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Maddox defined the space ℓ(𝑝) of the sequences 𝑥 = (𝑥𝑘) such that ∑∞
𝑘=0

|𝑥𝑘|
𝑝𝑘 < ∞, in Maddox, 1967. In the present paper, the

Nörlund sequence space𝑁𝑡(𝑝) of nonabsolute type is introduced and proved that the spaces𝑁𝑡(𝑝) and ℓ(𝑝) are linearly isomorphic.
Besides this, the alpha-, beta-, and gamma-duals of the space𝑁𝑡(𝑝) are computed and the basis of the space𝑁𝑡(𝑝) is constructed.
The classes (𝑁𝑡(𝑝) : 𝜇) and (𝜇 : 𝑁

𝑡
(𝑝)) of infinite matrices are characterized. Finally, some geometric properties of the space𝑁𝑡(𝑝)

are investigated.

1. Introduction

We denote the space of all sequences of complex entries by
𝜔. Any vector subspace of 𝜔 is called a sequence space. We
write ℓ∞, 𝑐, and 𝑐0 for the spaces of all bounded, convergent,
and null sequences, respectively. Also by 𝑏𝑠, 𝑐𝑠, ℓ1, and ℓ𝑝, we
denote the spaces of all bounded, convergent, absolutely and
𝑝-absolutely convergent series, respectively.

A linear topological space 𝑋 over the real field R is said
to be a paranormed space if there is a subadditive function
𝑔 : 𝑋 → R such that 𝑔(𝜃) = 0, 𝑔(𝑥) = 𝑔(−𝑥) and
scalar multiplication is continuous; that is, |𝛼𝑛 − 𝛼| → 0

and 𝑔(𝑥𝑛 − 𝑥) → 0 imply 𝑔(𝛼𝑛𝑥𝑛 − 𝛼𝑥) → 0 for all
𝛼’s in R and all 𝑥’s in 𝑋, where 𝜃 is the zero vector in the
linear space 𝑋. Assume here and after that (𝑝𝑘) is a bounded
sequence of strictly positive real numbers with sup𝑝𝑘 = 𝐻

and𝑀 = max{1,𝐻}. Then, the linear spaces ℓ(𝑝) and ℓ∞(𝑝)
were defined by Maddox in [1] (see also [2, 3]) as follows:

ℓ (𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔 : ∑

𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝑝𝑘
< ∞}

with 0 < 𝑝𝑘 ≤ 𝐻 < ∞,

ℓ∞ (𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔 : sup
𝑘∈N

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝑝𝑘
< ∞}

(1)

which are the complete spaces paranormed by

𝑔1 (𝑥) = (∑

𝑘

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝑝𝑘
)

1/𝑀

,

𝑔2 (𝑥) = sup
𝑘∈N

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨

𝑝𝑘/𝑀 iff inf
𝑘∈N

𝑝𝑘 > 0,

(2)

respectively, where N = {0, 1, 2, . . .}. For simplicity in
notation, here and in what follows, the summation without
limits runs from 0 to ∞. We assume throughout that 𝑝−1

𝑘
+

(𝑝
󸀠

𝑘
)
−1

= 1, provided 1 < inf 𝑝𝑘 ≤ 𝐻 < ∞, and denote the
collection of all finite subsets of N byF.

For the sequence spaces 𝜆 and 𝜇, define the set 𝑆(𝜆, 𝜇) by

𝑆 (𝜆, 𝜇) = {𝑧 = (𝑧𝑘) ∈ 𝜔 : 𝑥𝑧 = (𝑥𝑘𝑧𝑘) ∈ 𝜇 ∀𝑥 ∈ 𝜆} . (3)
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With the notation of (3), the alpha-, beta-, and gamma-duals
of a sequence space 𝜆, which are, respectively, denoted by 𝜆𝛼,
𝜆
𝛽, and 𝜆𝛾, are defined by

𝜆
𝛼
= 𝑆 (𝜆, ℓ1) , 𝜆

𝛽
= 𝑆 (𝜆, 𝑐𝑠) , 𝜆

𝛾
= 𝑆 (𝜆, 𝑏𝑠) . (4)

If a sequence space 𝜆 paranormed by 𝑔 contains a
sequence (𝑏𝑛) with the property that, for every 𝑥 ∈ 𝜆, there
is a unique sequence of scalars (𝛼𝑛) such that

lim
𝑛→∞

𝑔(𝑥 −

𝑛

∑

𝑘=0

𝛼𝑘𝑏𝑘) = 0, (5)

then (𝑏𝑛) is called a Schauder basis (or briefly basis) for 𝜆.
The series ∑

𝑘
𝛼𝑘𝑏𝑘 which has the sum 𝑥 is then called the

expansion of𝑥with respect to (𝑏𝑛) andwritten as𝑥 = ∑
𝑘
𝛼𝑘𝑏𝑘.

Let 𝜆, 𝜇 be any two sequence spaces, and let 𝐴 = (𝑎𝑛𝑘) be
an infinite matrix of complex numbers 𝑎𝑛𝑘, where 𝑘, 𝑛 ∈ N.
Then, we say that 𝐴 defines a matrix transformation from 𝜆

into 𝜇 and we denote it by writing 𝐴 : 𝜆 → 𝜇, if for every
sequence 𝑥 = (𝑥𝑘) ∈ 𝜆, the sequence 𝐴𝑥 = {(𝐴𝑥)𝑛}, the 𝐴-
transform of 𝑥, is in 𝜇, where

(𝐴𝑥)𝑛 = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘 for each 𝑛 ∈ N. (6)

By (𝜆 : 𝜇), we denote the class of all matrices 𝐴 such that
𝐴 : 𝜆 → 𝜇. Thus, 𝐴 ∈ (𝜆 : 𝜇) if and only if the series on the
right side of (6) converges for each 𝑛 ∈ N and every𝑥 ∈ 𝜆, and
we have 𝐴𝑥 ∈ 𝜇 for all 𝑥 ∈ 𝜆. Also, we write 𝐴𝑛 = (𝑎𝑛𝑘)𝑘∈N

for the sequence in the 𝑛th row of 𝐴.
Now, following Peyerimhoff [4, pp. 17–19] and Mears [5],

we give short knowledge on the Nörlund means. Let (𝑡𝑘) be a
sequence of nonnegative real numbers with 𝑡0 > 0 and write
𝑇𝑛 = ∑

𝑛

𝑘=0
𝑡𝑘 for all 𝑛 ∈ N. Then, the Nörlund means with

respect to the sequence 𝑡 = (𝑡𝑘) is defined by the matrix𝑁𝑡 =
(𝑎
𝑡

𝑛𝑘
) which is given by

𝑎
𝑡

𝑛𝑘
=
{

{

{

𝑡𝑛−𝑘

𝑇𝑛

, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛

(7)

for all 𝑘, 𝑛 ∈ N. It is known that the Nörlund matrix 𝑁𝑡 is a
Toeplitz matrix if and only if 𝑡𝑛/𝑇𝑛 → 0, as 𝑛 → ∞, and is
reduced in the case 𝑡 = 𝑒 = (1, 1, 1, . . .) to the matrix 𝐶1 of
arithmetic means. Additionally, for 𝑡𝑛 = 𝐴

𝑟−1

𝑛
for all 𝑛 ∈ N,

the method𝑁𝑡 is reduced to the Cesàro method 𝐶𝑟 of order
𝑟 > −1, where

𝐴
𝑟

𝑛
=
{

{

{

(𝑟 + 1) (𝑟 + 2) ⋅ ⋅ ⋅ (𝑟 + 𝑛)

𝑛!
, 𝑛 = 1, 2, 3, . . . ,

1, 𝑛 = 0.

(8)

Let 𝑡0 = 𝐷0 = 1 and define𝐷𝑛 for 𝑛 ∈ {1, 2, 3, . . .} by

𝐷𝑛 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡1 1 0 0 ⋅ ⋅ ⋅ 0

𝑡2 𝑡1 1 0 ⋅ ⋅ ⋅ 0

𝑡3 𝑡2 𝑡1 1 ⋅ ⋅ ⋅ 0

...
...

...
... d

...
𝑡𝑛−1 𝑡𝑛−2 𝑡𝑛−3 𝑡𝑛−4 ⋅ ⋅ ⋅ 1

𝑡𝑛 𝑡𝑛−1 𝑡𝑛−2 𝑡𝑛−3 ⋅ ⋅ ⋅ 𝑡1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (9)

The inverse matrix 𝑈𝑡 = (𝑢
𝑡

𝑛𝑘
) of the matrix 𝑁𝑡 = (𝑎

𝑡

𝑛𝑘
) is

given by Mears in [5] as follows:

𝑢
𝑡

𝑛𝑘
= {

(−1)
𝑛−𝑘

𝐷𝑛−𝑘𝑇𝑘, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛
(10)

for all 𝑘, 𝑛 ∈ N. Also, one can derive by straightforward
calculation for all 𝑘 ∈ {1, 2, 3, . . .} that

𝐷𝑘 =

𝑘−1

∑

𝑗=1

(−1)
𝑗−1

𝑡𝑗𝐷𝑘−𝑗 + (−1)
𝑘−1

𝑡𝑘. (11)

The rest of this paper is organized as follows.
In Section 2, the complete paranormed Nörlund

sequence space 𝑁𝑡(𝑝) is introduced and proved that 𝑁𝑡(𝑝)
is linearly isomorphic to the space ℓ(𝑝) and the basis for the
space𝑁𝑡(𝑝) is determined. Section 3 is devoted to the alpha-,
beta-, and gamma-duals of the space𝑁𝑡(𝑝). In Section 4, the
classes (𝑁𝑡(𝑝) : 𝜇) and (𝜇 : 𝑁

𝑡
(𝑝)) of infinite matrices are

characterized, where 𝜇 denotes any given sequence space. In
Section 5, the rotundity of the space 𝑁𝑡(𝑝) is characterized
and some results related to this concept are given. In the
final section of the paper, the significance of the space is
mentioned and further suggestions are recorded.

2. The Nörlund Sequence Space 𝑁𝑡(𝑝) of
Nonabsolute Type

In this section, we define the Nörlund sequence space𝑁𝑡(𝑝)
and prove that𝑁𝑡(𝑝) is linearly isomorphic to the space ℓ(𝑝),
where 0 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N. Finally, we give the
basis for the space𝑁𝑡(𝑝).

Let 𝜆 be any sequence space.Then, the matrix domain 𝜆𝐴
of an infinite matrix 𝐴 in 𝜆 is defined by

𝜆𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝜔 : 𝐴𝑥 ∈ 𝜆} . (12)

In [6], Choudhary and Mishra defined the sequence space
ℓ(𝑝) which consists of all sequences such that 𝐵-transforms
of them are in ℓ(𝑝), where 𝐵 = (𝑏𝑛𝑘) is defined by

𝑏𝑛𝑘 = {
1, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛.
(13)

Başar and Altay [7] examined the space 𝑏𝑠(𝑝) which was
formerly defined by Başar [8] as the set of all series whose
sequences of partial sums are in the space ℓ∞(𝑝). With the
notation of (12), the spaces ℓ(𝑝) and 𝑏𝑠(𝑝) can be redefined
by

ℓ (𝑝) = [ℓ (𝑝)]
𝐵
, 𝑏𝑠 (𝑝) = [ℓ∞ (𝑝)]𝐵.

(14)

In [9], Başar and Altay defined the sequence space 𝑟𝑞(𝑝)
which consists of all sequences such that 𝑅𝑞-transforms of
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themare in ℓ(𝑝), where𝑅𝑞 = (𝑟
𝑞

𝑛𝑘
) is thematrix of Rieszmean;

that is,

𝑟
𝑞
(𝑝) = {ℓ (𝑝)}

𝑅𝑞
, 𝑟

𝑞

𝑝
= (ℓ𝑝)𝑅𝑞

. (15)

In [10],Wang defined the sequence space𝑋𝑎(𝑝) consisting
of all sequences whose 𝑁𝑡-transforms are in ℓ𝑝 which is a
Banach space with the norm

‖𝑥‖𝑝 = (∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

with 1 ≤ 𝑝 < ∞. (16)

Now, we introduce the Nörlund sequence space 𝑁𝑡(𝑝)
defined by

𝑁
𝑡
(𝑝) :=

{

{

{

𝑥 = (𝑥𝑘) ∈ 𝜔 : ∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

< ∞
}

}

}

with 0 < 𝑝𝑘 ≤ 𝐻 < ∞.

(17)

It is natural that the space𝑁𝑡(𝑝) can also be defined with the
notation of (12) that𝑁𝑡(𝑝) = {ℓ(𝑝)}

𝑁𝑡
.

Define the sequence 𝑦 = (𝑦𝑘) by the 𝑁𝑡-transform of a
sequence 𝑥 = (𝑥𝑘); that is,

𝑦𝑘 =
1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗 ∀𝑘 ∈ N. (18)

Theorem 1. 𝑁𝑡(𝑝) is a complete linear metric space para-
normed by 𝑔 defined by

𝑔 (𝑥) = (∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

)

1/𝑀

𝑤𝑖𝑡ℎ 0 < 𝑝𝑘 ≤ 𝐻 < ∞.

(19)

Proof. Since this can be shown by a routine verification, we
omit the detail.

Remark 2. One can easily see that the absolute property does
not hold on the space𝑁𝑡(𝑝); that is, 𝑔(𝑥) ̸= 𝑔(|𝑥|) for at least
one sequence in the space 𝑁𝑡(𝑝), and this says that 𝑁𝑡(𝑝) is
a sequence space of nonabsolute type, where |𝑥| = (|𝑥𝑘|).

Theorem3. TheNörlund sequence space𝑁𝑡(𝑝) of nonabsolute
type is linearly isomorphic to the space ℓ(𝑝), where 0 < 𝑝𝑘 ≤

𝐻 < ∞ for all 𝑘 ∈ N.

Proof. To prove the theorem, we should show the existence
of a linear bijection between the spaces 𝑁𝑡(𝑝) and ℓ(𝑝) for
0 < 𝑝𝑘 ≤ 𝐻 < ∞. Consider the transformation 𝑇 defined,
with the notation of (18), from 𝑁

𝑡
(𝑝) to ℓ(𝑝) by 𝑥 󳨃→ 𝑦 =

𝑇𝑥 = 𝑁
𝑡
𝑥. The linearity of 𝑇 is clear. Further, it is trivial that

𝑥 = 𝜃 whenever 𝑇𝑥 = 𝜃 and hence 𝑇 is injective.

Let us take any 𝑦 ∈ ℓ(𝑝) and define the sequence 𝑥 = (𝑥𝑘)

by

𝑥𝑘 =

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖
𝐷𝑘−𝑖𝑇𝑖𝑦𝑖 ∀𝑘 ∈ N. (20)

Therefore, we see from (19) that

𝑔 (𝑥) = (∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

)

1/𝑀

= (∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗

𝑗

∑

𝑖=0

(−1)
𝑗−𝑖
𝐷𝑗−𝑖𝑇𝑖𝑦𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

)

1/𝑀

= (∑

𝑘

󵄨󵄨󵄨󵄨𝑦𝑘
󵄨󵄨󵄨󵄨

𝑝𝑘
)

1/𝑀

= 𝑔1 (𝑦) < ∞.

(21)

This means that 𝑥 ∈ 𝑁
𝑡
(𝑝). Consequently, 𝑇 is surjective and

is paranorm preserving. Hence, 𝑇 is linear bijection and this
says us that the spaces𝑁𝑡(𝑝) and ℓ(𝑝) are linearly isomorphic.
Therefore, the proof is completed.

We determine the basis for the paranormed space𝑁𝑡(𝑝).

Theorem 4. Define the sequence 𝑏(𝑘)(𝑡) = {𝑏
(𝑘)

𝑛
(𝑡)}
𝑛∈N

of the
elements of the space𝑁𝑡(𝑝) for every fixed 𝑘 ∈ N by

𝑏
(𝑘)

𝑛
(𝑡) = {

(−1)
𝑛−𝑘

𝐷𝑛−𝑘𝑇𝑘, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛.
(22)

Then, the sequence {𝑏(𝑘)(𝑡)}𝑘∈N is a basis for the space 𝑁𝑡(𝑝)
and any 𝑥 ∈ 𝑁

𝑡
(𝑝) has a unique representation of the form

𝑥 = ∑

𝑘

𝜆𝑘 (𝑡) 𝑏
(𝑘)
(𝑡) , (23)

where 𝜆𝑘(𝑡) = (𝑁
𝑡
𝑥)𝑘 for all 𝑘 ∈ N and 0 < 𝑝𝑘 ≤ 𝐻 < ∞.

Proof. It is clear that {𝑏(𝑘)(𝑡)} ⊂ 𝑁
𝑡
(𝑝), since

𝑁
𝑡
𝑏
(𝑘)
(𝑡) = 𝑒

(𝑘)
∈ ℓ (𝑝) ∀𝑘 ∈ N, (24)

where 𝑒(𝑘) is the sequence whose only nonzero term is a 1 in
the 𝑘th place for each 𝑘 ∈ N and 0 < 𝑝𝑘 ≤ 𝐻 < ∞.

Let 𝑥 ∈ 𝑁
𝑡
(𝑝) be given. For every nonnegative integer𝑚,

we put

𝑥
[𝑚]

=

𝑚

∑

𝑘=0

𝜆𝑘 (𝑡) 𝑏
(𝑘)
(𝑡) . (25)

Then, we obtain by applying𝑁𝑡 to (25) with (24) that

𝑁
𝑡
𝑥
[𝑚]

=

𝑚

∑

𝑘=0

𝜆𝑘 (𝑡)𝑁
𝑡
𝑏
(𝑘)
(𝑡) =

𝑚

∑

𝑘=0

(𝑁
𝑡
𝑥)
𝑘
𝑒
(𝑘)
,

{𝑁
𝑡
(𝑥 − 𝑥

[𝑚]
)}
𝑖
= {

0, 0 ≤ 𝑖 ≤ 𝑚,

(𝑁
𝑡
𝑥)
𝑖
, 𝑖 > 𝑚,

(26)
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where 𝑖, 𝑚 ∈ N. Given 𝜖 > 0, then there is an integer𝑚0 such
that

[

∞

∑

𝑖=𝑚+1

󵄨󵄨󵄨󵄨󵄨
(𝑁
𝑡
𝑥)
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑝𝑘
]

1/𝑀

< 𝜖 (27)

for all (𝑚 + 1) ≥ 𝑚0. Hence,

𝑔 [𝑁
𝑡
(𝑥 − 𝑥

[𝑚]
)] = [

∞

∑

𝑖=𝑚+1

󵄨󵄨󵄨󵄨󵄨
(𝑁
𝑡
𝑥)
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑝𝑘
]

1/𝑀

≤ [

∞

∑

𝑖=𝑚0

󵄨󵄨󵄨󵄨󵄨
(𝑁
𝑡
𝑥)
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑝𝑘
]

1/𝑀

< 𝜖

(28)

for all (𝑚 + 1) ≥ 𝑚0 which proves that 𝑥 ∈ 𝑁
𝑡
(𝑝) is

represented as in (23).
Let us show the uniqueness of the representation for 𝑥 ∈

𝑁
𝑡
(𝑝) given by (23). Suppose, on the contrary, that there

exists a representation 𝑥 = ∑
𝑘
𝜇𝑘(𝑡)𝑏

(𝑘)
(𝑡). Since the linear

transformation 𝑇, from 𝑁
𝑡
(𝑝) to ℓ(𝑝), used in the proof of

Theorem 3 is continuous, we have at this stage that

(𝑁
𝑡
𝑥)
𝑛
= ∑

𝑘

𝜇𝑘 (𝑡) {𝑁
𝑡
𝑏
(𝑘)
(𝑡)}
𝑛
= ∑

𝑘

𝜇𝑘 (𝑡) 𝑒
(𝑘)

𝑛
= 𝜇𝑛 (𝑡)

(29)

for all 𝑛 ∈ N which contradicts the fact that (𝑁𝑡𝑥)𝑛 = 𝜆𝑛(𝑡)

for all 𝑛 ∈ N. Hence, the representation (23) of 𝑥 ∈ 𝑁
𝑡
(𝑝) is

unique. This completes the proof.

3. The Alpha-, Beta-, and Gamma-Duals of
the Space 𝑁𝑡(𝑝)

In this section, we determine the alpha-, beta-, and gamma-
duals of the space𝑁𝑡(𝑝). We will quote some lemmas which
are needed in proving our theorems.

Lemma 5 (see [11], Theorem 5.1.0). The following statements
hold.

(i) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for every 𝑘 ∈ N. Then, 𝐴 =

(𝑎𝑛𝑘) ∈ (ℓ(𝑝) : ℓ1) if and only if there exists an integer
𝐵 > 1 such that

sup
𝑁∈F

∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑛∈𝑁

𝑎𝑛𝑘𝐵
−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑘

< ∞. (30)

(ii) Let 0 < 𝑝𝑘 ≤ 1 for every 𝑘 ∈ N. Then, 𝐴 = (𝑎𝑛𝑘) ∈

(ℓ(𝑝) : ℓ1) if and only if

sup
𝑁∈F

sup
𝑘∈N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑛∈𝑁

𝑎𝑛𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

< ∞. (31)

Lemma 6 (see [12], Theorem 1). The following statements
hold.

(i) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for every 𝑘 ∈ N. Then, 𝐴 =

(𝑎𝑛𝑘) ∈ (ℓ(𝑝) : ℓ∞) if and only if there exists an integer
𝐵 > 1 such that

sup
𝑛∈N

∑

𝑘

󵄨󵄨󵄨󵄨󵄨
𝑎𝑛𝑘𝐵
−1󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑘

< ∞. (32)

(ii) Let 0 < 𝑝𝑘 ≤ 1 for every 𝑘 ∈ N. Then, 𝐴 = (𝑎𝑛𝑘) ∈

(ℓ(𝑝) : ℓ∞) if and only if

sup
𝑛,𝑘∈N

󵄨󵄨󵄨󵄨𝑎𝑛𝑘
󵄨󵄨󵄨󵄨

𝑝𝑘
< ∞. (33)

Lemma 7 (see [12], Theorem 1). Let 0 < 𝑝𝑘 ≤ 𝐻 < ∞ for
every 𝑘 ∈ N. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ(𝑝) : 𝑐) if and only if (32),
(33) hold and there is 𝛽𝑘 ∈ C such that 𝑎𝑛𝑘 → 𝛽𝑘 for each
𝑘 ∈ N.

Theorem 8. Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for every 𝑘 ∈ N. Define the
sets𝐷1(𝑝),𝐷2(𝑝), and 𝐷3(𝑝) as follows:

𝐷1 (𝑝) : =
{

{

{

𝑎 = (𝑎𝑘) ∈ 𝜔

: sup
𝑁∈F

∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑛∈𝑁

(−1)
𝑛−𝑘

𝑎𝑛𝐷𝑛−𝑘𝑇𝑘𝐵
−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑘

< ∞
}

}

}

,

𝐷2 (𝑝) : =
{

{

{

𝑎 = (𝑎𝑘) ∈ 𝜔 : sup
𝑛∈N

∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘
𝑎𝑖𝐷𝑖−𝑘𝑇𝑘𝐵

−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
󸀠

𝑘

< ∞, {(𝑎𝑛𝑇𝑛𝐵
−1
)
𝑝
󸀠

𝑘

} ∈ ℓ∞

}

}

}

,

𝐷3 (𝑝) = 𝑐𝑠.

(34)

Then, the following statements hold:

(i) {𝑁𝑡(𝑝)}𝛼 = 𝐷1(𝑝);

(ii) {𝑁𝑡(𝑝)}𝛾 = 𝐷2(𝑝);

(iii) {𝑁𝑡(𝑝)}𝛽 = 𝐷2(𝑝) ∩ 𝐷3(𝑝).

Proof. (i) Let us take 𝑎 = (𝑎𝑘) ∈ 𝜔. We easily derive with (20)
that

𝑎𝑛𝑥𝑛 =

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

𝑎𝑛𝐷𝑛−𝑘𝑇𝑘𝑦𝑘 = (𝐶𝑦)
𝑛

∀𝑛 ∈ N, (35)
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where 𝐶 = (𝑐𝑛𝑘) is defined by

𝑐𝑛𝑘 = {
(−1)
𝑛−𝑘

𝑎𝑛𝐷𝑛−𝑘𝑇𝑘, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛
(36)

for all 𝑘, 𝑛 ∈ N.Thus, we observe by combining (35) with Part
(i) of Lemma 5 that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1 whenever 𝑥 = (𝑥𝑘) ∈

𝑁
𝑡
(𝑝) if and only if 𝐶𝑦 ∈ ℓ1 whenever 𝑦 = (𝑦𝑘) ∈ ℓ(𝑝). This

gives the result that {𝑁𝑡(𝑝)}𝛼 = 𝐷1(𝑝).
(ii) Consider the equality

𝑛

∑

𝑘=0

𝑎𝑘𝑥𝑘 =

𝑛−1

∑

𝑘=0

𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘
𝑎𝑖𝐷𝑖−𝑘𝑇𝑘𝑦𝑘 + 𝑎𝑛𝑇𝑛𝑦𝑛

= (𝐸𝑦)
𝑛

∀𝑛 ∈ N,

(37)

where 𝐸 = (𝑒𝑛𝑘) is defined by

𝑒𝑛𝑘 =

{{{{{

{{{{{

{

𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘
𝑎𝑖𝐷𝑖−𝑘𝑇𝑘, 0 ≤ 𝑘 ≤ 𝑛 − 1,

𝑎𝑛𝑇𝑛, 𝑘 = 𝑛,

0, 𝑘 > 𝑛

(38)

for all 𝑘, 𝑛 ∈ N. Thus, we deduce from Part (i) of Lemma 6
with (37) that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑏𝑠 whenever 𝑥 = (𝑥𝑘) ∈ 𝑁

𝑡
(𝑝)

if and only if 𝐸𝑦 ∈ ℓ∞ whenever 𝑦 = (𝑦𝑘) ∈ ℓ(𝑝). Therefore,
we obtain from Part (i) of Lemma 6 that {𝑁𝑡(𝑝)}𝛾 = 𝐷2(𝑝).

(iii) We see from Lemma 7 that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑐𝑠

whenever 𝑥 = (𝑥𝑘) ∈ 𝑁
𝑡
(𝑝) if and only if 𝐸𝑦 ∈ 𝑐 whenever

𝑦 = (𝑦𝑘) ∈ ℓ(𝑝). Therefore, we derive from Lemma 7 that
{𝑁
𝑡
(𝑝)}
𝛽
= 𝐷2(𝑝) ∩ 𝐷3(𝑝).

Therefore, the proof is completed.

Theorem 9. Let 0 < 𝑝𝑘 ≤ 1 for every 𝑘 ∈ N. Define the sets
𝐷4(𝑝) and 𝐷5(𝑝) by

𝐷4 (𝑝) : = {𝑎 = (𝑎𝑘) ∈ 𝜔

: sup
𝑁∈F

sup
𝑘∈N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑛∈𝑁

(−1)
𝑛−𝑘

𝑎𝑛𝐷𝑛−𝑘𝑇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

< ∞} ,

𝐷5 (𝑝) : = {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup
𝑛,𝑘∈N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘
𝑎𝑖𝐷𝑖−𝑘𝑇𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

< ∞, {(𝑎𝑛𝑇𝑛)
𝑝𝑘
} ∈ ℓ∞} .

(39)

Then, the following statements hold:

(i) {𝑁𝑡(𝑝)}𝛼 = 𝐷4(𝑝);
(ii) {𝑁𝑡(𝑝)}𝛾 = 𝐷5(𝑝);

(iii) {𝑁𝑡(𝑝)}𝛽 = 𝐷3(𝑝) ∩ 𝐷5(𝑝).

Proof. This is easily obtained by proceeding as in the proof
of Theorem 8 by using Lemma 7 and the second parts of
Lemmas 5 and 6 instead of the first parts. So, we omit the
detail.

4. Some Matrix Transformations Related to
the Sequence Space 𝑁𝑡(𝑝)

In the present section, we characterize the matrix transfor-
mations from the space𝑁𝑡(𝑝) into any given sequence space
𝜇 and from a given sequence space 𝜇 into the space 𝑁𝑡(𝑝).
Since 𝜇𝐴 ≅ 𝜇 for any triangle𝐴 and any sequence space 𝜇, it is
trivial that the equivalence “𝑥 ∈ 𝜇𝐴 if and only if 𝑦 = 𝐴𝑥 ∈ 𝜇”
holds.

Now, we can give the following theorem.

Theorem 10. Suppose that the elements of the infinite matrices
𝐴 = (𝑎𝑛𝑘) and 𝐹 = (𝑓𝑛𝑘) are connected with the relation

𝑓𝑛𝑘 :=

∞

∑

𝑗=𝑘

(−1)
𝑗−𝑘

𝐷𝑗−𝑘𝑇𝑘𝑎𝑛𝑗 (40)

for all 𝑘, 𝑛 ∈ N and 𝜇 is any given sequence space. Then, 𝐴 ∈

(𝑁
𝑡
(𝑝) : 𝜇) if and only if 𝐴𝑛 ∈ {𝑁

𝑡
(𝑝)}
𝛽 for all 𝑛 ∈ N and

𝐹 ∈ (ℓ(𝑝) : 𝜇).

Proof. Let 𝜇 be any given sequence space. Suppose that (40)
holds between the elements of the matrices 𝐴 = (𝑎𝑛𝑘) and
𝐹 = (𝑓𝑛𝑘), and take into account that the spaces 𝑁𝑡(𝑝) and
ℓ(𝑝) are linearly isomorphic.

Let 𝐴 ∈ (𝑁
𝑡
(𝑝) : 𝜇) and take any 𝑦 ∈ ℓ(𝑝). Then

(𝐹𝑁
𝑡
)
𝑛𝑘
=

∞

∑

𝑗=𝑘

𝑓𝑛𝑗𝑎
𝑡

𝑗𝑘
=

∞

∑

𝑗=𝑘

∞

∑

𝑖=𝑗

(−1)
𝑖−𝑗
𝐷𝑖−𝑗𝑎𝑛𝑖𝑇𝑗

𝑡𝑗−𝑘

𝑇𝑗

= 𝑎𝑛𝑘.

(41)

That is, 𝐹𝑁𝑡 exists and 𝐴𝑛 ∈ {𝑁
𝑡
(𝑝)}
𝛽 which yields that 𝐹𝑛 ∈

ℓ1 for each 𝑛 ∈ N. Hence, 𝐹𝑦 exists and thus

∑

𝑘

𝑓𝑛𝑘𝑦𝑘 = ∑

𝑘

∞

∑

𝑖=𝑘

(−1)
𝑖−𝑘
𝐷𝑖−𝑘𝑎𝑛𝑖𝑇𝑘

× (
1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗) = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘

(42)

for all 𝑛 ∈ N. So, we have that 𝐹𝑦 = 𝐴𝑥, which leads us to the
consequence 𝐹 ∈ (ℓ(𝑝) : 𝜇).

Conversely, let 𝐴𝑛 ∈ {𝑁
𝑡
(𝑝)}
𝛽 for each 𝑛 ∈ N and

𝐹 ∈ (ℓ(𝑝) : 𝜇), and take 𝑥 = (𝑥𝑘) ∈ 𝑁
𝑡
(𝑝). Then, 𝐴𝑥 exists.

Therefore, we obtain from the equality

∑

𝑘

𝑎𝑛𝑘𝑥𝑘=∑

𝑘

𝑎𝑛𝑘 [

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖
𝐷𝑘−𝑖𝑇𝑖𝑦𝑖] = ∑

𝑘

𝑓𝑛𝑘𝑦𝑘 ∀𝑛 ∈ N

(43)

that 𝐴𝑥 = 𝐹𝑦 and this shows that 𝐴 ∈ (𝑁
𝑡
(𝑝) : 𝜇). This

completes the proof.
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By changing the roles of the spaces 𝑁
𝑡
(𝑝) with 𝜇 in

Theorem 10, we have the following.

Theorem 11. Suppose that 𝜇 is any given sequence space and
the elements of the infinite matrices 𝐴 = (𝑎𝑛𝑘) and 𝐺 = (𝑔𝑛𝑘)

are connected with the relation 𝑔𝑛𝑘 = ∑
𝑛

𝑗=0
(𝑡𝑛−𝑗/𝑇𝑛)𝑎𝑗𝑘 for all

𝑘, 𝑛 ∈ N. Then, 𝐴 ∈ (𝜇 : 𝑁
𝑡
(𝑝)) if and only if 𝐺 ∈ (𝜇 : ℓ(𝑝)).

Proof. Let 𝑥 = (𝑥𝑘) ∈ 𝜇 and consider the following equality:

𝑛

∑

𝑗=0

𝑡𝑛−𝑗

𝑇𝑛

𝑚

∑

𝑘=0

𝑎𝑗𝑘𝑥𝑘 =

𝑚

∑

𝑘=0

𝑔𝑛𝑘𝑥𝑘 ∀𝑛 ∈ N. (44)

Then, by letting𝑚 → ∞ in (44), we have {𝑁𝑡(𝐴𝑥)}𝑛 = (𝐺𝑥)𝑛

for all 𝑛 ∈ N. Since 𝐴𝑥 ∈ 𝑁
𝑡
(𝑝), 𝑁𝑡(𝐴𝑥) = 𝐺𝑥 ∈ ℓ(𝑝). This

completes the proof.

5. The Rotundity of the Space 𝑁𝑡(𝑝)

In functional analysis, the rotundity of Banach spaces is
one of the most important geometric properties. For details,
the reader may refer to [13–15]. In this section, we give the
necessary and sufficient condition in order to the space𝑁𝑡(𝑝)
be rotund and present some results related to this concept.

Definition 12. Let 𝑆(𝑋) be the unit sphere of a Banach space
𝑋. Then, a point 𝑥 ∈ 𝑆(𝑋) is called an extreme point if 2𝑥 =

𝑦 + 𝑧 implies 𝑦 = 𝑧 for every 𝑦, 𝑧 ∈ 𝑆(𝑋). A Banach space 𝑋
is said to be rotund (strictly convex) if every point of 𝑆(𝑋) is
an extreme point.

Definition 13. A Banach space 𝑋 is said to have Kadec-
Klee property (or property (𝐻)) if every weakly convergent
sequence on the unit sphere is convergent in norm.

Definition 14. A Banach space𝑋 is said to have

(i) the Opial property if every sequence (𝑥𝑛) weakly
convergent to 𝑥0 ∈ 𝑋 satisfies

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥0
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑥
󵄩󵄩󵄩󵄩 (45)

for every 𝑥 ∈ 𝑋 with 𝑥 ̸= 𝑥0;
(ii) the uniform Opial property if for each 𝜖 > 0, there

exists an 𝑟 > 0 such that

1 + 𝑟 ≤ lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑥
󵄩󵄩󵄩󵄩 (46)

for each 𝑥 ∈ 𝑋 with ‖𝑥‖ ≥ 𝜖 and each sequence (𝑥𝑛)
in𝑋 such that 𝑥𝑛

𝑤

󳨀→ 0 and lim inf𝑛→∞‖𝑥𝑛‖ ≥ 1.

Definition 15. Let 𝑋 be a real vector space. A functional 𝜎 :

𝑋 → [0,∞) is called a modular if

(i) 𝜎(𝑥) = 0 if and only if 𝑥 = 𝜃;
(ii) 𝜎(𝛼𝑥) = 𝜎(𝑥) for all scalars 𝛼 with |𝛼| = 1;
(iii) 𝜎(𝛼𝑥+𝛽𝑦) ≤ 𝜎(𝑥)+𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 ≥ 0

with 𝛼 + 𝛽 = 1;

(iv) themodular𝜎 is called convex if𝜎(𝛼𝑥+𝛽𝑦) ≤ 𝛼𝜎(𝑥)+

𝛽𝜎(𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼, 𝛽 > 0 with 𝛼 + 𝛽 = 1.
A modular 𝜎 on𝑋 is called

(a) right continuous if lim𝛼→1+𝜎(𝛼𝑥) = 𝜎(𝑥) for all
𝑥 ∈ 𝑋𝜎;

(b) left continuous if lim𝛼→1−𝜎(𝛼𝑥) = 𝜎(𝑥) for all
𝑥 ∈ 𝑋𝜎;

(c) continuous if it is both right and left continuous,
where

𝑋𝜎 = {𝑥 ∈ 𝑋 : lim
𝛼→0+

𝜎 (𝛼𝑥) = 0} . (47)

We define 𝜎𝑝 on 𝑁
𝑡
(𝑝) by 𝜎𝑝(𝑥) =

∑
𝑘
|(1/𝑇𝑘) ∑

𝑘

𝑗=0
𝑡𝑘−𝑗𝑥𝑗|

𝑝𝑘 . If 𝑝𝑘 ≥ 1 for all 𝑘 ∈ N1 = {1, 2, . . .},
by the convexity of the function 𝑡 󳨃→ |𝑡|

𝑝𝑘 for each 𝑘 ∈ N, 𝜎𝑝
is a convex modular on𝑁𝑡(𝑝). We consider𝑁𝑡(𝑝) equipped
with Luxemburg norm given by

‖𝑥‖ = inf {𝛼 > 0 : 𝜎𝑝 (
𝑥

𝛼
) ≤ 1} . (48)

𝑁
𝑡
(𝑝) is a Banach space with this norm. This can be shown

by the similar way used in the proof of Theorem 7 in [16].
We establish some basic properties for the modular 𝜎𝑝.

Proposition 16. Themodular 𝜎𝑝 on𝑁𝑡(𝑝) satisfies the follow-
ing properties with 𝑝𝑘 ≥ 1 for all 𝑘 ∈ N.

(i) If 0 < 𝛼 ≤ 1, then 𝛼𝑀𝜎𝑝(𝑥/𝛼) ≤ 𝜎𝑝(𝑥) and 𝜎𝑝(𝛼𝑥) ≤
𝛼𝜎𝑝(𝑥).

(ii) If 𝛼 ≥ 1, then 𝜎𝑝(𝑥) ≤ 𝛼
𝑀
𝜎𝑝(𝑥/𝛼).

(iii) If 𝛼 ≥ 1, then 𝛼𝜎𝑝(𝑥/𝛼) ≤ 𝜎𝑝(𝑥).
(iv) The modular 𝜎𝑝 is continuous.

Proof. (i) Let 0 < 𝛼 ≤ 1. Then 𝛼𝑀/𝛼𝑝𝑘 ≤ 1 for all 𝑝𝑘 ≥ 1. So,
we have

𝛼
𝑀
𝜎𝑝 (

𝑥

𝛼
) = ∑

𝑘

𝛼
𝑀

𝛼𝑝𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ ∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

= 𝜎𝑝 (𝑥) ,

𝜎𝑝 (𝛼𝑥) = ∑

𝑘

𝛼
𝑝𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ 𝛼∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

= 𝛼𝜎𝑝 (𝑥) .

(49)

(ii) Let 𝛼 ≥ 1.Then 1 ≤ 𝛼
𝑀
/𝛼
𝑝𝑘 for all 𝑝𝑘 ≥ 1. So, we have

𝜎𝑝 (𝑥) ≤
𝛼
𝑀

𝛼𝑝𝑘
𝜎𝑝 (𝑥) = 𝛼

𝑀
𝜎𝑝 (

𝑥

𝛼
) . (50)
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(iii) Let 𝛼 ≥ 1. Then 𝛼/𝛼𝑝𝑘 ≤ 1 for all 𝑝𝑘 ≥ 1. Therefore,
one can easily see that

𝛼𝜎𝑝 (
𝑥

𝛼
) = ∑

𝑘

𝛼

𝛼𝑝𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ ∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

= 𝜎𝑝 (𝑥) .

(51)

(iv) If 𝛼 > 1, then we have

∑

𝑘

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ ∑

𝑘

𝛼
𝑝𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ ∑

𝑘

𝛼
𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

;

(52)

that is,

𝛼𝜎𝑝 (𝑥) ≤ 𝜎𝑝 (𝛼𝑥) ≤ 𝛼
𝑀
𝜎𝑝 (𝑥) . (53)

By passing to limit as 𝛼 → 1
+ in (53), we have 𝜎𝑝(𝛼𝑥) →

𝜎𝑝(𝑥). Hence, 𝜎𝑝 is right continuous.
If 0 < 𝛼 < 1, we have

∑

𝑘

𝛼
𝑀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ ∑

𝑘

𝛼
𝑝𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ ∑

𝑘

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

;

(54)

that is,

𝛼
𝑀
𝜎𝑝 (𝑥) ≤ 𝜎𝑝 (𝛼𝑥) ≤ 𝛼𝜎𝑝 (𝑥) . (55)

By letting 𝛼 → 1
− in (55), we have 𝜎𝑝(𝛼𝑥) → 𝜎𝑝(𝑥).

Hence, 𝜎𝑝 is left continuous. Since 𝜎𝑝 is both right and left
continuous, it is continuous.

Now, we give some relationships between the modular 𝜎𝑝
and the Luxemburg norm on𝑁𝑡(𝑝).

Proposition 17. For any 𝑥 ∈ 𝑁
𝑡
(𝑝), the following statements

hold.

(i) If ‖𝑥‖ < 1, then 𝜎𝑝(𝑥) ≤ ‖𝑥‖.
(ii) If ‖𝑥‖ > 1, then 𝜎𝑝(𝑥) ≥ ‖𝑥‖.
(iii) ‖𝑥‖ = 1 if and only if 𝜎𝑝(𝑥) = 1.
(iv) ‖𝑥‖ < 1 if and only if 𝜎𝑝(𝑥) < 1.
(v) ‖𝑥‖ > 1 if and only if 𝜎𝑝(𝑥) > 1.

(vi) If 0 < 𝛼 < 1 and ‖𝑥‖ > 𝛼, then 𝜎𝑝(𝑥) > 𝛼
𝑀.

(vii) If 𝛼 ≥ 1 and ‖𝑥‖ < 𝛼, then 𝜎𝑝(𝑥) < 𝛼
𝑀.

Proof. Let 𝑥 ∈ 𝑁
𝑡
(𝑝).

(i) Let 𝜖 > 0 such that 0 < 𝜖 < 1−‖𝑥‖. By the definition of
‖ ⋅ ‖ in (48), there exists an 𝛼 > 0 such that ‖𝑥‖+ 𝜖 > 𝛼

and 𝜎𝑝(𝑥/𝛼) ≤ 1. So, we have

𝜎𝑝 (𝑥) ≤ ∑

𝑘

(
‖𝑥‖ + 𝜖

𝛼
)

𝑝𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑥𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

≤ (‖𝑥‖ + 𝜖) 𝜎𝑝 (
𝑥

𝛼
) ≤ ‖𝑥‖ + 𝜖.

(56)

Since 𝜖 is arbitrary, we have 𝜎𝑝(𝑥) ≤ ‖𝑥‖ from (56).
(ii) If we choose 𝜖 > 0 such that 0 < 𝜖 < 1 − 1/‖𝑥‖, then

1 < (1 − 𝜖)‖𝑥‖ < ‖𝑥‖. By the definition of ‖ ⋅ ‖ in (48)
and Part (iii) of Proposition 16, we have

1 < 𝜎𝑝 [
𝑥

(1 − 𝜖) ‖𝑥‖
] ≤

1

(1 − 𝜖) ‖𝑥‖
𝜎𝑝 (𝑥) . (57)

So, (1 − 𝜖)‖𝑥‖ < ‖𝑥‖ for all 𝜖 ∈ (0, 1 − (1/‖𝑥‖)). This
implies that ‖𝑥‖ < 𝜎𝑝(𝑥).

(iii) Since 𝜎𝑝 is continuous, by Theorem 1.4 of [15] we
directly have (iii).

(iv) This follows from Parts (i) and (iii).
(v) This follows from Parts (ii) and (iii).
(vi) This follows from Part (ii) and Part (i) of

Proposition 16.
(vii) This follows from Part (i) and Part (ii) of

Proposition 16.

Theorem 18. The space 𝑁𝑡(𝑝) is rotund if and only if 𝑝𝑘 > 1

for all 𝑘 ∈ N.

Proof. Let𝑁𝑡(𝑝) be rotund and choose 𝑘 ∈ N such that𝑝𝑘 = 1

for all 𝑘 < 3. Consider the following sequences given by

𝑥 = (1, −𝐷1, 𝐷2, −𝐷3, 𝐷4, . . .) ,

𝑦 = (0, 𝑇1, −𝑇1𝐷1, 𝑇1𝐷2, −𝑇1𝐷3, . . .) .

(58)

Then, obviously 𝑥 ̸= 𝑦 and

𝜎𝑝 (𝑥) = 𝜎𝑝 (𝑦) = 𝜎𝑝 (
𝑥 + 𝑦

2
) = 1. (59)

By Part (iii) of Proposition 17, 𝑥, 𝑦, (𝑥 + 𝑦)/2 ∈ 𝑆[𝑁
𝑡
(𝑝)]

which leads us to the contradiction that the sequence space
𝑁
𝑡
(𝑝) is not rotund. Hence, 𝑝𝑘 > 1 for all 𝑘 ∈ N.
Conversely, let 𝑥 ∈ 𝑆[𝑁

𝑡
(𝑝)] and V, 𝑧 ∈ 𝑆[𝑁𝑡(𝑝)]with 𝑥 =

(V + 𝑧)/2. By convexity of 𝜎𝑝 and Part (iii) of Proposition 17,
we have

1 = 𝜎𝑝 (𝑥) ≤

𝜎𝑝 (V) + 𝜎𝑝 (𝑧)
2

= 1, (60)
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which gives that

𝜎𝑝 (𝑥) =

𝜎𝑝 (V) + 𝜎𝑝 (𝑧)
2

. (61)

Also, since 𝑥 = (V + 𝑧)/2 and from (61), we obtain that

∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗

(V𝑗 + 𝑧𝑗)

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

=
1

2
(∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗V𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

+∑

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑇𝑘

𝑘

∑

𝑗=0

𝑡𝑘−𝑗𝑧𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

) .

(62)

This implies that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V𝑗 + 𝑧𝑗
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

=

󵄨󵄨󵄨󵄨󵄨
V𝑗
󵄨󵄨󵄨󵄨󵄨

𝑝𝑘
+
󵄨󵄨󵄨󵄨󵄨
𝑧𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝𝑘

2

(63)

for all 𝑘 ∈ N. Since the function 𝑡 → |𝑡|
𝑝𝑘 is strictly convex

for all 𝑘 ∈ N, it follows by (63) that V𝑘 = 𝑧𝑘 for all 𝑘 ∈ N.
Hence, V = 𝑧. That is,𝑁𝑡(𝑝) is rotund.

Theorem 19. Let (𝑥𝑛) be a sequence in 𝑁
𝑡
(𝑝). Then, the

following statements hold:

(i) lim𝑛→∞‖𝑥𝑛‖ = 1 implies lim𝑛→∞𝜎𝑝(𝑥𝑛) = 1;
(ii) lim𝑛→∞𝜎𝑝(𝑥𝑛) = 0 implies lim𝑛→∞‖𝑥𝑛‖ = 0.

Proof. The proof is similar to that of Theorem 10 in [16].

Theorem 20. Let 𝑥 ∈ 𝑁
𝑡
(𝑝) and (𝑥

(𝑛)
) ⊂ 𝑁

𝑡
(𝑝). If

𝜎𝑝(𝑥
(𝑛)
) → 𝜎𝑝(𝑥) as 𝑛 → ∞ and 𝑥(𝑛)

𝑘
→ 𝑥𝑘 as 𝑛 → ∞ for

all 𝑘 ∈ N, then 𝑥(𝑛) → 𝑥 as 𝑛 → ∞.

Proof. Let 𝜖 > 0 be given. Since𝑥 ∈ 𝑁
𝑡
(𝑝) and (𝑥(𝑛)) ⊂ 𝑁

𝑡
(𝑝),

𝜎𝑝(𝑥
(𝑛)
− 𝑥) = ∑

𝑘
|{𝑁
𝑡
(𝑥
(𝑛)

− 𝑥)}𝑘|
𝑝𝑘
< ∞. So, there exists an

𝑘0 ∈ N such that

∞

∑

𝑘=𝑘0+1

󵄨󵄨󵄨󵄨󵄨
{𝑁
𝑡
(𝑥
(𝑛)

− 𝑥)}
𝑘

󵄨󵄨󵄨󵄨󵄨

𝑝𝑘
<
𝜖

2
. (64)

Also, since 𝑥(𝑛)
𝑘

→ 𝑥𝑘 as 𝑛 → ∞, we have

𝑘0

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
{𝑁
𝑡
(𝑥
(𝑛)

− 𝑥)}
𝑘

󵄨󵄨󵄨󵄨󵄨

𝑝𝑘
<
𝜖

2
. (65)

Therefore, we obtain from (64) and (65) that 𝜎𝑝(𝑥
(𝑛)
−𝑥) < 𝜖.

This means that 𝜎𝑝(𝑥
(𝑛)

− 𝑥) → 0 as 𝑛 → ∞. This result
implies ‖𝑥(𝑛) − 𝑥‖ → 0 as 𝑛 → ∞ from Part (ii) of
Theorem 19. Hence, 𝑥𝑛 → 𝑥 as 𝑛 → ∞.

Theorem 21. The sequence space 𝑁𝑡(𝑝) has the Kadec-Klee
property.

Proof. Let 𝑥 ∈ 𝑆[𝑁
𝑡
(𝑝)] and (𝑥

(𝑛)
) ⊂ 𝑁

𝑡
(𝑝) such that

‖𝑥
(𝑛)
‖ → 1 and𝑥(𝑛) 𝑤󳨀→ 𝑥 are given. By Part (i) ofTheorem 19,

we have𝜎𝑝(𝑥
(𝑛)
) → 1 as 𝑛 → ∞. Also,𝑥 ∈ 𝑆[𝑁

𝑡
(𝑝)] implies

‖𝑥‖ = 1. By Part (iii) of Proposition 17, we obtain 𝜎𝑝(𝑥) = 1.
Therefore, we have 𝜎𝑝(𝑥

(𝑛)
) → 𝜎𝑝(𝑥) as 𝑛 → ∞.

Since 𝑥(𝑛) 𝑤󳨀→ 𝑥 and 𝑞𝑘 : 𝑁
𝑡
(𝑝) → R (or C) defined by

𝑞𝑘(𝑥) = 𝑥𝑘 is continuous, 𝑥
(𝑛)

𝑘
→ 𝑥𝑘 as 𝑛 → ∞. Therefore,

𝑥
(𝑛)

→ 𝑥 as 𝑛 → ∞. This completes the proof.

Theorem 22. For any 1 < 𝑝 < ∞, the space 𝑋𝑎(𝑝) has the
uniform Opial property.

Proof. Since the proof can be given by the similar way used
in proving Theorem 13 of Nergiz and Başar [16], we omit the
detail.

6. Conclusion

Wang introduced the sequence space𝑋𝑎(𝑝), in [10]. Although
the domain of several triangle matrices in the classical
sequence spaces ℓ𝑝, 𝑐0, 𝑐, and ℓ∞ and in the Maddox spaces
ℓ(𝑝), 𝑐0(𝑝), 𝑐(𝑝), and ℓ∞(𝑝) was investigated by researchers,
the domain of Nörlund mean neither in a normed sequence
space nor in a paranormed sequence space was not studied
and is still as an open problem. So, we have worked on
the domain of Nörlund mean in the Maddox space ℓ(𝑝).
Additionally, we emphasize on some geometric properties
of the new space 𝑁𝑡(𝑝). It is obvious that the matrix 𝑁𝑡 is
not comparable with the matrices 𝐸𝑟, 𝐴𝑟, or 𝐵(𝑟, 𝑠). So, the
present results are new.

It is clear that by depending on the choice of the sequence
space 𝜇, the characterization of several classes of matrix
transformations from the space 𝑁

𝑡
(𝑝) and into the space

𝑁
𝑡
(𝑝) can be obtained fromTheorems 10 and 11, respectively.

As a natural continuation of this paper, we will study the
domain of the Nörlund mean in Maddox’s spaces ℓ∞(𝑝),
𝑐(𝑝), and 𝑐0(𝑝).
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