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A competitive model of market structure with consumptive delays is considered. The local stability of the positive equilibrium and
the existence of local Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic
equation.The explicit formulas determining the stability and other properties of bifurcating periodic solutions are derived by using
normal form theory and center manifold argument. Finally, numerical simulations are given to support the analytical results.

1. Introduction

TheLotka-Volterra predator-preymodel is proposed by Lotka
andVolterra to describe the dynamics betweenpopulations in
ecology. And it has been extensively studied by many authors
[1–7]. Recently, the Lotka-Volterra predator-prey model has
been used in economics by many scholars [8–11]. In [8],
Brander and Taylor proposed a general equilibriummodel of
renewable resource and population dynamics related to the
Lotka-Volterra predator-prey model. They applied the model
to the rise and fall of Easter Island and showed that plausible
parameter values generate a “feast and famine” pattern of
cyclical adjustment in population and resource stocks. In
[9], Delfino and Simmons investigated the links between
the health structure of the population and the productive
system of an economy which is subject to infectious disease
by combining the Lotka-Volterra model with Solow-Swan
growth model. They analyzed the local dynamics and found
that the epidemiological-economic stationary state is locally
stable and an attractor for awide range of initial conditions. In
[10], Farmer derived a simple nonequilibriummodel for price
formation. He applied the model to several commonly used
trading strategies and discussed how the model can be used
to understand the long term evolution of financial markets.
In [11], Kong analyzed the evolution of market structure with

Lotka-Volterra model. And a model of market structure was
established by simulating the relations of product in market:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟
1
𝑥 (𝑡) [1 −

𝑥 (𝑡)

𝑁
1

− 𝜎
12

𝑦 (𝑡)

𝑁
2

] ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑟
2
𝑦 (𝑡) [1 −

𝑦 (𝑡)

𝑁
2

− 𝜎
21

𝑥 (𝑡)

𝑁
1

] ,

(1)

where 𝑥(𝑡) denotes the output of the product𝑋 at time 𝑡. 𝑦(𝑡)
denotes the output of the product𝑌 at time 𝑡. 𝑟

1
and 𝑟
2
denote

the growth rates of the products 𝑋 and 𝑌, respectively. 𝑁
1

and 𝑁
2
denote the production scale of the products 𝑋 and

𝑌, respectively. 𝜎
12
and 𝜎
21
are the competition rates between

the products 𝑋 and 𝑌. In system (1), 𝑋 and 𝑌 are products
of the same type but produced by different manufacturers.
Kong [11] obtained the conditions for the market structure
coming into being by analyzing the stability of system
(1).

It is well known that time delays are universal in the
market structure due to the consumption, competition, or
other reasons. Therefore, it is necessary to incorporate time
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delays into system (1). Based on this consideration, we
consider the following model with time delays:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟
1
𝑥 (𝑡) [1 −

𝑥 (𝑡 − 𝜏
1
)

𝑁
1

− 𝜎
12

𝑦 (𝑡)

𝑁
2

] ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑟
2
𝑦 (𝑡) [1 −

𝑦 (𝑡 − 𝜏
2
)

𝑁
2

− 𝜎
21

𝑥 (𝑡)

𝑁
1

] ,

(2)

where 𝜏
1
and 𝜏
2
are the consumption delays of the product

𝑋 and 𝑌, respectively. All the parameters in system (2) have
the samemeanings as in (1) and all of them are assumed to be
positive.

This paper is organized as follows. In Section 2, we
analyze the local stability of the positive equilibrium and
the existence of the local Hopf bifurcation. In Section 3,
we determine the direction of the Hopf bifurcation and the
stability of the bifurcating periodic solutions by using normal
form theory and center manifold argument. To support the
analytical results, numerical simulations are included at last.

2. Local Stability of the Positive Equilibrium
and Existence of the Hopf Bifurcation

Considering the economical significance of the system (2), we
are interested only in the positive equilibrium of (2).

It is not difficult to verify that if conditions (𝐻
1
) : 0 <

𝜎
12

< 1 and (𝐻
2
) : 0 < 𝜎

21
< 1 hold, system (2) has a unique

positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
), where

𝑥
∗
=

(1 − 𝜎
12
)𝑁
1

(1 − 𝜎
21
)𝑁
2

𝑦
∗
, 𝑦

∗
=

𝑁
2
(1 − 𝜎

21
)

1 − 𝜎
12
𝜎
21

. (3)

Let 𝑢
1
(𝑡) = 𝑥(𝑡)−𝑥

∗
, 𝑢
2
(𝑡) = 𝑦(𝑡)−𝑦

∗
, and 𝑢

3
(𝑡) = 𝑦

2
(𝑡)−

𝑦
∗

2
.We still denote𝑢

1
(𝑡), 𝑢
2
(𝑡) by𝑥(𝑡),𝑦(𝑡), respectively.Then

system (2) can be transformed to the following form:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑎
12
𝑦 (𝑡) + 𝑏

11
𝑥 (𝑡 − 𝜏

1
)

+ 𝑎
13
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

14
𝑥 (𝑡) 𝑥 (𝑡 − 𝜏

1
) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑎
21
𝑥 (𝑡) + 𝑐

22
𝑦 (𝑡 − 𝜏

2
)

+ 𝑎
23
𝑥 (𝑡) 𝑦 (𝑡) + 𝑎

24
𝑦 (𝑡) 𝑦 (𝑡 − 𝜏

2
) ,

(4)

where

𝑎
12

= −
𝑟
1
𝜎
12

𝑁
2

𝑥
∗
, 𝑏

11
= −

𝑟
1

𝑁
1

𝑥
∗
,

𝑎
21

= −
𝑟
2
𝜎
21

𝑁
1

𝑦
∗
, 𝑐

22
= −

𝑟
2

𝑁
2

𝑦
∗
,

𝑎
13

= −
𝑟
1
𝜎
12

𝑁
2

, 𝑎
14

= −
𝑟
1

𝑁
1

,

𝑎
23

= −
𝑟
2
𝜎
21

𝑁
1

, 𝑎
24

= −
𝑟
2

𝑁
2

.

(5)

The linearized system of system (4) is

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑎
12
𝑦 (𝑡) + 𝑏

11
𝑥 (𝑡 − 𝜏

1
) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑎
21
𝑥 (𝑡) + 𝑐

22
𝑦 (𝑡 − 𝜏

2
) .

(6)

The characteristic equation of system (6) at the positive
equilibrium is

𝜆
2
+ 𝐴 + 𝐵𝜆𝑒

−𝜆𝜏
1 + 𝐶𝜆𝑒

−𝜆𝜏
2 + 𝐷𝑒

−𝜆(𝜏
1
+𝜏
2
)
= 0, (7)

where

𝐴 = −𝑎
12
𝑎
21

< 0, 𝐵 = −𝑏
11

> 0,

𝐶 = −𝑐
22

> 0, 𝐷 = 𝑏
11
𝑐
22

> 0.

(8)

Case 1 (𝜏
1
= 𝜏
2
= 0). Equation (7) becomes

𝜆
2
+ (𝐵 + 𝐶) 𝜆 + 𝐴 + 𝐷 = 0. (9)

Obviously, 𝐵 + 𝐶 > 0. Therefore, the roots of (9) must have
negative real parts if condition (𝐻

3
) : 𝐴 + 𝐷 > 0 holds.

Namely, the positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
) is locally stable

if (𝐻
3
) : 𝐴 + 𝐷 > 0 holds.

Case 2 (𝜏
1
> 0, 𝜏
2
= 0). Equation (7) can be transformed into

the following form:

𝜆
2
+ 𝐶𝜆 + 𝐴 + (𝐵𝜆 + 𝐷) 𝑒

−𝜆𝜏
1 = 0. (10)

Let 𝜆 = 𝑖𝜔
1
(𝜔
1
> 0) be a root of (10); then we get

𝐷 sin 𝜏
1
𝜔
1
− 𝐵𝜔
1
cos 𝜏
1
𝜔
1
= 𝐶𝜔
1
,

𝐷 cos 𝜏
1
𝜔
1
+ 𝐵𝜔
1
sin 𝜏
1
𝜔
1
= 𝜔
2

1
− 𝐴.

(11)

From (11), we can have

𝜔
4

1
+ (𝐶
2
− 𝐵
2
− 2𝐴)𝜔

2

1
+ 𝐴
2
− 𝐷
2
= 0. (12)

It is easy to know that (12) has only one positive real root

𝜔
10

=
√− (𝐶

2
− 𝐵
2
− 2𝐴) + √(𝐶2 − 𝐵2 − 2𝐴)

2

− 4 (𝐴2 − 𝐷2)

2
,

(13)

if (𝐻
4
) : 𝐴
2
− 𝐷
2
< 0 holds.

The corresponding critical value of time delay 𝜏
1𝑘
is

𝜏
1𝑘

=
1

𝜔
10

arccos
(𝐷 − 𝐵𝐶)𝜔

2

10
− 𝐴𝐷

𝐵2𝜔2
10

+ 𝐷2
+

2𝑘𝜋

𝜔
10

, 𝑘=0, 1, 2 . . . .

(14)

Next, we verify the transversality condition. Differentiating
(10) with respect to 𝜏

1
, we have

[
𝑑𝜆

𝑑𝜏
1

]

−1

= −
2𝜆 + 𝐶

𝜆 (𝜆2 + 𝐶𝜆 + 𝐴)
+

𝐵

𝜆 (𝐷 + 𝐵𝜆)
−

𝜏
1

𝜆
. (15)
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Thus,

Re [ 𝑑𝜆

𝑑𝜏
1

]

−1

𝜏
1
=𝜏
10

=
2𝜔
2

10
+ 𝐶
2
− 𝐵
2
− 2𝐴

𝐵2𝜔2
10

+ 𝐷2
. (16)

From (13) and (16), it is easy to verify that
Re [𝑑𝜆/𝑑𝜏

1
]
−1

𝜏
1
=𝜏
10

> 0. Thus, the transversality condition is
satisfied. In conclusion, we have the following results.

Theorem 1. If condition (𝐻
4
) : 𝐴
2
− 𝐷
2
< 0 holds, then the

positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
) of system (2) is asymptotically

stable for 𝜏
1
∈ [0, 𝜏

10
) and unstable when 𝜏

1
> 𝜏
10
; system (2)

undergoes Hopf bifurcation at 𝜏
1
= 𝜏
10
.

Case 3 (𝜏
1
= 0, 𝜏
2
> 0). Equation (7) becomes

𝜆
2
+ 𝐵𝜆 + 𝐴 + (𝐶𝜆 + 𝐷) 𝑒

−𝜆𝜏
2 = 0. (17)

Let 𝜆 = 𝑖𝜔
2
(𝜔
2
> 0) be a root of (17); then we get

𝐷 sin 𝜏
2
𝜔
2
− 𝐶𝜔
2
cos 𝜏
2
𝜔
2
= 𝐵𝜔
2
,

𝐷 cos 𝜏
2
𝜔
2
+ 𝐶𝜔
2
sin 𝜏
2
𝜔
2
= 𝜔
2

2
− 𝐴,

(18)

which follows that

𝜔
4

2
+ (𝐵
2
− 𝐶
2
− 2𝐴)𝜔

2

2
+ 𝐴
2
− 𝐷
2
= 0. (19)

Similar to Case 1, we can know that (19) has only one positive
root

𝜔
10

=
√− (𝐵

2
− 𝐶
2
− 2𝐴) + √(𝐵2 − 𝐶2 − 2𝐴)

2

− 4 (𝐴2 − 𝐷2)

2

(20)

if (𝐻
4
) : 𝐴
2
− 𝐷
2
< 0 holds. The corresponding critical value

of time delay 𝜏
2𝑘
is

𝜏
2𝑘
=

1

𝜔
20

arccos
(𝐷−𝐵𝐶)𝜔

2

20
−𝐴𝐷

𝐶2𝜔2
20
+𝐷2

+
2𝑘𝜋

𝜔
20

, 𝑘 = 0, 1, 2 . . . .

(21)

Similar to Case 2, we can get Re [𝑑𝜆/𝑑𝜏
2
]
−1

𝜏
2
=𝜏
20

> 0. That
is, the transversality condition is satisfied.Therefore, we have
the following results.

Theorem 2. If condition (𝐻
4
) : 𝐴
2
− 𝐷
2
< 0 holds, then the

positive equilibrium 𝐸
∗
(𝑥
∗
, 𝑦
∗
)of system (2) is asymptotically

stable for 𝜏
2
∈ [0, 𝜏

20
) and unstable when 𝜏

2
> 𝜏
20
; system (2)

undergoes Hopf bifurcation at 𝜏
2
= 𝜏
20
.

Case 4 (𝜏
1
> 0, 𝜏

2
∈ (0, 𝜏

20
)). We consider (7) with 𝜏

2
in its

stable interval, regarding 𝜏
1
as a parameter.

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (7). Separating real and
imaginary parts, then we get

(𝐵𝜔 − 𝐷 sin 𝜏
2
𝜔) cos 𝜏

1
𝜔 − 𝐷 cos 𝜏

2
𝜔 sin 𝜏

1
𝜔

= −𝐶𝜔 cos 𝜏
2
𝜔,

(𝐵𝜔 − 𝐷 sin 𝜏
2
𝜔) sin 𝜏

1
𝜔 + 𝐷 cos 𝜏

2
𝜔 cos 𝜏

1
𝜔

= 𝜔
2
− 𝐴 − 𝐶𝜔 sin 𝜏

2
𝜔,

(22)

which follows that

𝜔
4
+ (𝐶
2
− 𝐵
2
− 2𝐴)𝜔

2
+ 𝐴
2
− 𝐷
2
− 2

× (𝐶𝜔
3
− (𝐴𝐶 + 𝐵𝐷)𝜔) sin 𝜏

2
𝜔 = 0.

(23)

Suppose the following. (𝐻
5
) : equation (23) has at least

finite positive roots. And all the roots of (23) are denoted
by 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
. For every fixed 𝜔

𝑖
(𝑖 = 1, 2, . . . , 𝑛), the

corresponding critical value of time delay {𝜏
(𝑗)

1
𝑖

| 𝑗 =

0, 1, 2, . . .} is

𝜏
(𝑗)

1
𝑖

=
1

𝜔
𝑖

arccos
[(𝐷 − 𝐵𝐶)𝜔

2

𝑖
− 𝐴𝐷] cos 𝜏

2
𝜔
𝑖

𝐵2𝜔2
𝑖
+ 𝐷2 − 2𝐵𝐷𝜔

𝑖
sin 𝜏
2
𝜔
𝑖

+
2𝑗𝜋

𝜔
𝑖

,

𝑖 = 1, 2, . . . 𝑛, 𝑗 = 0, 1, 2, . . . .

(24)

Let 𝜏∗
10

= min{𝜏
1
𝑖

(𝑗)
| 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 0, 1, 2, . . .}, 𝜔∗

10
= 𝜔
1
𝑖0

.
Differentiating (7) with respect to 𝜏

1
, we obtain

[
𝑑𝜆

𝑑𝜏
1

]

−1

=−
2𝜆 + 𝐵𝑒

−𝜆𝜏
1 + 𝐶𝑒

−𝜆𝜏
2 (1 − 𝜏

2
𝜆) − 𝜏

2
𝐷𝑒
−𝜆(𝜏
1
+𝜏
2
)

𝜆 (𝜆2 + 𝐶𝜆 + 𝐴)

−
𝜏
1

𝜆
.

(25)

Thus,

Re [ 𝑑𝜆

𝑑𝜏
1

]

−1

𝜏
1
=𝜏
∗

10

=
Δ
1
Δ
3
+ Δ
2
Δ
4

Δ2
3
+ Δ2
4

, (26)

where

Δ
1
= 𝐶 cos 𝜏

2
𝜔
∗

10
− 𝜏
2
𝐶𝜔
∗

10
sin 𝜏
2
𝜔
∗

10

+ 𝜏
2
𝐷 sin 𝜏

2
𝜔
∗

10
sin 𝜏
∗

10
𝜔
∗

10

+ (𝐵 − 𝜏
2
𝐷 cos 𝜏

2
𝜔
∗

10
) cos 𝜏∗

10
𝜔
∗

10
,

Δ
2
= 2𝜔
∗

10
− 𝐶 sin 𝜏

2
𝜔
∗

10
− 𝜏
2
𝐶𝜔
∗

10
cos 𝜏
2
𝜔
∗

10

+ 𝜏
2
𝐷 sin 𝜏

2
𝜔
∗

10
cos 𝜏∗
10
𝜔
∗

10

− (𝐵 − 𝜏
2
𝐷 cos 𝜏

2
𝜔
∗

10
) sin 𝜏

∗

10
𝜔
∗

10
,

Δ
3
= 𝐶(𝜔

∗

10
)
2 cos 𝜏

2
𝜔
∗

10
,

Δ
4
= (𝜔
∗

10
)
3

− 𝐴𝜔
∗

10
− 𝐶(𝜔

∗

10
)
2 sin 𝜏

2
𝜔
∗

10
.

(27)
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Obviously, if condition (𝐻
6
) : Δ

1
Δ
3
+ Δ
2
Δ
4

̸= 0, then
the transversality condition is satisfied.Therefore, we have the
following results.

Theorem 3. If conditions (𝐻
5
) and (𝐻

6
) hold and 𝜏

2
∈

(𝜏
20
, 0), then the positive equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) of system (2)

is asymptotically stable for 𝜏
1

∈ [0, 𝜏
∗

10
) and unstable when

𝜏
1
> 𝜏
∗

10
; system (2) undergoes Hopf bifurcation at 𝜏

1
= 𝜏
∗

10
.

Case 5 (𝜏
2
> 0, 𝜏

1
∈ (0, 𝜏

10
)). We consider (7) with 𝜏

1
in its

stable interval, regarding 𝜏
2
as a parameter.

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (7). Separating real and
imaginary parts, then we get

(𝐶𝜔 − 𝐷 sin 𝜏
1
𝜔) cos 𝜏

2
𝜔 − 𝐷 cos 𝜏

1
𝜔 sin 𝜏

2
𝜔

= −𝐵𝜔 cos 𝜏
1
𝜔,

(𝐶𝜔 − 𝐷 sin 𝜏
1
𝜔) sin 𝜏

2
𝜔 + 𝐷 cos 𝜏

1
𝜔 cos 𝜏

2
𝜔

= 𝜔
2
− 𝐴 − 𝐵𝜔 sin 𝜏

1
𝜔,

(28)

which follows that

𝜔
4
+ (𝐵
2
− 𝐶
2
− 2𝐴)𝜔

2
+ 𝐴
2
− 𝐷
2

− 2 (𝐵𝜔
3
− (𝐴𝐵 + 𝐶𝐷)𝜔) sin 𝜏

1
𝜔 = 0.

(29)

Similar to Case 4, suppose the following. (𝐻
7
) : equation

(23) has at least finite positive roots, which are denoted by
𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
. The corresponding critical value of time delay

for every 𝜔
𝑖
is

𝜏
(𝑗)

2
𝑖

=
1

𝜔
2𝑖

arccos
[(𝐷 − 𝐵𝐶)𝜔

2

2𝑖
− 𝐴𝐷] cos 𝜏

1
𝜔
2𝑖

𝐶2𝜔2
2𝑖
+ 𝐷2 − 2𝐶𝐷𝜔

2𝑖
sin 𝜏
1
𝜔
2𝑖

+
2𝑗𝜋

𝜔
2𝑖

,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . . .

(30)

Let 𝜏∗
20

= min{𝜏(𝑗)
2
𝑖

| 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . .}, 𝜔∗
20

= 𝜔
2
𝑖0

.
Next, we give the following assumption:

(𝐻
8
) : [

𝑑Re (𝜆)
𝑑𝜏
2

]

−1

𝜏
2
=𝜏
∗

20

̸= 0. (31)

Hence, we have the following theorem.

Theorem 4. If conditions (𝐻
7
) and (𝐻

8
) hold and 𝜏

1
∈

[0, 𝜏
10
), the positive equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) of system (2) is

asymptotically stable for 𝜏
2
∈ [0, 𝜏

∗

20
) and unstable when 𝜏

2
>

𝜏
∗

20
; system (2) undergoes Hopf bifurcation at 𝜏

2
= 𝜏
∗

20
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will use normal form theory and center
manifold argument introduced by Hassard et al. [12] to
determine the direction of Hopf bifurcation and stability of
the bifurcating periodic solutions of system (2) with respect

to 𝜏
1
for 𝜏
2
∈ (0, 𝜏

20
). Without loss of generality, we assume

that 𝜏∗
2
< 𝜏
∗

10
, where 𝜏∗

2
∈ (0, 𝜏

20
).

Let 𝜏
1
= 𝜏
∗

10
+𝜇, 𝜇 ∈ 𝑅.Then 𝜇 = 0 is theHopf bifurcation

value of system (2). Rescaling the time 𝑡 → 𝑡/𝜏
1
, then system

(2) can be written as

�̇� (𝑡) = 𝐿
𝜇
𝑢
𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (32)

where

𝐿
𝜇
𝜙 = (𝜏

∗

10
+ 𝜇)(𝐴


𝜙 (0) + 𝐶


𝜙(−

𝜏
∗

2

𝜏∗
10

) + 𝐵

𝜙 (−1)) ,

𝐹 (𝜇, 𝑢
𝑡
) = (𝜏

∗

10
+ 𝜇) (𝐹

1
, 𝐹
2
)
𝑇

,

(33)

with

𝜙 (𝜃) = (𝜙
1
(𝜃) , 𝜙

2
(𝜃))
𝑇

∈ 𝐶 ([−1, 0] , 𝑅
2
) ,

𝐴

= (

0 𝑎
12

𝑎
21

0
) , 𝐵


= (

𝑏
11

0

0 0
) ,

𝐶

= (

0 0

0 𝑐
22

) ,

𝐹
1
= 𝑎
13
𝜙
1
(0) 𝜙
2
(0) + 𝑎

14
𝜙
1
(0) 𝜙
1
(−1) ,

𝐹
2
= 𝑎
23
𝜙
1
(0) 𝜙
2
(0) + 𝑎

24
𝜙
2
(0) 𝜙
2
(−

𝜏
∗

2

𝜏∗
10

) .

(34)

By theRiesz representation theorem, there exists a 2×2matrix
function 𝜂(𝜃, 𝜇) : [−1, 0] → 𝑅

2 whose elements are of
bounded variation, such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅
2
) . (35)

In fact, we can choose

𝜂 (𝜃, 𝜇) =

{{{{{{{{

{{{{{{{{

{

(𝜏
∗

10
+ 𝜇) (𝐴


+ 𝐵

+ 𝐶

) , 𝜃 = 0,

(𝜏
∗

10
+ 𝜇) (𝐵


+ 𝐶

) , 𝜃 ∈ [−

𝜏
∗

2

𝜏∗
10

, 0) ,

(𝜏
∗

10
+ 𝜇) 𝐵


, 𝜃 ∈ (−1, −

𝜏
∗

2

𝜏∗
10

) ,

0, 𝜃 = −1.

(36)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅
2
), we define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, −1 ≤ 𝜃 < 0,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(37)

Then system (32) is equivalent to the following operator
equation:

�̇� (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
. (38)
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The adjoint operator 𝐴∗ of 𝐴 is defined by

𝐴
∗
(𝜇) 𝜙 =

{{

{{

{

−
𝑑𝜑 (𝑠)

𝑑𝑠
, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂
𝑇
(𝑠, 𝜇) 𝜑 (−𝑠) , 𝑠 = 0,

(39)

associated with a bilinear form

⟨𝜑, 𝜙⟩ = 𝜑 (0) 𝜙 (0)

− ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(40)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
From the analysis above, we can see that ±𝑖𝜏∗

10
𝜔
∗

10
are the

eigenvalues of 𝐴(0) and they are also eigenvalues of 𝐴∗(0).
We assume that 𝜌(𝜃) = (1, 𝜌

2
)
𝑇
𝑒
𝑖𝜏
∗

10
𝜔
∗

10
𝜃 are the eigenvectors

of 𝐴(0) belonging to the eigenvalue +𝑖𝜏
∗

10
𝜔
∗

10
and 𝜌

∗
(𝜃) =

𝐷(1, 𝜌
∗

2
)
𝑇
𝑒
𝑖𝜏
∗

10
𝜔
∗

10
𝑠 are the eigenvectors of 𝐴∗(0) belonging to

the eigenvalue −𝑖𝜏∗
10
𝜔
∗

10
.

By a simple computation, we can obtain

𝜌
2
=

𝑎
21

𝑖𝜔∗
10

− 𝑐
22
𝑒−𝑖𝜏
∗

2
𝜔
∗

10

,

𝜌
∗

2
= −

𝑖𝜔
∗

10
+ 𝑏
11
𝑒
−𝑖𝜏
∗

10
𝜔
∗

10

𝑎
21

.

(41)

In addition, from (40), we can get

𝐷 = [1 + 𝜌
2
𝜌
∗

2
+ 𝑏
11
𝑒
−𝑖𝜏
∗

10
𝜔
∗

10 + 𝑐
22
𝑒
−𝑖𝜏
∗

2
𝜔
∗

10𝜌
2
𝜌
∗

2
]
−1

, (42)

such that ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞
∗
, 𝑞⟩ = 0.

Next, we get the following coefficients by using a similar
computation process to [13]:

𝑔
20

= 2𝜏
∗

10
𝐷[𝑎
13
𝑞
(2)

(0) + 𝑎
14
𝑞
(1)

(−1)

+ 𝜌
∗

2
(𝑎
23
𝑞
(2)

(0) + 𝑎
24
𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

))] ,

𝑔
11

= 𝜏
∗

10
𝐷[𝑎
13

(𝑞
(2)

(0) + 𝑞
(2)

(0))

+ 𝑎
14

(𝑞
(1)

(−1) + 𝑞
(1)

(−1))

+ 𝜌
∗

2
(𝑎
23

(𝑞
(2)

(0) + 𝑞
(2)

(0))

+ 𝑎
24

(𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

)

+𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

)))] ,

𝑔
02

= 2𝜏
∗

10
𝐷[𝑎
13
𝑞
(2)

(0) + 𝑎
14
𝑞
(1)

(−1)

+ 𝜌
∗

2
(𝑎
23
𝑞
(2)

(0) + 𝑎
24
𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

))] ,

𝑔
21

= 2𝜏
∗

10
𝐷[𝑎
13

(𝑊
(1)

11
(0) 𝑞
(2)

(0) +
1

2
𝑊
(1)

20
(0) 𝑞
(2)

(0)

+ 𝑊
(2)

11
(0) +

1

2
𝑊
(2)

20
(0))

+ 𝑎
14

(𝑊
(1)

11
(0) 𝑞
(1)

(−1) +
1

2
𝑊
(1)

20
(0) 𝑞
(1)

(−1)

+𝑊
(1)

11
(−1) +

1

2
𝑊
(1)

20
(−1))

+ 𝜌
∗

2
(𝑎
23

(𝑊
(1)

11
(0) 𝑞
(2)

(0) +
1

2
𝑊
(1)

20
(0) 𝑞
(2)

(0)

+𝑊
(2)

11
(0) +

1

2
𝑊
(2)

20
(0))

+ 𝑎
24

(𝑊
(2)

11
(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

)

+
1

2
𝑊
(2)

20
(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

)

+ 𝑊
(2)

11
(−

𝜏
∗

2

𝜏∗
10

)𝑞
(2)

(0)

+
1

2
𝑊
(2)

20
(−

𝜏
∗

2

𝜏∗
10

)𝑞
(2)

(0)))] ,

(43)

with

𝑊
20

(𝜃) =
𝑖𝑔
20
𝑞 (0)

𝜏∗
10
𝜔∗
10

𝑒
𝑖𝜏
∗

10
𝜔
∗

10
𝜃

+
𝑖𝑔
02
𝑞 (0)

3𝜏∗
10
𝜔∗
10

𝑒
−𝑖𝜏
∗

10
𝜔
∗

10
𝜃
+ 𝐸
1
𝑒
2𝑖𝜏
∗

10
𝜔
∗

10
𝜃
,

𝑊
11

(𝜃) =−
𝑖𝑔
11
𝑞 (0)

𝜏∗
10
𝜔∗
10

𝑒
𝑖𝜏
∗

10
𝜔
∗

10
𝜃

+
𝑖𝑔
11
𝑞 (0)

𝜏∗
10
𝜔∗
10

𝑒
−𝑖𝜏
∗

10
𝜔
∗

10
𝜃
+ 𝐸
2
.

(44)

And 𝐸
1
, 𝐸
2
satisfy the following equations, respectively:

(
2𝑖𝜔
∗

10
− 𝑏
11
𝑒
−2𝑖𝜏
∗

10
𝜔
∗

10 −𝑎
12

−𝑎
21

2𝑖𝜔
∗

10
− 𝑐
22
𝑒
−2𝑖𝜏
∗

2
𝜔
∗

10

)𝐸
1

= 2(
𝐺
11

𝐺
21

) ,

(
𝑏
11

𝑎
12

𝑎
21

𝑐
22

)𝐸
2
= −(

𝐻
11

𝐻
21

) ,

(45)
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Figure 1: 𝐸
∗
is asymptotically stable for 𝜏

1
= 0.95 < 𝜏

10
= 1.0241 with initial values “0.25;0.92.”
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Figure 2: 𝐸
∗
is unstable for 𝜏

1
= 1.10 > 𝜏

10
= 1.0241 with initial values “0.25;0.92.”

with

𝐺
11

= 𝑎
13
𝑞
(2)

(0) + 𝑎
14
𝑞
(1)

(−1) ,

𝐺
21

= 𝑎
23
𝑞
(2)

(0) + 𝑎
24
𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

) ,

𝐻
11

= 𝑎
13

(𝑞
(2)

(0) + 𝑞
(2)

(0))

+ 𝑎
14

(𝑞
(1)

(−1) + 𝑞
(1)

(−1)) ,

𝐻
21

= 𝑎
23

(𝑞
(2)

(0) + 𝑞
(2)

(0))

+ 𝑎
24

(𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

) + 𝑞
(2)

(0) 𝑞
(2)

(−
𝜏
∗

2

𝜏∗
10

)) .

(46)

Then, we can get the following coefficients:

𝐶
1
(0) =

𝑖

2𝜏∗
10
𝜔∗
10

(𝑔
11
𝑔
20

− 2
𝑔11


2

−

𝑔02

2

3
) +

𝑔
21

2
,
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Figure 3: 𝐸
∗
is asymptotically stable for 𝜏

2
= 1.65 < 𝜏

20
= 1.8631 with initial values “0.25;0.92.”
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Figure 4: 𝐸
∗
is unstable for 𝜏

2
= 2.05 > 𝜏

20
= 1.8631 with initial values “0.25;0.92.”

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏∗
10
)}

,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆


(𝜏
∗

10
)}

𝜏∗
10
𝜔∗
10

.

(47)

In conclusion, we have the following results for system (2).

Theorem 5. If 𝜇
2

> 0 (𝜇
2

< 0), then the Hopf bifurcation
is supercritical (subcritical); if 𝛽

2
< 0 (𝛽

2
> 0), then the

bifurcating periodic solutions are stable (unstable); if 𝑇
2

>

0 (𝑇
2
< 0), then the period of the bifurcating periodic solution

increases (decreases).

4. Numerical Simulation

In this section, some numerical simulations were given
to support the analytical results obtained in the previous
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Figure 5: 𝐸
∗
is asymptotically stable for 𝜏

2
= 0.5, 𝜏

1
= 0.86 < 𝜏

∗

10
= 1.0931 with initial values “0.25;0.92.”
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Figure 6: 𝐸
∗
is unstable for 𝜏

2
= 0.5, 𝜏

1
= 1.15 > 𝜏

∗

10
= 1.0931 with initial values “0.25;0.92.”

sections. Let 𝑟
1
= 2, 𝑟

2
= 1.5, 𝑁

1
= 1, 𝑁

2
= 2, 𝜎

12
= 0.4,

and 𝜎
21

= 0.6; then we have the following system:

𝑑𝑥 (𝑡)

𝑑𝑡
= 2𝑥 (𝑡) [1 − 𝑥 (𝑡 − 𝜏

1
) − 0.2𝑦 (𝑡)] ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 1.5𝑦 (𝑡) [1 −

𝑦 (𝑡 − 𝜏
2
)

2
− 0.6𝑥 (𝑡)] .

(48)

Obviously, conditions (𝐻
1
) and (𝐻

2
) hold. By a simple

calculation, we obtain that (48) has a unique positive equilib-
rium 𝐸

∗
(0.7894, 1.0526). Then we have 𝐴 + 𝐷 = 0.9471 > 0.

Namely, condition (𝐻
3
) holds.

Firstly, by computation we can easily get 𝐴
2
− 𝐷
2

=

−1.4637 < 0; that is, condition (𝐻
4
) holds. Further, we have

𝜔
10

= 1.4150, 𝜏
10

= 1.0241. By Theorem 1, we obtain the
corresponding waveform and the phase plots are shown in
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Figure 7: 𝐸
∗
is asymptotically stable for 𝜏

1
= 0.15, 𝜏

2
= 1.65 < 𝜏

∗

20
= 1.8062 with initial values “0.25;0.92.”
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Figure 8: 𝐸
∗
is unstable for 𝜏

1
= 0.15, 𝜏

2
= 1.95 > 𝜏

∗

20
= 1.8062 with initial values “0.25;0.92.”

Figures 1 and 2. Similarly, we have𝜔
20

= 0.7029, 𝜏
20

= 1.8631.
FromTheorem 2, we obtain the correspondingwaveform and
the phase plots are shown in Figures 3 and 4.

Secondly, we can obtain 𝜔
∗

10
= 1.3398, 𝜏∗

10
= 1.0931

when 𝜏
1

> 0, 𝜏
2

= 0.5 ∈ (0, 𝜏
20
). From Theorem 3, we

know that if we let 𝜏
2
be in its stable interval and regard

𝜏
1
as a parameter, then 𝐸

∗
(0.7894, 1.0526) is asymptotically

stable for 𝜏
1

∈ [0, 𝜏
∗

10
) and unstable when 𝜏

1
> 𝜏
∗

10
and

a Hopf bifurcation occurs. This is can be illustrated by

Figures 5 and 6. In addition, we have 𝜆

(𝜏
∗

10
) = −0.0221 −

0.9139𝑖 and from (47) we get 𝐶
1
(0) = −0.4057+1.9027𝑖, 𝜇

2
=

−18.3575 < 0,𝛽
2
= −0.8114 < 0, and𝑇

2
= 12.7546 > 0. From

Theorem 5we know that the direction of theHopf bifurcation
is subcritical and the bifurcating periodic solutions are stable.

Lastly, for 𝜏
2

> 0, 𝜏
1

= 0.15 ∈ (0, 𝜏
10
), we have 𝜔

∗

20
=

0.7119, 𝜏∗
20

= 1.8062. That is, when 𝜏
2
increases from zero

to 𝜏
∗

20
= 1.8062, 𝐸

∗
(0.7894, 1.0526) is asymptotically stable.

Then it will loses its stability and a Hopf bifurcation occurs
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once 𝜏
2
> 𝜏
∗

20
= 1.8062. This property can be illustrated by

Figures 7 and 8.

5. Conclusion

A competitive model of market structure with consumptive
delays is studied in this paper. By analyzing the distribution
of the roots of the associated characteristic equation, we
obtained the conditions for the local stability of the model
and the existence of the Hopf bifurcation. The main results
are given inTheorems 1–4, which show that the consumptive
delays play important roles in the model. It is proved that
when some conditions are satisfied, then Hopf bifurcation
occurs when the delay passes through the corresponding
critical value. In reality, the occurrence of Hopf bifurcation
means that the coexistence of the two products in system (2)
changes from the positive equilibrium to a limit cycle, which
is not welcome in reality. Furthermore, the explicit formulas
determining the stability and the direction of the bifurcating
periodic solutions are given by using the normal form theory
and center manifold argument. The main results are given
in Theorem 5. From the view of economy, if the bifurcating
periodic solutions are stable, the two products of the same
typemay coexist in an oscillatorymode.This is valuable from
the view of economics. However, our study is restricted only
to the theoretical analysis of such economic phenomena. It
may be helpful for field investigation or experimental studies
on the real situation.
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