic.
Besides this, the alpha-, beta-, and gamma-duals of the space N*(p) are computed and the basis of the space N'(p) is constructed.
The classes (N*(p) : u) and (4 : N*(p)) of infinite matrices are characterized. Finally, some geometric properties of the space N*(p)

are investigated.

1. Introduction

We denote the space of all sequences of complex entries by
w. Any vector subspace of w is called a sequence space. We
write £, ¢, and ¢, for the spaces of all bounded, convergent,
and null sequences, respectively. Also by bs, cs, £}, and £,,, we
denote the spaces of all bounded, convergent, absolutely and
p-absolutely convergent series, respectively.

A linear topological space X over the real field R is said
to be a paranormed space if there is a subadditive function
g+ X — Rsuch that g(0) = 0, g(x) = g(—x) and
scalar multiplication is continuous; that is, |¢, — «| — 0
and g(x, — x) — 0 imply g(a,x,, — ax) — 0 for all
o’s in R and all x’s in X, where 0 is the zero vector in the
linear space X. Assume here and after that (p,) is a bounded
sequence of strictly positive real numbers with sup p, = H
and M = max{1, H}. Then, the linear spaces ¢(p) and €. (p)
were defined by Maddox in [1] (see also [2, 3]) as follows:

¢(p) = <|x= (%) €w: Z|xk|pk < oo]»

with 0 < p, < H < o0,

b (p)= = () €@ supbe” < oo}

keN
@
which are the complete spaces paranormed by
1/M
gl (x) = (z'xklpk> 5
g 2)

g (x) = sup|xk|P"/M iff inf p > 0,
keN keN

respectively, where N = {0,1,2,...}. For simplicity in
notation, here and in what follows, the summation without
limits runs from 0 to co. We assume throughout that p; ' +

(p,'c)_1 = 1, provided 1 < inf p, < H < 00, and denote the
collection of all finite subsets of N by #.
For the sequence spaces A and y, define the set S(A, u) by

Shu)={z=(z) e w:xz=(x32,) euV¥x e A}. (3)
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With the notation of (3), the alpha-, beta-, and gamma-duals
of a sequence space A, which are, respectively, denoted by A%,
AP, and A7, are defined by

M=s (Ascs),

A =8(A8), A=S(A,bs). (4)

If a sequence space A paranormed by g contains a
sequence (b,) with the property that, for every x € A, there
is a unique sequence of scalars (e,,) such that

nangog <x - Zockbk> =0, (5)
k=0

then (b,) is called a Schauder basis (or briefly basis) for A.
The series Y, a; b, which has the sum x is then called the
expansion of x with respect to (b,) and writtenas x = ) o by.

Let A, y be any two sequence spaces, and let A = (a,; ) be
an infinite matrix of complex numbers a,,, where k,n € N.
Then, we say that A defines a matrix transformation from A
into y and we denote it by writing A : A — pu, if for every
sequence x = (x;) € A, the sequence Ax = {(Ax),}, the A-
transform of x;, is in y, where

(Ax), = %ankxk for each n e N. ©6)

By (A : p), we denote the class of all matrices A such that
A: ) — p. Thus, A € (A: p)if and only if the series on the
right side of (6) converges for eachn € Nand every x € A, and
we have Ax € pforall x € A. Also, we write A, = (4, )en
for the sequence in the nth row of A.

Now, following Peyerimhoft [4, pp. 17-19] and Mears [5],
we give short knowledge on the Noérlund means. Let (£;) be a
sequence of nonnegative real numbers with ¢, > 0 and write
T, = Yi_otx for all n € N. Then, the Norlund means with
respect to the sequence t = (t;) is defined by the matrix N* =
(a;,) which is given by

t

. nk 0<k<n,

A = Tn (7)
0, k>n

for all k,n € N. It is known that the Nérlund matrix N* is a
Toeplitz matrix if and only if t,/T,, — 0,asn — 00, and is
reduced in the case t = e = (1,1,1,...) to the matrix C, of
arithmetic means. Additionally, for t, = A" foralln € N,
the method N' is reduced to the Cesaro method C, of order
r > -1, where

{(r+1)(r+2)---(r+n) nel23

Al =

n

n! (8)
1, n=0.

Lett, = D, = 1 and define D, forn € {1,2,3,...} by

tf 1 0 0 -0
t, t, 1 0 -0
ty t, t; 1 -0

D" - . . . . . .. (9)
tn—l tn—Z tn—3 tn—4 1
by tan tao s © b
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The inverse matrix U’ = (u;k) of the matrix N* = (aflk) is
given by Mears in [5] as follows:

(10)

- 0, k>n

. [(-1)"*D,,T,, 0<ks<n,
unk -

for all k,n € N. Also, one can derive by straightforward
calculation for all k € {1,2, 3, ...} that

k-1
Dy = Y (-1)'t;D; + (-1 'ty )
j=1

The rest of this paper is organized as follows.

In Section2, the complete paranormed Norlund
sequence space N*( p) is introduced and proved that N 0 p)
is linearly isomorphic to the space £(p) and the basis for the
space N*(p) is determined. Section 3 is devoted to the alpha-,
beta-, and gamma-duals of the space N*(p). In Section 4, the
classes (N'( p) i wand (4 : N( p)) of infinite matrices are
characterized, where ¢ denotes any given sequence space. In
Section 5, the rotundity of the space N*(p) is characterized
and some results related to this concept are given. In the
final section of the paper, the significance of the space is
mentioned and further suggestions are recorded.

2. The Norlund Sequence Space N'(p) of
Nonabsolute Type

In this section, we define the Nérlund sequence space N*(p)
and prove that N*( p) is linearly isomorphic to the space €(p),
where 0 < p, < H < oo for all k € N. Finally, we give the
basis for the space N*(p).

Let A be any sequence space. Then, the matrix domain A 4
of an infinite matrix A in A is defined by

Ay={x=(x) €cw:Ax € A}. (12)

In [6], Choudhary and Mishra defined the sequence space

£(p) which consists of all sequences such that B-transforms
of them are in £(p), where B = (b, ) is defined by

1, 0<k<
‘= { ! (13)

b
0, k>n.

n

Bagar and Altay [7] examined the space bs(p) which was
formerly defined by Basar [8] as the set of all series whose
sequences of partial sums are in the space £, (p). With the
notation of (12), the spaces £(p) and bs(p) can be redefined

by

e(p)=[e(plp  bs(p)=[lu (P (4

In [9], Bagar and Altay defined the sequence space r(p)
which consists of all sequences such that R?-transforms of
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them are in €(p), where R? = (er) is the matrix of Riesz mean;
that is,

)= {7 =€) (15)

In [10], Wang defined the sequence space X, ;) consisting

of all sequences whose N’-transforms are in ¢, which is a
Banach space with the norm

Il = <
k

Now, we introduce the Nérlund sequence space N'(p)

defined by
k Pk
N’ = =
(P) {x ('xk ; 2 k—j ] } (17)

with 0 < p, < H < oo.

Py Up
> with 1 < p <oco. (16)

1 k
T 2 b
k j=0

It is natural that the space N*( p) can also be defined with the
notation of (12) that Nt(p) = {e(p)}y-

Define the sequence y = (y,) by the N*-transform of a
sequence x = (x;); that is,

k
1
yk = T—Ztk_jx]- Vk € N (18)
kj:o

Theorem 1. N'(p) is a complete linear metric space para-
normed by g defined by

g(x)=<
k

Proof. Since this can be shown by a routine verification, we
omit the detail. O

e\ VM
> with 0 < p, < H < c0.

1 k
T Db
k j=0

(19)

Remark 2. One can easily see that the absolute property does
not hold on the space Nt(p); that is, g(x) # g(Ix|) for at least
one sequence in the space N'(p), and this says that N*(p) is
a sequence space of nonabsolute type, where |x| = (|x;|).

Theorem 3. The Norlund sequence space N*(p) of nonabsolute
type is linearly isomorphic to the space €(p), where 0 < p, <
H < oo forallk € N.

Proof. To prove the theorem, we should show the existence
of a linear bijection between the spaces N*(p) and €(p) for
0 < p < H < oco. Consider the transformation T defined,
with the notation of (18), from N*(p) to €(p) by x +— y =
Tx = N'x. The linearity of T is clear. Further, it is trivial that
x = 0 whenever Tx = 0 and hence T is injective.

Let us take any y € €(p) and define the sequence x = (x;)
by

x; = Z( 1D, Ty, VkeN. (20)

Therefore, we see from (19) that

X Pr 1/M
1
g(x) = T_ztk-jxj
k| "k j=0
1 & ] iy
=| 2|5 2ty 2EDTDLT
k| "kj=0 i=0

1/M
_ (;ykv’k) @) <o

This means that x € N*(p). Consequently, T is surjective and
is paranorm preserving. Hence, T is linear bijection and this
says us that the spaces N*(p) and €(p) are linearly isomorphic.
Therefore, the proof is completed. O

e\ UM
Vi ) (21)

We determine the basis for the paranormed space N*(p).

Theorem 4. Define the sequence b® (t) = {br(lk)(t)}nGN of the
elements of the space N'(p) for every fixed k € N by
-)"*D, _ T,, 0<k<n
b(k) £ = ( n—k*Lk> d 22
n () 0, k> n. (22)

Then, the sequence {b(k)(t)}kEN is a basis for the space N 0 p)
and any x € N'(p) has a unique representation of the form

x= YA b0 1), (23)
k

where Ai(t) = (N*x), forallk e Nand 0 < p, < H < oo.
Proof. It is clear that R @)} ¢ N'(p), since

€(p)

where e is the sequence whose only nonzero term is a 1 in
the kth place for each k € Nand 0 < p, < H < oo.

Let x € N*(p) be given. For every nonnegative integer 1,
we put

N'B® (1) = ¥ Vk € N, (24)

x™ = ixk ) b® (1). (25)
k=0

Then, we obtain by applying N " to (25) with (24) that

m m

N =34 ) N'B™ (1) Z( x) "

k=0 k=0

{Nt (x - x[m])}i = {(()}\]tx)i’

(26)
0<i<m,
i>m,



where i,m € N. Given € > 0, then there is an integer m,, such
that

[ 5 () " ] T @)

i=m+1

for all (m + 1) > m,. Hence,

g[N*(x =)

S ear]”

i=m+1

(28)

IN

Sl <

i=my

for all (m + 1) > m, which proves that x € N'(p) is
represented as in (23).

Let us show the uniqueness of the representation for x €
N'(p) given by (23). Suppose, on the contrary, that there
exists a representation x = ¥, (£)b%(¢). Since the linear
transformation T, from N*(p) to £(p), used in the proof of
Theorem 3 is continuous, we have at this stage that

(N'%) =Y @ {NP 0O} = Yu@el = p, )
k k
(29)

for all n € N which contradicts the fact that (Nx), = A,(t)
for all n € N. Hence, the representation (23) of x € N*(p) is
unique. This completes the proof. O

3. The Alpha-, Beta-, and Gamma-Duals of
the Space N'( p)

In this section, we determine the alpha-, beta-, and gamma-
duals of the space N*(p). We will quote some lemmas which
are needed in proving our theorems.

Lemma 5 (see [11], Theorem 5.1.0). The following statements
hold.

(i) Let 1 < pp < H < oo forevery k € N. Then, A =
(a) € (6(p) : €)) if and only if there exists an integer
B > 1 such that

i
< 0. (30)

sup Z

NeF |

Z ankB_l

neN

(ii) Let 0 < p < 1 for every k € N. Then, A = (a,) €
(e(p) : &,) if and only if

Px
Z a,;| < oo. (31)

neN

sup sup
NeF keN
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Lemma 6 (see [12], Theorem 1). The following statements
hold.

(i) Let 1 < p < H < oo for every k € N. Then, A =
(a) € (€(p) : €,) if and only if there exists an integer
B > 1 such that

supZ'ankB_lr;c < 00. (32)
neN"

(ii) Let 0 < p < 1 for every k € N. Then, A = (a,;) €
(e(p) : €.,) if and only if

sup |ank|p"

< 0.
n,keN (33)

Lemma 7 (see [12], Theorem 1). Let 0 < p, < H < oo for
every k € N. Then, A = (a,) € (€(p) : c) if and only if (32),
(33) hold and there is ;. € C such that a, — [ for each
keN.

Theorem 8. Let 1 < p, < H < oo for every k € N. Define the
sets Dy(p), D,(p), and D;(p) as follows:

Ddﬂ1={ﬂ=@ﬂew

ssup Y| Y (-1)"*a,D,  T;B™!

NeF  |neN

P
<ot

no Pk
Z(—l)l_kaiDi_kaB_l
i=k

neN"

D,(p): = <|a:(ak) Ew:supz

< 00, {(anTnB'l)p’,‘} € EOO} ,

Dy (p) =cs.
(34)

Then, the following statements hold:
(@) {N'(p)}" = Dy (p);
(i) {N*(p)} = Dy(p);

(ifi) {N(p)}’ = D,(p) n Dy(p).

Proof. (i) Let us take a = (a;) € w. We easily derive with (20)
that

Xy = z(_l)nikanDn—kayk = (Cy)n Vn eN, (35)
k=0
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where C = (¢, is defined by

36
0, k>n (36)

~ {(-1)“"‘%1)”,@, 0<k<n,
nk —
forall k,n € N. Thus, we observe by combining (35) with Part
(i) of Lemma 5 that ax = (a,x,) € ¢, whenever x = (x;) €
N'(p) if and only if Cy € €, whenever y = (y;) € €(p). This
gives the result that {N'(p)}" = D, (p).
(ii) Consider the equality

n-1 n
Zakxk = Z Z( 1) aD, Ly +a,T,y,
k=0 i=k (37)
= (Ey)n VneN,
where E = (e,;) is defined by
Y () aD, T, 0<ks<n-1,
i=k
e, = (38)
™ a,T,, k=n,
0) k >n

for all k,n € N. Thus, we deduce from Part (i) of Lemma 6
with (37) that ax = (a,x,) € bs whenever x = (x;) € Nt(p)
ifand only if Ey € €. whenever y = () € €(p). Therefore,
we obtain from Part (i) of Lemma 6 that {N*( p)}y =D, (p).
(iii) We see from Lemma 7 that ax = (a,x,) € cs
whenever x = (x;) € N'(p) if and only if Ey € ¢ whenever
y = () € €(p). Therefore, we derive from Lemma 7 that

(N'(p)} = Dy(p) N D3(p).
Therefore, the proof is completed. O

Theorem 9. Let 0 < p; <
D,(p) and Ds(p) by

1 for every k € N. Define the sets
D,(p): = {a= (@) € @

Y (-1)"*a,D, T,

neN

: supsup
NeF keN

Px
<oo},

Pr

Y (1 aD. T,

nkeN|i=k

D;(p): = {a:(ak)ew: sup

< 00, {(anTn)Pk} € 600} .
(39)
Then, the following statements hold:
() {N*(p)}* = Dy(p)s
(if) {N*(p)}" = Ds(p);
(if) (N'(p))” = Ds(p) N Ds(p).

Proof. This is easily obtained by proceeding as in the proof
of Theorem 8 by using Lemma 7 and the second parts of
Lemmas 5 and 6 instead of the first parts. So, we omit the
detail. O

4. Some Matrix Transformations Related to
the Sequence Space N'(p)

In the present section, we characterize the matrix transfor-
mations from the space N*(p) into any given sequence space
p and from a given sequence space y into the space N*(p).
Since p, = pfor any triangle A and any sequence space y, it is
trivial that the equivalence “x € p, ifand onlyif y = Ax € y”
holds.

Now, we can give the following theorem.

Theorem 10. Suppose that the elements of the infinite matrices
A = (ay) and F = (f,;) are connected with the relation

ik Tk (40)

fue= 2. (-1))*D
=k
for all k,n € N and y is any given sequence space. Then, A €

(N*(p) : w) ifand only if A, € {Nt(p)}ﬁfor alln € N and
Fe(e(p): .

Proof. Let y be any given sequence space. Suppose that (40)
holds between the elements of the matrices A = (a,;) and
F = (f,x), and take into account that the spaces N*(p) and
£(p) are linearly isomorphic.

Let A € (Nt(p) : ) and take any y € €(p). Then

( ) an] ]k - ZZ( 1)1 JD, ]amT] :}k = 4.

j=ki=j
(41)

That is, FN' exists and A, € {N*( p)}'B which yields that F,, €
¢, for each n € N. Hence, Fy exists and thus

ZMn—ZZ(Uk

k i=k

k
1
X T—Ztk_jxj = Zankxk
k j=0 k

Ax, which leads us to the

ki Ty

(42)

for all n € N. So, we have that Fy =
consequence F € (€(p) : p).

Conversely, let A, € {Nt(p)}ﬁ for each n € N and
F € ((p) : p), and take x = (x;) € N*(p). Then, Ax exists.
Therefore, we obtain from the equality

Za KXk = zank [Z( DDy [Ty,

= ankyk VneN
k

(43)
that Ax = Fy and this shows that A € (N‘(p) : w). This
completes the proof. O



By changing the roles of the spaces N'(p) with u in
Theorem 10, we have the following.

Theorem 11. Suppose that y is any given sequence space and
the elements of the infinite matrices A = (a,;) and G = (g,
are connected with the relation g, = Z;':O(tn_j/Tn)ajk for all

k,neN. Then, A € (u: Nt(p)) ifand only if G € (p : €(p)).

Proof. Let x = (x;) € u and consider the following equality:

n tn—j m m
Z T Zajkxk = Zgnkxk Vn e N. (44)
j=0 “n k=0 k=0

Then, by lettingm — oo in (44), we have {Nt(Ax)}n = (Gx),
for all n € N. Since Ax € N'(p), N'(Ax) = Gx € £(p). This
completes the proof. O

5. The Rotundity of the Space N'(p)

In functional analysis, the rotundity of Banach spaces is
one of the most important geometric properties. For details,
the reader may refer to [13-15]. In this section, we give the
necessary and sufficient condition in order to the space N*(p)
be rotund and present some results related to this concept.

Definition 12. Let S(X) be the unit sphere of a Banach space
X. Then, a point x € S(X) is called an extreme point if 2x =
y + z implies y = z for every y,z € S(X). A Banach space X
is said to be rotund (strictly convex) if every point of S(X) is
an extreme point.

Definition 13. A Banach space X is said to have Kadec-
Klee property (or property (H)) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Definition 14. A Banach space X is said to have

(i) the Opial property if every sequence (x,) weakly
convergent to x, € X satisfies

liminf [, - xol < liminf e, + ] (a5)
for every x € X with x # x;
(ii) the uniform Opial property if for each € > 0, there
exists an + > 0 such that

1+ 7 < liminf |x, + x| (46)

for each x € X with ||x|| > € and each sequence (x,,)

in X such that x,, — 0 and liminf,  ||x,[ > 1.

n— 00

Definition 15. Let X be a real vector space. A functional o :
X — [0,00) is called a modular if

(i) o(x) = 0 ifand only if x = 6;

(ii) o(ax) = o(x) for all scalars o with |«| = 1;

(iil) o(ax+ By) < o(x)+o(y) forallx, y € Xand o, 5> 0
witha+ f=1;
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(iv) the modular o is called convex if o (ax+fy) < ao(x)+
Bo(y)forallx,y € Xand o, f > Owitha + S =1.

A modular o on X is called

(a) right continuous iflim,_, ;+o(ax) = o(x) for all

x € Xg;
(b) left continuous if lim, _, -o(ax) = o(x) for all
x€Xg;
(c) continuous if it is both right and left continuous,
where
XU:{xeX: lim a(ocx):O}. (47)
a— 0"
We  define o, on Nt(p) by ap(x) =

S l(/T) Yot ™ 1 py = 1forall k € Ny = {1,2,...},
by the convexity of the function ¢ ~ [¢|F* for each k € N, o)

is a convex modular on N*(p). We consider N*(p) equipped
with Luxemburg norm given by

||x||=inf{oc>0:ap<g>sl}. (48)

N'(p) is a Banach space with this norm. This can be shown
by the similar way used in the proof of Theorem 7 in [16].

We establish some basic properties for the modular o,

Proposition 16. The modular o, on N !(p) satisfies the follow-
ing properties with p, > 1 for all k € N.

(i) If 0 < a < 1, then ocMop(x/oc) < ap(x) and op((xx) <
(xop(x).
(ii) If ¢ > 1, then ap(x) < (xMap(x/(x).
(iil) Ifa > 1, then ao,(x/a) < 0,(x).

(iv) The modular 0, is continuous.

Proof. (i) Let 0 < & < 1. Then oM /aPe < 1 for all Pr = 1. So,
we have

M k Pr
M x> o 1
oo, |—)=)— t_:x
P<a ;(xl’k Tk;)kf J
1 k Pr
SZT_Ztk*JxJ =0,(x),
k| "k j=0
(49)
k Pk
o, (ax) = Z(xp" T—Ztk,]xj
k k j=0
1 k Pr
S(XZ T_Ztk‘jxj :ocap(x).
k| "k j=0

(ii) Let > 1. Then 1 < o™ /aP* for all Pi = 1. So, we have

M

0, (%) < %a}, %) = aMa, (g) (50)
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(iii) Let & > 1. Then a/af* < 1 for all p; > 1. Therefore,
one can easily see that

1 k P
x
oo, | — | = — ) L
p(oc) Zocl’k Tk;k_J 7
(51)
Pr
= Z Ztk x| =0p ().
k
(iv) If > 1, then we have
1 k Pr 1 k Px
Dol Dty < Do) b
k k j=0 k k j=0 52)
k Pr
Ml 1
< e |m Dt
k k j=0
that is,
ao, (x) < o, (ax) < (XMO‘p (x). (53)

By passing to limit as« — 17 in (53), we have ap(cxx) —
op(x). Hence, 0, is right continuous.
If 0 < a < 1, we have

1 k Pr 1 k P
My - Pr| _—
Z(X T Ztk—jxi = Z(X ‘ T Ztk—]xj
k k j=0 k kj:o
(54)
1 k Pr
<a thk—JxJ 3
k k j=0
that is,
oMo, (x) < 0, (ax) < a0, (x). (55)
By letting « — 17 in (55), we have ap(ocx) — ap(x).

Hence, 0, is left continuous. Since o, is both right and left

continuous, it is continuous. O

Now, we give some relationships between the modular o,

and the Luxemburg norm on N*(p).

Proposition 17. For any x € N'(p), the following statements
hold.

(i) Ifllx|l < 1, then ap(x) < [lx|.
(ii) If lxll > 1, then o (x) > [lx|.
(iii) x|l = 1 if and only if o (x =1.
(iv) x|l < 1 if and only zfap(x) <1.
(v) llxll > 1 if and only ifcrp(x) > 1.
(vi) If0 < & < 1 and ||x]| > &, then o, (x) > ™.

(vii) If« = 1 and || x| < «, then o, (x) < oM,

Proof. Let x € N'(p).

(i) Lete > Osuch that0 < € < 1—|x|. By the definition of
||l in (48), there exists an & > 0 such that ||x|| +€ > «
and ap(x/oc) < 1. So, we have

oy < Y B
k

pe
< (Il + )0, (—) < lxl +e.
[0

ZkJJ

(56)

Since € is arbitrary, we have o ,,(x) < |Ix| from (56).

(ii) If we choose € > 0 such that 0 < € < 1 — 1/|x|, then
1 < (1 -e)llxll < llx|l. By the definition of || - || in (48)
and Part (iii) of Proposition 16, we have

1<o

ol =
Pla=olx] = a-elk

i x). (57

So, (1 —e)|lx|| < |lx|| for alle € (0,1 — (1/]lx])). This
implies that ||x|| < op(x).

(iii) Since o0, is continuous, by Theorem 1.4 of [15] we

directly have (iii).
(iv) This follows from Parts (i) and (iii).
(v) This follows from Parts (ii) and (iii).

(vi) This follows from Part (ii) and Part (i) of
Proposition 16.

(vii) This follows from Part (i) and Part (ii) of
Proposition 16.

O

Theorem 18. The space N*(p) is rotund if and only if p, > 1
forallk e N.

Proof. Let N*(p) be rotund and choose k € N such that p;, = 1
for all k < 3. Consider the following sequences given by

x=(1,-Dy,D,,-Ds,D,,...),
(58)
y=(0,T,,-T,D,,T,D,,-T,Ds,...).
Then, obviously x # y and
0, (0) =0, (y) = a<x2y>:1. (59)

By Part (iii) of Proposition 17, x, y,(x + y)/2 € S[Nt(p)]
which leads us to the contradiction that the sequence space
N'(p) is not rotund. Hence, p, > 1 forall k € N.

Conversely, let x € S[N*(p)] and v, z € S[N*(p)] with x =
(v + 2)/2. By convexity of o, and Part (iii) of Proposition 17,
we have

1=ap(x)sw=1, (60)



which gives that

0 (v)+ap (z).

0, (x) = > (61)
Also, since x = (v + z)/2 and from (61), we obtain that
P
z € S ty .—(Vj+zj) k
= Tk prt 72
(62)
1 1 k Pr 1 k Pr
=5 <Z T_Ztk—ﬂj + T_Ztk—jzj )
k| kj=0 k| "k j=0
This implies that
Pr Pr
vitEPe [yl +]z] (63)
2 2

for all k € N. Since the function t — |¢|F* is strictly convex
for all k € N, it follows by (63) that v, = z; forall k € N.
Hence, v = z. That is, N*( p) is rotund. O

Theorem 19. Let (x,) be a sequence in Nt(p). Then, the
following statements hold:
(i) lim,, , ,lIx, Il = 1 implies limn_)oocrp(xn) =1

(ii) limnﬂmap(xn) = 0 implies lim,, _, . llx, || = 0.
Proof. The proof is similar to that of Theorem 10 in [16]. [J

Theorem 20. Let x € N'(p) and (x™) c N'(p). If
ap(x(")) — 0,(x)asn — oo and x,i”) — X asn — oo for

allk € N, then x™ — xasn — oo.

Proof. Lete > 0be given. Since x € N'(p)and (x™) ¢ N*(p),

ap(x(") -X)=Y N (x™ — x)}klpk < 00. So, there exists an
k, € N such that

YN (- x)h ) <5 (64)

k=ky+1

(n)

Also, since x;,” — x; asn — 00, we have

k

>[N (=)} < £ (65
k 2°

k=1

Therefore, we obtain from (64) and (65) that ap(x(") -x)<e.

This means that ap(x(") —x) — 0asn — o00. This result

implies ||x(") - x| - 0Oasn — oo from Part (ii) of

Theorem 19. Hence, x,, — xasn — oo. O

Theorem 21. The sequence space N*(p) has the Kadec-Klee
property.

Proof. Let x € S[N'(p)] and (x"y ¢ N*(p) such that

™ — 1andx®™ Y, xare given. By Part (i) of Theorem 19,
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wehaveo, (x"™) > lasn — oo.Also, x € SIN*(p)] implies
lx|l = 1. By Part (iii) of Proposition 17, we obtain op(x) =1.

Therefore, we have ap(x(”)) — op(x) asn — 0o0.
Since x™ % x and g : N'(p) — R (or C) defined by

qi(x) = x; is continuous, x,(:’) — x; asn — 00. Therefore,
x"™ — xasn — oo. This completes the proof. O

Theorem 22. For any 1 < p < oo, the space X, has the
uniform Opial property.

Proof. Since the proof can be given by the similar way used
in proving Theorem 13 of Nergiz and Basar [16], we omit the
detail. O

6. Conclusion

Wang introduced the sequence space X,;(,), in [10]. Although
the domain of several triangle matrices in the classical
sequence spaces £, ), ¢, and £, and in the Maddox spaces
£(p), ¢(p), c(p), and £, (p) was investigated by researchers,
the domain of N6rlund mean neither in a normed sequence
space nor in a paranormed sequence space was not studied
and is still as an open problem. So, we have worked on
the domain of Norlund mean in the Maddox space £(p).
Additionally, we emphasize on some geometric properties
of the new space N*(p). It is obvious that the matrix N' is
not comparable with the matrices E", A", or B(r,s). So, the
present results are new.

It is clear that by depending on the choice of the sequence
space y, the characterization of several classes of matrix
transformations from the space N'(p) and into the space
N*(p) can be obtained from Theorems 10 and 11, respectively.
As a natural continuation of this paper, we will study the
domain of the Norlund mean in Maddox’s spaces £, (p),

c(p), and ¢ (p).
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