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To solve the charge planning problem involving charges and the orders in each charge, a traveling salesman problem based charge
planningmodel and the improved cross entropy algorithm are proposed. Firstly, the charge planning problemwith unknown charge
number is modeled as a traveling salesman problem. The objective of the model is to minimize the dissimilarity costs between
each order and its charge center order, the open order costs, and the unselected order costs. Secondly, the improved cross entropy
algorithm is proposed with the improved initial state transition probability matrix which is constructed according to the differences
of steel grades and order widths between orders. Finally, an actual numerical example shows the effectiveness of the model and the
algorithm.

1. Introduction

Primary steel making is a main stage of steel production
process [1], in which oxygen furnaces or electric furnaces
convert molten iron into batches of molten steel. The batch,
which is made to satisfy a group of orders requiring identical
charge widths and steel grades, is called charge in steel
production terms. Charge plan converts the primary order
requirements into various charges subject to the process
constraints of steel production. Reasonable design of charges
can improve the productivity and cut down the resource and
energy consumption. So, charge planning is a key element of
the production operation management in the steel making
industry and has been discussed a lot in the present literature.
For example, Tang et al. [2] established a mixed integer
programmingmodel and a genetic algorithm for the problem.
In another paper, Tang and Jiang [3] presented a novel
mixed-integer programming model for the charge planning
problem, and two kinds of Lagrangian relaxationmethods are
proposed to solve the problem by using different relaxation
methods. The number of charges in these articles is known
previously, while it is better to be determined by the planner
in the steel production process in order to raise productivity.
Dong et al. [4] transformed the objective of minimizing
the number of charges into a constraint of minimum and

maximum number of charges. However, when we derive a
charge plan, the number of charges also needs to be settled
according to the constraint firstly. Xue et al. [5] modeled
the charge planning problem with unknown charge number
and transformed the model into pseudo-traveling salesman
model. In this model, the dissimilarity costs in a charge
are calculated as total differences among orders in the same
charge, while it is better to be calculated as differences
between orders in each charge and the charge center order
according to the practical steel production process. Wang et
al. [6] developed a new charge plan model and a modified
parthenogenetic algorithm for billet continuous cast process,
but the penalties for the contract products’ widths and steel
grades were removed from the model. Based on the analysis
of the papers mentioned above, a precise charge planning
model, especially with the optimum charge number and
minimum of the dissimilarity costs between each order and
its charge center order, needs further research.

Charge planning problem is a NP-hard combinatorial
optimization problem, so how to improve the speed and
accuracy of the algorithm for this problem is a key point. As
mentioned above, the charge plan is made under some pro-
duction constraints, which can be used to improve the speed
and accuracy of the charge planning algorithm. The existing
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algorithms only consider these constraints as variables in
the charge planning models while the proposed improved
cross entropy (ICE) algorithm in this study could use the
constraints efficiently. Cross entropy (CE) method [7] is a
simple, efficient, and general method for solving NP-hard
combinatorial optimization problems. It has been used to
solve the traveling salesman problem [8], the vehicle routing
problem [9], the buffer allocation problem [10], and the max-
cut problem [11]. These applications demonstrate the power
of the CE method as a generic and practical tool for solving
NP-hard problems.

In this research, the improved cross entropy algorithm
is proposed to solve the charge planning problem with
unknown charge numbers and its objective is to minimize
the dissimilarity costs between each order and its charge
center order. The rest of the paper is organized as follows.
Section 2 states the charge planningmodel based on the trav-
eling salesman problem. Section 3 introduces the improved
cross entropy algorithm in detail. The proposed approach is
applied to an example, and the result is compared with cross
entropy method in Section 4. This study is summarized and
concluded in Section 5.

2. Charge Planning Model Based on Traveling
Salesman Problem

2.1. ProblemDescription. Charge is the basic unit for the steel
making process, and the problem in this study is to establish
the optimum charge plan including the charge center orders
and the orders merged into them. Each order has its own
requirement on steel grade, specification, and due date. The
requirement differences may cause some costs when an order
merged into a charge center order. Therefore, minimize the
requirement differences between charge center orders and the
orders merged into them are one of three objectives of charge
planning problem. The other two objectives are to minimize
the costs of unselected orders and the amount of open orders
which are used to fill in the furnace but do not belong to
any current orders.The requirements for establishing a charge
plan are listed as follows.

(1) The steel grades of the orders in a charge should be in
the same steel grade class.

(2) Thewidths differences of the orders in a charge should
not be larger than the allowed maximum adjustment
width 𝐸.

(3) The thicknesses of orders in a charge should be the
same. In this study, the thicknesses of orders are
supposed all same according to the actual production
process.

(4) The total weight of the contract products in a charge
should not surpass the maximum furnace capacity.

(5) The due dates of the contract products in a charge
should be similar.

2.2. Charge PlanningModel. Given 𝑛 orders, assume that each
single order is less than furnace capacity and cannot be split.
The charge planning problem is modeled as follows.
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piecewise parameter.
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are decision variables, where

𝑋
𝑖𝑗
= {

1, if order 𝑖 is merged into order 𝑗,
0, otherwise.

𝑋
𝑗𝑗
= {

1, if order 𝑗 is charge center,
0, otherwise.

(4)

In the charge planningmodel mentioned above, objective
function (1) minimizes the sum of dissimilarity costs caused
by each order and its charge center order, and the costs
resulted from open order and the penalty costs for unselected
orders.The first part of constraint formula (2) represents that
each order can be assigned to only one charge center at most,
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the second part of constraint formula (2) represents that total
charge weight is less than furnace capacity 𝑇, and the third
part of constraint formula (2) expresses that variables𝑋

𝑖𝑗
and

𝑋
𝑗𝑗
have two possible values: 0 or 1.

2.3. Traveling Salesman Problem Model for Charge Planning.
Regarding the orders as cities, the sum of dissimilarity costs
caused by orders merged into charge centers, the costs
resulted from open order and the penalties for unselected
orders as distances, furnace capacity as the maximum dis-
tance a salesman travels, the charge planning problem can be

regarded as a traveling salesman problem.Theobjective of the
problem is to find an optimum order sequence minimum the
penalty costs that calculated by formula
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The piecewise function (6) means if the sum of dissimilarity
costs caused by the orders merged into the 𝑘th charge and
the open order costs in this charge is larger than the total
unselected penalties, the orders in this charge are canceled,
and then the total penalty of the 𝑘th charge is set to the total
unselected penalties. 𝑗𝑟

𝑘
means the 𝑘th charge center order:
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3. Improved Cross Entropy Algorithm

In the last section, the traveling salesman problem based
model of charge planning problem is constructed.We can use
cross entropy method, which has been proven as an efficient
method for solving the traveling salesman problem, to solve
the charge planning problem as the method. The result did
not meet performance expectation when we use the method
directly, so we need to improve it. The key point in using
cross entropy method to solve a combinatorial optimization
problem is the state transition probability matrix, which can
be improved according to the characteristics of the problem.
In the charge planning problem, two orders with different
steel grades or widths have different dissimilarity costs when
merged into a same charge center, so the matrix elements can
be settled according to the dissimilarity costs as follows.

(1) Assign values to matrix elements according to the
process constraints of the problem:
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(2) Normalize 𝑃:
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Based on the state transition probability matrix above, we
proceed the improved cross entropy algorithm as follows.

Step 1. Generate 𝑁 order paths {(𝑟
0

, 𝑟
1

, . . . , 𝑟
𝑛

), 𝑟}, 𝑟 =

1, . . . , 𝑁 via a Markov process with the initial state transition
probability matrix 𝑃 described by (10), where 𝑟0 is the virtual
starting order.

Step 2. Calculate 𝑆(𝑟) for every order path using formula (5).

Step 3. Order 𝑆(𝑟) from the smallest to the biggest: 𝑆(1) ⩽
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Table 1: Comparison of results by ICE and CE.

ICE CE
Optimum value 2352 2354
Mean running time 26.06 28.98
Mean deviation 8.6 55.3

statistic of the sequence 𝑆(1) ⩽ 𝑆(2) ⩽ ⋅ ⋅ ⋅ ⩽ 𝑆(𝑁) and ⌈⌉

means round up to the nearest integer.

Step 4. Update 𝑃 by taking only those paths that have
a total length less than or equal to 𝛾

𝑡
into account, and
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calculate 𝑆(𝑟) and then stop; otherwise, reiterate from Step 1,
𝑆
𝑡,(1)

denotes the value of smallest cost in iteration 𝑡.

To avoid local optimum, instead of updating the transi-
tionmatrix 𝑃 directly via Step 4, we use a smoothed updating
procedure in which 𝑃

𝑡

𝑖𝑗
= 𝛼𝑝
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+ (1 − 𝛼)𝑝
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, where 𝛼 is

smoothing parameter.

4. Computational Results and Discussion

We test our algorithm on the practical production data
shown in [5] with 30 orders to be arranged. The basic model
parameters are 𝑇𝐻

1
= 5, 𝐸 = 100, 𝑇 = 100, 𝐷 = 30, 𝐹

1
= 5,

𝐹
2
= 0.1, and 𝐹

3
= 𝐹
4
= 2.

To verify the efficiency of the proposed algorithm, we
compare the results obtained by ICE and CE.The algorithms
are run on Matlab 7.0 and a personal computer of Pentium
R, 2GB RAM. There are three parameters in the proposed
improved cross entropy algorithm and cross entropymethod:
sample size𝑁, rarity parameter 𝜌, and smoothing parameter
𝛼. Different values of the parameters may result in different
solution results. We test {100, 300, 500, 700, 1000} for 𝑁,
{0.01, 0.02, 0.05, 0.1, 0.2} for 𝜌, and {0.5, 0.6, 0.7, 0.8, 0.9} for
𝛼. The parameters maintain the same when they are not
the tested parameter. Ten computational tests have been
conducted for each of different values of each parameter.
Mean deviations between the results of the ten tests and the
best result as well as the mean running times are regarded
as performance criteria of the algorithms. According to the
results of the tests, we choose 𝑁 = 500, 𝜌 = 0.02 and 𝛼 =

0.8 in this study. The results of the charge planning problem
mentioned above are shown in Table 1.

The optimum values are the best values obtained by the
two algorithms in 10 times, the mean times are the average
times that the two algorithms run 10 times, and the mean
deviations are the average distances between the 10 values and
the optimum values of the two algorithms in 10 times. The
details of the optimum charge plan obtained by ICE and CE
are shown in Table 2.

Table 2: Optimum charge plans obtained by ICE and CE.

Charges ICE CE
Slabs Weights Slabs Weights

1 12, 13, 17, 15 98 4, 8, 15, 21 99
2 14, 21, 20, 19 95 2, 1, 5, 3 100
3 26, 23, 25, 24 96 26, 24, 23, 25 96
4 4, 9, 16, 18 99 14, 18, 12, 20 98
5 5, 3, 1, 2 100 13, 16, 19, 17 95
6 6, 8, 11, 10, 7 100 11, 10, 7, 9, 6 100
7 29, 30 20 29, 30 20
Unselected 22, 27, 28 63 22, 27, 28 63

From Tables 1 and 2, we can observe that ICE makes
several improvements compared to the CE method: (1)

the optimum value is decreased; (2) the average run time
is decreased by about 11.2%; (3) the mean deviations are
decreased significantly. These observations prove that the
proposed ICE algorithm is better than CE method when
solving the charge planning problems, which means better
productivity and less resource consumption in the actual
production process.

5. Conclusion

In this paper, we described the charge planning problem that
focuses on the unknown charge number and the dissimilarity
costs between orders and those charge center orders in iron
and steel production process. The charge planning model,
which is based on traveling salesman problem, is formulated
and the improved cross entropy algorithm is proposed.
Through the improvement of state transition probability
matrix, the proposed ICE algorithm could take advantage
of the problem’s characteristics. As a result, the speed and
accuracy of the algorithm are improved, which are proved
by an actual production example. Future work will focus on
improving the stability and accuracy of ICE and extending the
model and algorithm to the actual charge planning systems.
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