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A new two-time level implicit technique based on cubic trigonometric B-spline is proposed for the approximate solution of a
nonclassical diffusion problem with nonlocal boundary constraints. The standard finite difference approach is applied to discretize
the time derivative while cubic trigonometric B-spline is utilized as an interpolating function in the space dimension.The technique
is shown to be unconditionally stable using the von Neumann method. Several numerical examples are discussed to exhibit the
feasibility and capability of the technique. The 𝐿

2
and 𝐿

∞
error norms are also computed at different times for different space size

steps to assess the performance of the proposed technique. The technique requires smaller computational time than several other
methods and the numerical results are found to be in good agreement with known solutions and with existing schemes in the
literature.

1. Introduction

This study deals with the numerical solution of a nonclassical
diffusion problem with two nonlocal boundary constraints
using cubic trigonometric B-splines. This problem arises in
several branches of science. In particular, electrochemistry
[1], heat conduction process [2], thermoelasticity [3], plasma
physics [4], semiconductor modeling [5], biotechnology
[6], control theory, and inverse problems [7]. The analysis,
development, and implementation of numerical methods for
the solution of such diffusion problems have received wide
attention in the literature.

Consider an insulated rod of length 𝐿 located on the 𝑥-
axis of the interval [0, 𝐿]. Let the rod have a source of heat.
Let 𝑢(𝑥, 𝑡) denote the temperature in the insulated rod with
ends held at constant temperatures 𝑇

1
and 𝑇

2
, and the initial

temperature distribution along the rod is 𝑔
1
(𝑥). The problem

is to study the flow of heat in the rod and in this paper the
partial differential equation governing the flow of heat in the

rod is given by the diffusion equation with specification of
energy:

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 𝛼

2 𝜕
2
𝑢

𝜕𝑥2
(𝑥, 𝑡) + 𝑞 (𝑥, 𝑡) 0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑡 ≤ 𝑇

(1)

with the initial constraint

𝑢 (𝑥, 𝑡 = 0) = 𝑔
1
(𝑥) 0 ≤ 𝑥 ≤ 𝐿 (2)

and the nonlocal boundary constraints

𝜉
1
𝑢 (𝑥 = 0, 𝑡) + 𝜉

2
𝑢
𝑥
(𝑥 = 0, 𝑡)

= ∫

𝐿

0

𝑔
2
(𝑥) 𝑢 (𝑥, 𝑡) 𝑑𝑥 + ℎ

1
(𝑡) = 𝑇

1
,

𝜉
3
𝑢 (𝑥 = 𝐿, 𝑡) + 𝜉

4
𝑢
𝑥
(𝑥 = 𝐿, 𝑡)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 849682, 11 pages
http://dx.doi.org/10.1155/2014/849682

http://dx.doi.org/10.1155/2014/849682


2 Abstract and Applied Analysis

= ∫

𝐿

0

𝑔
3
(𝑥) 𝑢 (𝑥, 𝑡) 𝑑𝑥 + ℎ

2
(𝑡) = 𝑇

2

0 < 𝑡 ≤ 𝑇,

(3)

where 𝜉
𝑖
, 𝑖 = 1, 2, 3, 4 are known constants, 𝑞, 𝑔

𝑖
(𝑖 = 1, 2, 3)

are known continuous functions, 𝛼 is the thermal diffusivity
of the rod, and ℎ

𝑖
(𝑖 = 1, 2) are prescribed functions. This

problem has been studied by Dehghan [8], Mart́ın-Vaquero
and Vigo-Aguiar [9], Li and Wu [10], and Golbabai and
Javidi [11]. Several physical circumstances might be modeled
by equation and constraints (1)–(3) and several examples of
application in physics with comprehensive derivations of the
above mentioned problem can be found in [3, 12–14].

There are several numerical methods in the literature
that have been developed for solving the proposed problem
(1) subject to initial and nonlocal boundary constraints (2)-
(3). The methods were based, for instance, on the for-
ward Euler method, the backward Euler approach or the
Crank-Nicolson scheme [15, 16], Laplace transformation [17],
and so forth. Dehghan [8] presented four finite difference
approaches, namely, the BTCS (backward time centred space)
scheme, the implicit (3, 3) Crandall’s formula, the 3-point
FTCS (forward time centred space) two-level scheme, and
the Dufort-Frankel three-level approach for the numerical
solution of parabolic equation with nonlocal specification.
Mart́ın-Vaquero and Vigo-Aguiar [9] improved the order of
convergence of the implicit (3, 3) Crandall’s formula pro-
posed by Dehghan [8] and also improved the accuracy of the
method. Mart́ın-Vaquero and Vigo-Aguiar [18] developed an
algorithm for the solution of the heat conduction equations
with nonlocal constraints which reduced the CPU time and
enhanced the accuracy of (3, 3) Crandall’s formula proposed
in [8]. Li and Wu [10] proposed an algorithm which was
based on the transverse method of lines (TMOL) which
can reduce a nonclassical diffusion equation to a series of
ordinary differential equations (ODEs). Subsequently, the
authors in [10] used an analytic reproducing kernel technique
to solve ODEs with integral boundary constraints. Dehghan
[19, 20], jointly with Tatari and Dehghan [21], has proposed
several efficient techniques for the numerical solutions of
partial differential equations subject to nonlocal boundary
constraints. Golbabai and Javidi [11] introduced a Chebyshev
spectral collocation method (CSCM) based on Chebyshev
polynomials for solving a parabolic problem subject to
nonlocal boundary constraints. For more details on other
numerical methods for the solution of a one-dimensional
heat equation subject to nonlocal boundary constraints in the
literature, see [22–31].

The study of B-spline functions is a key element
in computer-aided geometric design [32–35]. It has also
attracted attention in the literature [36–51] to the numeri-
cal solution of various differential equations [38–40]. This
is because they have important geometric properties and
features that make them amenable to more detailed analysis.
Numerical methods based on B-spline functions of various
degrees have been utilized for solving initial and boundary
value problems. As examples, a cubic B-spline collocation

method was used to solve a nonlinear diffusion equation
subject to certain initial and Dirichlet boundary constraints
[41], a finite element method based on bivariate splines has
been used for solving parabolic partial differential equation
[42], and the combination of finite difference approach and
cubic B-spline method was applied for the solution of a
one-dimensional heat equation subject to local boundary
constraints [43, 44]. Goh et al. [45] presented a comparison
of cubic B-spline and extended cubic uniform B-spline based
collocation methods for solving a one-dimensional heat
equationwith a nonlocal initial constraint and concluded that
extended cubic uniform B-spline with an appropriate value
of parameters gives better results than the cubic B-spline.
A finite difference scheme based on cubic B-spline was also
used for solving the one-dimensional wave equation [43],
advection-diffusion equation [44], one-dimensional coupled
viscous Burgers’ equation [47], system of strongly cou-
pled reaction-diffusion equations [48], and one-dimensional
hyperbolic problems [49].

In our present paper, a new two-time level implicit
technique is developed to approximate the solution of the
nonclassical diffusion problem (1) subject to initial con-
straints in (2) and nonlocal boundary constraints in (1)–
(3). The technique is based on the cubic trigonometric B-
spline functions. A finite difference approach and 𝜃-weighted
scheme are applied for the time and space discretization,
respectively. Some researchers have considered the ordinary
B-spline collocation method for solving the heat equation
subject to local and nonlocal boundary constraints but, so
far as we are aware, not with the cubic trigonometric B-
spline collocation method. Cubic trigonometric B-spline is
used as an interpolating function in the space dimension.
The unconditional stability property of the method is proved
by von Neumann method. The feasibility of the method is
shown by test problems with 𝑘 = 𝑠ℎ2, 𝑠 = 1, 2, 4, 5 instead
of smaller time step size 𝑘 = 0.4ℎ

2 and the approximated
solutions are found to be in good agreement with the known
exact solutions.

The outline of this study is as follows. A numerical
solution of nonclassical diffusion problem is presented in
Section 2. In Section 3, the cubic trigonometric B-spline is
utilized as an interpolating function in the space dimension.
The von Neumann approach is used to prove the stability
of the method in Section 4. Numerical examples are consid-
ered in Section 5 to show the achievability of the proposed
method. Finally, the concluding remarks of this study are
given in Section 6.

2. Solution of Nonclassical Diffusion Problem

Consider a uniform mesh Ω with grid points (𝑥
𝑖
, 𝑡
𝑛
) to

discretize the grid region Δ = [𝑎, 𝑏] × [0, 𝑇] with 𝑥
𝑖
= 𝑎 + 𝑖ℎ,

𝑖 = 0, 1, 2, . . . , 𝑁 and 𝑡
𝑛
= 𝑛𝑘, 𝑛 = 0, 1, 2, 3, . . . ,𝑀,𝑀𝑘 = 𝑇.

Here the quantities ℎ and 𝑘 are mesh space size and time step
size, respectively.The time derivative can be approximated by
using the standard finite difference formula:

𝜕𝑢
𝑛

𝜕𝑡
=
𝑢
𝑛+1
− 𝑢
𝑛

𝑘
. (4)
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Using the approximation of (4), (1) becomes

𝑢
𝑛+1
− 𝑢
𝑛

𝑘
= 𝛼
2 𝜕
2
𝑢
𝑛

𝜕𝑥2
+ 𝑞 (𝑥

𝑖
, 𝑡
𝑛+1
) . (5)

Using 𝜃-weighted technique, the space derivatives of (5) can
be written as

𝑢
𝑛+1
− 𝑢
𝑛

𝑘
= 𝜃(𝛼

2 𝜕
2
𝑢
𝑛+1

𝜕𝑥2
) + (1 − 𝜃) (𝛼

2 𝜕
2
𝑢
𝑛

𝜕𝑥2
)

+ 𝑞 (𝑥
𝑖
, 𝑡
𝑛+1
) ,

(6)

where 0 ≤ 𝜃 ≤ 1 and the subscripts 𝑛 and 𝑛 + 1 are successive
time levels. It is noted that the system becomes an explicit
schemewhen 𝜃 = 0, a fully implicit schemewhen 𝜃 = 1, and a
Crank-Nicolson scheme when 𝜃 = 1/2 [43, 49]. In this paper,
we use the Crank-Nicolson approach. Hence, (6) becomes

𝑢
𝑛+1
− 𝑢
𝑛

𝑘
=
1

2
(𝛼
2 𝜕
2
𝑢
𝑛+1

𝜕𝑥2
) +

1

2
(𝛼
2 𝜕
2
𝑢
𝑛

𝜕𝑥2
) + 𝑞 (𝑥

𝑖
, 𝑡
𝑛+1
) .

(7)

After simplification, (7) leads to

2𝑢
𝑛+1
− 𝑘𝛼
2
𝑢
𝑛+1

𝑥𝑥
= 2𝑢
𝑛
+ 𝑘𝛼
2
𝑢
𝑛

𝑥𝑥
+ 2𝑘𝑞 (𝑥

𝑖
, 𝑡
𝑛+1
) . (8)

The space derivatives are approximated by using cubic
trigonometric B-spline and are discussed in the next section.

3. Cubic Trigonometric B-Spline Technique

In this section, we discuss the cubic trigonometric B-spline
collocation method (CuTBSM) for the numerical solution of
the nonclassical diffusion equation (1). Consider a mesh 𝑎 ≤
𝑥 ≤ 𝑏which is equally divided by knots 𝑥

𝑖
into𝑁 subintervals

[𝑥
𝑖
, 𝑥
𝑖+1
], 𝑖 = 0, 1, 2, . . . , 𝑁 − 1 where 𝑎 = 𝑥

0
< 𝑥
1
< ⋅ ⋅ ⋅ <

𝑥
𝑁
= 𝑏. Our approach for the nonclassical diffusion equation

using collocation method with cubic trigonometric B-spline
is to seek an approximate solution as [37]

𝑈 (𝑥, 𝑡) =

𝑁−1

∑

𝑖=−3

𝐶
𝑖
(𝑡) 𝑇𝐵

𝑖
(𝑥) , (9)

where 𝐶
𝑖
(𝑡) are to be determined for the approximated

solutions 𝑈(𝑥, 𝑡) to the exact solutions 𝑢(𝑥, 𝑡), at the point
(𝑥
𝑖
, 𝑡
𝑛
).𝑇𝐵
𝑖
(𝑥) are twice continuously differentiable piecewise

cubic trigonometric B-spline basis functions over the mesh
defined by [49–51]

𝑇𝐵
𝑖
(𝑥)

=
1

𝜔

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑝
3
(𝑥
𝑖
) , 𝑥 ∈ [𝑥

𝑖
, 𝑥
𝑖+1
]

𝑝 (𝑥
𝑖
) (𝑝 (𝑥

𝑖
) 𝑞 (𝑥
𝑖+2
)

+𝑞 (𝑥
𝑖+3
) 𝑝 (𝑥

𝑖+1
))

+𝑞 (𝑥
𝑖+4
) 𝑝
2
(𝑥
𝑖+1
) , 𝑥 ∈ [𝑥

𝑖+1
, 𝑥
𝑖+2
]

𝑞 (𝑥
𝑖+4
) (𝑝 (𝑥

𝑖+1
) 𝑞 (𝑥
𝑖+3
)

+ 𝑞 (𝑥
𝑖+4
) 𝑝 (𝑥

𝑖+2
))

+𝑝 (𝑥
𝑖
) 𝑞
2
(𝑥
𝑖+3
) , 𝑥 ∈ [𝑥

𝑖+2
, 𝑥
𝑖+3
]

𝑞
3
(𝑥
𝑖+4
) , 𝑥 ∈ [𝑥

𝑖+3
, 𝑥
𝑖+4
] ,

(10)

Table 1: Values TB
𝑖
(𝑥) and its derivatives.

𝑥 𝑥
𝑖

𝑥
𝑖+1

𝑥
𝑖+2

𝑥
𝑖+3

𝑥
𝑖+4

TB
𝑖

0 𝑎
1

𝑎
2

𝑎
1

0
TB
𝑖

0 𝑎
3

0 𝑎
4

0
TB
𝑖

0 𝑎
5

𝑎
6

𝑎
5

0

where

𝑝 (𝑥
𝑖
) = sin(

𝑥 − 𝑥
𝑖

2
) , 𝑞 (𝑥

𝑖
) = sin(

𝑥
𝑖
− 𝑥

2
) ,

𝜔 = sin(ℎ
2
) sin (ℎ) sin(3ℎ

2
)

(11)

and where ℎ = (𝑏 − 𝑎)/𝑛. The approximations𝑈𝑛
𝑖
at the point

(𝑥
𝑖
, 𝑡
𝑛
) over subinterval [𝑥

𝑖
, 𝑥
𝑖+1
] can be defined as

𝑈
𝑛

𝑖
=

𝑖−1

∑

𝑗=𝑖−3

𝐶
𝑛

𝑘
𝑇𝐵
𝑗
(𝑥) . (12)

In order to obtain the approximations to the solutions, the
values of 𝑇𝐵

𝑖
(𝑥) and its derivatives at nodal points are

required and these derivatives are tabulated in Table 1, where

𝑎
1
=

sin2 (ℎ/2)
sin (ℎ) sin (3ℎ/2)

,

𝑎
2
=

2

1 + 2 cos (ℎ)
,

𝑎
3
= −

3

4 sin (3ℎ/2)
,

𝑎
4
=

3

4 sin (3ℎ/2)
,

𝑎
5
=

3 (1 + 3 cos (ℎ))
16 sin2 (ℎ/2) (2 cos (ℎ/2) + cos (3ℎ/2))

,

𝑎
6
= −

3 cos2 (ℎ/2)
sin2 (ℎ/2) (2 + 4 cos (ℎ))

.

(13)

Using approximate functions (10) and (12) and following
Mittal and Arora [46], the values at the knots of𝑈𝑛

𝑖
and their

derivatives up to second order are determined in terms of
time parameters 𝐶𝑛

𝑗
as

𝑢
𝑛

𝑖
= 𝑎
1
𝐶
𝑛

𝑖−3
+ 𝑎
2
𝐶
𝑛

𝑖−2
+ 𝑎
1
𝐶
𝑛

𝑖−1
,

(𝑢
𝑥
)
𝑛

𝑖
= 𝑎
3
𝐶
𝑛

𝑖−3
+ 𝑎
4
𝐶
𝑛

𝑖−1
,

(𝑢
𝑥𝑥
)
𝑛

𝑖
= 𝑎
5
𝐶
𝑛

𝑖−3
+ 𝑎
6
𝐶
𝑛

𝑖−2
+ 𝑎
5
𝐶
𝑛

𝑖−1
.

(14)
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Substituting (12) into (8) gives the following equation:

2

𝑖−1

∑

𝑗=𝑖−3

𝐶
𝑛+1

𝑗
𝑇𝐵
𝑗
(𝑥
𝑖
) − 𝑘𝛼

2

𝑖−1

∑

𝑗=𝑖−3

𝐶
𝑛+1

𝑗
𝑇𝐵


𝑗
(𝑥
𝑖
)

= 2

𝑖−1

∑

𝑗=𝑖−3

𝐶
𝑛

𝑗
𝑇𝐵
𝑗
(𝑥
𝑖
) + 𝑘𝛼

2

𝑖−1

∑

𝑗=𝑖−3

𝐶
𝑛

𝑗
𝑇𝐵


𝑗
(𝑥
𝑖
)

+ 2𝑘𝑞 (𝑥
𝑖
, 𝑡
𝑛+1
) .

(15)

The system thus obtained on simplifying (15) consists of
𝑁 + 1 linear equations in 𝑁 + 3 unknowns 𝐶𝑛+1 =

(𝐶
𝑛+1

−3
, 𝐶
𝑛+1

−2
, 𝐶
𝑛+1

−1
, . . . , 𝐶

𝑛+1

𝑁−1
) at the time level 𝑡 = 𝑡

𝑛+1
. Equa-

tion (9) is applied to the boundary constraints (2) and (3) for
two additional linear equations to obtain a unique solution of
the resulting system:

𝜉
1
𝑈 (0, 𝑡

𝑛+1
) + 𝜉
2
𝑈
𝑥
(0, 𝑡
𝑛+1
)

= ∫

𝐿

0

𝑔
2
(𝑥) 𝑢 (𝑥, 𝑡

𝑛+1
) 𝑑𝑥 + ℎ

1
(𝑡
𝑛+1
) ,

(16)

𝜉
3
𝑈 (𝐿, 𝑡

𝑛+1
) + 𝜉
4
𝑈
𝑥
(𝐿, 𝑡
𝑛+1
)

= ∫

𝐿

0

𝑔
3
(𝑥) 𝑢 (𝑥, 𝑡

𝑛+1
) 𝑑𝑥 + ℎ

2
(𝑡
𝑛+1
) .

(17)

From (15), (16), and (17), the system can be written in the
matrix vector form as follows:

𝑀𝐶
𝑛+1

= 𝑁𝐶
𝑛
+ 𝑏, (18)

where

𝐶
𝑛+1

= [𝐶
𝑛+1

−3
, 𝐶
𝑛+1

−2
, 𝐶
𝑛+1

−1
, . . . , 𝐶

𝑛+1

𝑁−1
]
𝑇

,

𝐶
𝑛
= [𝐶
𝑛

−3
, 𝐶
𝑛

−2
, 𝐶
𝑛

−1
, . . . , 𝐶

𝑛

𝑁−1
]
𝑇

,

𝑏 = [𝛼
1
(𝑡
𝑛+1
) , 2𝑘𝑞 (𝑥

0
, 𝑡
𝑛+1
) , 2𝑘𝑞 (𝑥

1
, 𝑡
𝑛+1
) ,

. . . , 2𝑘𝑞 (𝑥
𝑁
, 𝑡
𝑛+1
) , 𝛽
1
(𝑡
𝑛+1
)]
𝑇

,

𝑛 = 0, 1, 2, . . . ,𝑀

(19)

and𝑀 and𝑁 are𝑁 + 3-dimensional matrix given by

𝑀 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑝
0
𝑞
0
𝑝
00

0 ⋅ ⋅ ⋅ 0 0

𝑝
1
𝑞
1
𝑝
1
0 ⋅ ⋅ ⋅ 0 0

0 𝑝
1
𝑞
1
𝑝
1
0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑝

1
𝑞
1
𝑝
1

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑝
0
𝑞
0
𝑝
00

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑁 =

[
[
[
[
[
[
[
[

[

0 0 0 0 ⋅ ⋅ ⋅ 0 0

𝑝
2
𝑞
2
𝑝
2
0 ⋅ ⋅ ⋅ 0 0

0 𝑝
2
𝑞
2
𝑝
2
0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑝

2
𝑞
2
𝑝
2

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 0

]
]
]
]
]
]
]
]

]

,

(20)

where
𝑝
0
= 𝜉
1
𝑎
1
+ 𝜉
2
𝑎
3
, 𝑞

0
= 𝜉
1
𝑎
1
,

𝑝
00
= 𝜉
1
𝑎
1
+ 𝜉
2
𝑎
4
, 𝑝

1
= 2𝑎
1
− 𝑘𝛼
2
𝑎
5
,

𝑞
1
= 2𝑎
2
− 𝑘𝛼
2
𝑎
6
, 𝑝

2
= 2𝑎
1
+ 𝑘𝛼
2
𝑎
5
,

𝑞
2
= 2𝑎
2
+ 𝑘𝛼
2
𝑎
6
,

𝛼
1
(𝑡
𝑛+1
) = ∫

𝐿

0

𝑔
2
(𝑥) 𝑢 (𝑥, 𝑡

𝑛+1
) 𝑑𝑥 + ℎ

1
(𝑡
𝑛+1
) ,

𝛽
1
(𝑡
𝑛+1
) = ∫

𝐿

0

𝑔
3
(𝑥) 𝑢 (𝑥, 𝑡

𝑛+1
) 𝑑𝑥 + ℎ

2
(𝑡
𝑛+1
) .

(21)

Thus, the system (18) becomes a matrix system of dimension
(𝑁 + 3) × (𝑁 + 3) which is a tridiagonal system that can be
solved by theThomas Algorithm [16].

3.1. Initial State Vector 𝐶0. After the initial vectors 𝐶0 have
been computed from the initial constraints, the approximate
solutions 𝑈𝑛+1

𝑖
at a particular time level can be calculated

repeatedly by solving the recurrence relation (15) [40].
The initial vectors 𝐶0 can be obtained from the initial

condition and boundary values of the derivatives of the initial
condition as follows [40, 49]:

(𝑈
0

𝑖
)
𝑥
= 𝑔


1
(𝑥
𝑖
) , 𝑖 = 0,

𝑈
0

𝑖
= 𝑔
1
(𝑥
𝑖
) , 𝑖 = 0, 1, 2, . . . , 𝑁,

(𝑈
0

𝑖
)
𝑥
= 𝑔


1
(𝑥
𝑖
) , 𝑖 = 𝑁.

(22)

Thus (22) yields a (𝑁+3)×(𝑁+3)matrix system, of the form

𝐴𝐶
𝑛
= 𝑑, (23)

where

𝐶
𝑛
= [𝐶
𝑛

−3
, 𝐶
𝑛

−2
, 𝐶
𝑛

−1
, . . . , 𝐶

𝑛

𝑁−1
]
𝑇

,

𝑑 = [𝑔


1
(𝑥
0
) , 𝑔
1
(𝑥
0
) , . . . , 𝑔

1
(𝑥
𝑁
) , 𝑔


1
(𝑥
𝑁
)]
𝑇

, 𝑛 = 0,

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
3
0 𝑎
4
0 ⋅ ⋅ ⋅ 0 0

𝑎
1
𝑎
2
𝑎
1
0 ⋅ ⋅ ⋅ 0 0

0 𝑎
1
𝑎
2
𝑎
1
0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎

1
𝑎
2
𝑎
1

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎
3
0 𝑎
4

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(24)

The solution of this system can be found by the use of the
Thomas Algorithm.

4. Stability

In this section, the von Neumann stability method is applied
for investigating the stability of the proposed scheme. This
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approach has been used by many researchers [18, 40, 44,
45, 47–49]. Substituting the approximate solution 𝑈 and
its derivatives at knots with 𝑞(𝑥, 𝑡) = 0, into (6) yields a
difference equation with variables 𝐶

𝑚
given by

(𝑎
1
− 𝑘𝜃𝛼

2
𝑎
5
) 𝐶
𝑛+1

𝑚−3
+ (𝑎
2
− 𝑘𝜃𝛼

2
𝑎
6
) 𝐶
𝑛+1

𝑚−2

+ (𝑎
1
− 𝑘𝜃𝛼

2
𝑎
5
) 𝐶
𝑛+1

𝑚−1

= (𝑎
1
+ 𝑘 (1 − 𝜃) 𝛼

2
𝑎
5
) 𝐶
𝑛

𝑚−3
+ (𝑎
2
+ 𝑘 (1 − 𝜃) 𝛼

2
𝑎
6
) 𝐶
𝑛

𝑚−2

+ (𝑎
1
+ 𝑘 (1 − 𝜃) 𝛼

2
𝑎
5
) 𝐶
𝑛

𝑚−1
.

(25)

Substituting the values of 𝑎
𝑖
, 𝑖 = 1, 2, 5, 6 into (25) we obtain

(𝑝
1
− 𝑘
2
𝜃𝛼
2
𝑝
2
) 𝐶
𝑛+1

𝑚−3
+ (𝑝
3
+ 𝑘
2
𝜃𝛼
2
𝑝
4
) 𝐶
𝑛+1

𝑚−2

+ (𝑝
1
− 𝑘
2
𝜃𝛼
2
𝑝
2
) 𝐶
𝑛+1

𝑚−1

= (𝑝
1
+ 𝑘
2
(1 − 𝜃) 𝛼

2
𝑝
2
) 𝐶
𝑛

𝑚−3
,

+ (𝑝
3
− 𝑘
2
(1 − 𝜃) 𝛼

2
𝑝
4
) 𝐶
𝑛

𝑚−2

+ (𝑝
1
+ 𝑘
2
(1 − 𝜃) 𝛼

2
𝑝
2
) 𝐶
𝑛

𝑚−1
,

(26)

where

𝑝
1
= 16 sin2 (ℎ

2
)(2 cos(ℎ

2
) + cos(3ℎ

2
))

× (1 + 2 cos(ℎ
2
)) ,

𝑝
2
= 3 sin (ℎ) sin(3ℎ

2
)(1 + 3 cos(ℎ

2
)) cos ec2 (ℎ

2
)

× (1 + 2 cos(ℎ
2
)) ,

𝑝
3
= 32 sin (ℎ) sin(3ℎ

2
)(2 cos(ℎ

2
) + cos(3ℎ

2
)) ,

𝑝
4
= 24 cot2 (ℎ

2
) sin ℎ sin(3ℎ

2
)(2 cos(ℎ

2
)+cos(3ℎ

2
)) .

(27)

Simplifying it leads to

𝑤
1
𝐶
𝑛+1

𝑚−3
+ 𝑤
2
𝐶
𝑛+1

𝑚−2
+ 𝑤
1
𝐶
𝑛+1

𝑚−1

= 𝑤
3
𝐶
𝑛

𝑚−3
+ 𝑤
4
𝐶
𝑛

𝑚−2
+ 𝑤
3
𝐶
𝑛

𝑚−1
,

(28)

where

𝑤
1
= (𝑝
1
− 𝑘𝜃𝛼

2
𝑝
2
) ,

𝑤
2
= (𝑝
3
+ 𝑘𝜃𝛼

2
𝑝
4
) ,

𝑤
3
= (𝑝
1
+ 𝑘 (1 − 𝜃) 𝛼

2
𝑝
2
) ,

𝑤
4
= (𝑝
3
− 𝑘 (1 − 𝜃) 𝛼

2
𝑝
4
) .

(29)

Now on inserting the trial solutions (one Fourier mode out
of the full solution) at a given point 𝑥

𝑚
is 𝐶𝑛
𝑚
= 𝛿
𝑛 exp(𝑖𝑚𝜂ℎ)

into (28) and rearranging the equations, 𝜂 is the mode
number, ℎ is the element size, and 𝑖 = √−1, we get

𝑤
1
𝛿
𝑛+1
𝑒
𝑖𝜂(𝑚−3)ℎ

+ 𝑤
2
𝛿
𝑛+1
𝑒
𝑖𝜂(𝑚−2)ℎ

+ 𝑤
1
𝛿
𝑛+1
𝑒
𝑖𝜂(𝑚−1)ℎ

= 𝑤
3
𝛿
𝑛
𝑒
𝑖𝜂(𝑚−3)ℎ

+ 𝑤
4
𝛿
𝑛
𝑒
𝑖𝜂(𝑚−2)ℎ

+ 𝑤
3
𝛿
𝑛
𝑒
𝑖𝜂(𝑚−1)ℎ

.

(30)

Dividing (30) by 𝛿𝑛𝑒𝑖𝜂(𝑚−2)ℎ and rearranging the equation, we
get

𝛿 (𝑤
2
+ 𝑤
1
cos (𝜂ℎ)) = (𝑤

4
+ 𝑤
3
cos (𝜂ℎ)) . (31)

Let

𝐴 = 𝑝
3
+ 𝑝
1
cos (𝜂ℎ) ,

𝐵 = 𝑘𝛼
2
(𝑝
4
− 𝑝
2
cos (𝜂ℎ)) .

(32)

Therefore, (31) can be written as

𝛿 (𝐴 + 𝜃𝐵) − (𝐴 − (1 − 𝜃) 𝐵) = 0. (33)

Equation (33) can be rewritten as

𝛿 [𝑋
2
+ 𝑖𝑌] − [𝑋

1
+ 𝑖𝑌] = 0, (34)

where

𝑋
1
= (𝐴 − (1 − 𝜃) 𝐵) ,

𝑋
2
= (𝐴 + 𝜃𝐵) ,

𝑌 = 0.

(35)

For stability, the maximummodulus of the eigenvalues of the
matrix has to be less than or equal to one [47]. Since 𝐴 > 0,
𝐵 > 0, and 0 ≤ 𝜃 ≤ 1, we always have

𝜉


2

=
𝑋
2

1
+ 𝑌
2

𝑋
2

2
+ 𝑌2

≤ 1. (36)

Thus, from (36), the proposed scheme for nonclassical dif-
fusion equation (with term, 𝑞(𝑥, 𝑡) = 0) is unconditionally
stable and it is also unconditionally stable with a general term
𝑞(𝑥, 𝑡), since themodulus of the eigenvaluesmust be less than
one [47]. We recall Duhamel’s principle ([15], chapter 9); a
scheme is stable for equation 𝑃

𝑘,ℎ
V = 𝑓 if it is stable for the

equation 𝑃
𝑘,ℎ
V = 0. This means that there are no constraints

on grid sizeℎ and step size in time level 𝑘, butwe should prefer
those values of ℎ and 𝑘 for which we obtain the best accuracy
of the scheme.
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Table 2: Absolute errors for Example 1 with ℎ = 0.05 and several values of time step by present method (CuTBSM) and compare with TMOL
[10].

𝑡
𝑘 = 0.01 Present method 𝑘 = 0.005 Present method 𝑘 = 0.001 Present method

TMOL [10] TMOL [10] TMOL [10]
0.1 4.5𝐸 − 04 4.31𝐸 − 04 4.0𝐸 − 05 1.96𝐸 − 04 1.5𝐸 − 05 8.25𝐸 − 06

0.3 1.4𝐸 − 03 5.88𝐸 − 04 1.4𝐸 − 04 2.69𝐸 − 04 2.5𝐸 − 05 1.33𝐸 − 05

0.5 2.5𝐸 − 03 5.20𝐸 − 04 2.5𝐸 − 04 2.38𝐸 − 04 2.4𝐸 − 05 1.20𝐸 − 05

0.7 4.0𝐸 − 03 4.23𝐸 − 04 4.0𝐸 − 04 1.92𝐸 − 04 2.7𝐸 − 05 8.36𝐸 − 06

0.9 5.5𝐸 − 03 3.32𝐸 − 04 5.5𝐸 − 04 1.50𝐸 − 04 6.0𝐸 − 05 4.03𝐸 − 06

1.0 6.0𝐸 − 04 2.91𝐸 − 04 6.0𝐸 − 04 1.31𝐸 − 04 6.8𝐸 − 05 1.90𝐸 − 06

5. Results and Discussions

In this section, the cubic trigonometric B-spline collocation
method is employed to obtain the numerical solutions for
one-dimensional nonclassical diffusion problem with non-
local boundary constraints given in (1)–(3). Two numerical
examples are discussed in this section to exhibit the capability
and efficiency of the proposed trigonometric spline method.
Numerical results are compared with existing methods in the
literature and with the exact solution at the different nodal
points 𝑥

𝑖
for some time levels 𝑡

𝑛
using some particular space

step size ℎ and time step 𝑘. In order to calculate themaximum
errors and relative 𝐿

2
error norms of the proposed method

numerically, we use the following formulas:

𝐿
∞
= max
𝑖

𝑈num (𝑥𝑖, 𝑇) − 𝑢exact (𝑥𝑖, 𝑇)
 ,

𝐿
2
=

𝑈num (𝑥, 𝑡) − 𝑢exact (𝑥, 𝑡)


𝑢exact (𝑥, 𝑡)


.

(37)

Example 1. Consider the nonclassical diffusion problem ((1)–
(3)), with

𝑞 (𝑥, 𝑡) = −𝑒
−(𝑥+sin 𝑡)

(1 + cos 𝑡) , 0 ≤ 𝑥 ≤ 1, 0 < 𝑡 ≤ 1,

𝑔
1
(𝑥) = 𝑒

−𝑥
, 0 ≤ 𝑥 ≤ 1,

𝜉
𝑖
(𝑖 = 1, 3) = 1, 𝜉

𝑖
(𝑖 = 2, 4) = 0,

𝑔
2
(𝑥) =

𝑒

𝑒 − 2
𝑥, 𝑔

3
(𝑥) =

2

𝑒 + sin 1 − cos 1
cos𝑥,

𝐿 = 1,

ℎ
𝑖
(𝑡) (𝑖 = 1, 2) = 0, 0 < 𝑡 ≤ 1.

(38)

This test problem is from Dehghan [8] and Li and Wu [10]
and the known solution is 𝑢(𝑥, 𝑡) = 𝑒−(𝑥+sin 𝑡).We compare the
maximum errors with TMOL [10] when they are considered
with space size ℎ = 0.05 and errors are recorded with several
values of time step 𝑘, given in Table 2 and also shown in
Figure 1. It is worth noting that the results obtained using
CuTBSM are more accurate as compared to TMOL [10].
We also compare the relative errors of numerical value of
𝑢(0.6, 0.1) with different space step ℎ = 0.05, 0.025, 0.01
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Figure 1: Absolute errors of numerical values at different time levels
for Example 1 by using ℎ = 0.05 and 𝑘 = 0.001.
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Exact and Approx. Sol at t = 0.9
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Exact and Approx. Sol at t = 0.5

Figure 2: A comparison of numerical solution and known solution
at different time levels for Example 1 with ℎ = 0.05 and 𝑘 = 0.01.

and with time step size 𝑘 = 𝑠ℎ
2, 𝑠 = 1, 2, 4, 5, instead of

𝑘 = 0.4ℎ
2 which was used in the BTCS [8], the implicit

(3, 3) Crandall’s formula [8], the 3-point FTCS [8], and
the Dufort-Frankel three-level approach [8] and TMOL
[10], and these results are tabulated in Table 3. It is clearly
shown from this table that the obtained results by using
CuTBSM aremore precise as compared tomethods in [8, 10].
Figure 2 shows the approximate solution and exact solution
for this example at different time levels with ℎ = 0.05 and
𝑘 = 0.01.
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Table 3: Relative errors of numerical method at 𝑢 (0.6, 0.1) for Example 1 with 𝑘 = 0.4 ℎ2 and various values of space step.

ℎ
Present method

(𝑘 = 5ℎ2)
Present method

(𝑘 = 4ℎ2)
Present method

(𝑘 = 2ℎ
2)

Present method
(𝑘 = ℎ

2)
Present method
(𝑘 = 0.4ℎ2)

0.05 4.94𝐸 − 04 3.88𝐸 − 04 1.76𝐸 − 04 7.08𝐸 − 05 7.39𝐸 − 06

0.025 1.23𝐸 − 04 9.69𝐸 − 05 4.41𝐸 − 05 1.77𝐸 − 05 1.87𝐸 − 06

0.010 1.97𝐸 − 05 1.55𝐸 − 05 7.08𝐸 − 06 2.86𝐸 − 06 3.26𝐸 − 07

ℎ
BTCS [8]
(𝑘 = 0.4ℎ2)

Crandall [8]
(𝑘 = 0.4ℎ2)

FTCS [8]
(𝑘 = 0.4ℎ2)

Dufort-Frankel
[8]

(𝑘 = 0.4ℎ2)

TMOL [10]
(𝑘 = 0.4ℎ2)

0.05 6.3𝐸 − 02 3.9𝐸 − 03 6.4𝐸 − 02 6.8𝐸 − 02 2.8𝐸 − 04

0.025 1.5𝐸 − 02 2.4𝐸 − 04 1.6𝐸 − 02 1.7𝐸 − 02 7.1𝐸 − 05

0.010 4.0𝐸 − 03 1.5𝐸 − 05 4.1𝐸 − 03 4.1𝐸 − 03 —

Table 4: Absolute errors for Example 2 with ℎ = 0.05 and several values of time step by present method and TMOL [10].

𝑡
𝑘 = 0.01 Present method 𝑘 = 0.005 Present method 𝑘 = 0.001 Present method 𝑘 = 0.0005 Present method

TMOL [10] TMOL [10] TMOL [10] TMOL [10]
0.1 7.0𝐸 − 04 1.80𝐸 − 03 1.6𝐸 − 04 8.66𝐸 − 04 8.0𝐸 − 05 1.15𝐸 − 04 4.0𝐸 − 05 2.31𝐸 − 05

0.3 9.0𝐸 − 04 1.77𝐸 − 03 1.8𝐸 − 04 8.44𝐸 − 04 1.0𝐸 − 05 9.95𝐸 − 05 5.0𝐸 − 05 8.09𝐸 − 06

0.5 7.0𝐸 − 04 1.16𝐸 − 03 1.4𝐸 − 04 5.48𝐸 − 04 7.0𝐸 − 05 5.49𝐸 − 05 3.5𝐸 − 05 8.27𝐸 − 06

0.7 4.5𝐸 − 04 7.56𝐸 − 04 9.0𝐸 − 05 3.51𝐸 − 04 4.5𝐸 − 05 2.79𝐸 − 05 2.4𝐸 − 05 1.31𝐸 − 06

0.9 3.0𝐸 − 04 5.09𝐸 − 04 6.0𝐸 − 05 2.33𝐸 − 04 3.0𝐸 − 05 1.33𝐸 − 05 1.4𝐸 − 05 1.46𝐸 − 06

1.0 2.4𝐸 − 04 4.25𝐸 − 04 4.5𝐸 − 05 1.93𝐸 − 04 2.4𝐸 − 05 8.84𝐸 − 06 1.2𝐸 − 05 1.46𝐸 − 06

Table 5: Absolute errors of numerical value of 𝑢 for Example 2 with different space step size, 𝑘 = 0.0001, at selected time levels and compare
with CSCM [11].

𝑡
ℎ = 0.25 Present method ℎ = 0.125 Present method ℎ = 0.0625 Present method
CSCM [11] CSCM [11] CSCM [11]

0.1 1.07𝐸 − 02 1.91𝐸 − 03 1.80𝐸 − 03 4.50𝐸 − 04 3.22𝐸 − 04 9.77𝐸 − 05

0.5 8.60𝐸 − 03 1.73𝐸 − 03 1.60𝐸 − 03 4.21𝐸 − 04 2.77𝐸 − 04 9.58𝐸 − 05

0.6 7.90𝐸 − 03 1.52𝐸 − 03 1.40𝐸 − 03 3.70𝐸 − 04 2.53𝐸 − 04 8.49𝐸 − 05

0.9 5.70𝐸 − 03 1.06𝐸 − 03 1.00𝐸 − 03 2.58𝐸 − 04 1.84𝐸 − 04 6.04𝐸 − 05

1.0 5.10𝐸 − 03 9.50𝐸 − 04 9.26𝐸 − 04 2.32𝐸 − 04 1.64𝐸 − 04 5.44𝐸 − 05

Example 2. We consider another numerical test problem,
with

𝑞 (𝑥, 𝑡) =

−2 (𝑥
2
+ 𝑡 + 1)

(𝑡 + 1)
3

0 ≤ 𝑥 ≤ 1, 0 < 𝑡 ≤ 1,

𝑔
1
(𝑥) = 𝑥

2
, 0 ≤ 𝑥 ≤ 1,

𝜉
𝑖
(𝑖 = 1, 3) = 1, 𝜉

𝑖
(𝑖 = 2, 4) = 0, 𝑔

2
(𝑥) = 𝑥,

𝑔
3
(𝑥) = 𝑥, 𝐿 = 1, 0 ≤ 𝑥 ≤ 1,

ℎ
1
(𝑡) =

−1

4(𝑡 + 1)
2
,

ℎ
2
(𝑡) =

3

4(𝑡 + 1)
2

0 < 𝑡 ≤ 1.

(39)

The exact solution of this equation is 𝑢(𝑥, 𝑡) = 𝑥
2
/(𝑡 + 1)

2

and this test problem has been taken from [8, 10, 11]. This
problem is tested using different values of ℎ and 𝑘 to show
the capability of the present method for solving nonclassical
diffusion equation ((1)–(3)). The final time is taken 𝑇 = 1.0.
Themaximum errors of the numerical method are calculated
at different time levels with different time step size and it is
observed that they are more accurate as compared to TMOL
[10] and Chebyshev spectral collocation method (CSCM)
based on Chebyshev polynomials [11]. The numerical errors
are tabulated in Tables 4 and 5 and are also depicted
graphically in Figure 3.The relative errors of numerical value
𝑢(0.6, 1.0) with different space step ℎ = 0.05, 0.025, 0.01 and
with time step size 𝑘 = 𝑠ℎ

2, 𝑠 = 1, 2, 4, 5, instead of 𝑘 =
0.4ℎ
2 which was used in the BTCS [8], the implicit (3, 3)

Crandall’s formula [8], the 3-point FTCS [8], and the Dufort-
Frankel three-level approach [8] and TMOL [10] and they are
recorded in Table 6. It is worth noting that numerical results
are much better than the methods in [8, 10, 11]. A comparison
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Table 6: Relative errors of numerical method at 𝑢 (0.6, 1.0) for Example 2 with various values of space step.

ℎ
Present method

(𝑘 = 5 ℎ2)
Present method

(𝑘 = 4 ℎ2)
Present method

(𝑘 = 2 ℎ
2)

Present method
(𝑘 = ℎ

2)
Present method
(𝑘 = 0.4 ℎ2)

0.05 5.28𝐸 − 04 4.15𝐸 − 04 1.89𝐸 − 04 7.81𝐸 − 05 8.84𝐸 − 06

0.025 1.14𝐸 − 04 8.96𝐸 − 05 4.74𝐸 − 05 1.91𝐸 − 05 2.21𝐸 − 06

0.010 2.11𝐸 − 05 1.66𝐸 − 05 7.59𝐸 − 06 3.06𝐸 − 06 3.53𝐸 − 07

ℎ
BTCS [8]
(𝑘 = 0.4 ℎ2)

Crandall [8]
(𝑘 = 0.4 ℎ2)

FTCS [8]
(𝑘 = 0.4 ℎ2)

Dufort-Frankel [8]
(𝑘 = 0.4 ℎ2)

TMOL [10]
(𝑘 = 0.4 ℎ2)

0.05 7.3𝐸 − 02 3.8𝐸 − 03 7.5𝐸 − 02 7.8𝐸 − 02 1.6𝐸 − 03

0.025 1.8𝐸 − 02 2.1𝐸 − 04 1.9𝐸 − 02 1.9𝐸 − 02 4.0𝐸 − 04

0.010 4.4𝐸 − 03 1.2𝐸 − 05 4.0𝐸 − 03 3.9𝐸 − 03 —

0.2 0.4 0.6 0.8 1.0

0.00002

0.00004

0.00006

0.00008

0.0001
At t = 0.1

At t = 0.3

At t = 0.5

At t = 0.7

At t = 0.9
At t = 1.0
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Figure 3: Absolute errors of numerical values at different time levels
for Example 2 by using ℎ = 0.05 and 𝑘 = 0.001.
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x

Exact and Approx. Sol at t = 0.1

Exact and Approx. Sol at t = 0.3

Exact and Approx. Sol at t = 1.0

Exact and Approx. Sol at t = 0.9

Exact and Approx. Sol at t = 0.7

Exact and Approx. Sol at t = 0.5

Figure 4: A comparison of numerical solution and known solution
at different time levels for Example 2 with ℎ = 0.05 and 𝑘 = 0.01.

of numerical solutions at different time levels with known
solution is presented graphically in the Figure 4.

Example 3. Finally, we consider nonclassical diffusion prob-
lem ((1)-(3)), with

𝑞 (𝑥, 𝑡) =
−𝑒
𝑥
(1 + 𝑡)

2

(1 + 𝑡2)
2
, 0 ≤ 𝑥 ≤ 1, 0 < 𝑡 ≤ 1,

𝑔
1
(𝑥) = 𝑒

𝑥
, 0 ≤ 𝑥 ≤ 1,
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Figure 5: Absolute errors of numerical values at𝑇 = 1 for Example 3
with ℎ = 0.01 and different time step size.

𝜉
𝑖
(𝑖 = 1, 3) = 1, 𝜉

𝑖
(𝑖 = 2, 4) = 0, 𝑔

2
(𝑥) =

(𝑥 + 1)

𝑒
,

𝑔
3
(𝑥) = 0, 𝐿 = 1, 0 ≤ 𝑥 ≤ 1,

ℎ
1
(𝑡) = 0, ℎ

2
(𝑡) =

𝑒

(1 + 𝑡2)
0 < 𝑡 ≤ 1.

(40)

This test problem has been taken from [15] and its exact
solution is 𝑢(𝑥, 𝑡) = 𝑒

𝑥
/(1 + 𝑡

2
). The final time is taken

as 𝑇 = 1. The maximum errors of the proposed scheme
are considered at 𝑇 = 1 with different time step sizes that
are depicted graphically in Figure 5. The relative errors of
numerical value 𝑢(0.6, 1.0) are calculated with different space
size step with 𝑘 = 𝑠ℎ

2, 𝑠 = 1, 2, 4, 5, and they are given in
Table 7. It is worth noting that the numerical results are found
to be in good agreement with exact solutions. A comparison
of numerical solutions at different time levels with known
solution is presented graphically in Figure 6.

6. Concluding Remarks

In this paper, a new two-time level implicit scheme based
on cubic trigonometric B-spline has been used to solve the
nonclassical diffusion problem with known initial and with
nonlocal boundary constraints instead of the usual boundary
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Table 7: Relative errors of numerical method at 𝑢 (0.6, 1.0) for Example 3 with different time step size and various values of space step.

ℎ
Present method

(𝑘 = 5 ℎ2)
Present method

(𝑘 = 4 ℎ2)
Present method

(𝑘 = 2 ℎ
2)

Present method
(𝑘 = ℎ

2)
Present method
(𝑘 = 0.4 ℎ2)

0.05 1.21𝐸 − 03 9.45𝐸 − 04 4.23𝐸 − 04 1.62𝐸 − 04 6.07𝐸 − 06

0.025 3.01𝐸 − 04 2.35𝐸 − 04 1.05𝐸 − 04 4.05𝐸 − 05 1.51𝐸 − 06

0.010 4.81𝐸 − 05 3.77𝐸 − 05 1.69𝐸 − 05 6.49𝐸 − 06 2.41𝐸 − 07

0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

u
(x
,t
)

x

Exact and Approx. Sol at t = 0.1
Exact and Approx. Sol at t = 0.3

Exact and Approx. Sol at t = 1.0
Exact and Approx. Sol at t = 0.9

Exact and Approx. Sol at t = 0.7
Exact and Approx. Sol at t = 0.5

Figure 6: A comparison of numerical solution and known solution
at different time levels for Example 3 with ℎ = 0.05 and 𝑘 = 0.01.

constraints. A usual finite difference discretization is used
for time derivatives and cubic trigonometric B-spline is
applied for space derivatives. It is noted that the accuracy
of solution may reduce as time increases due to the time
truncation errors of time derivative term [47]. The cubic
trigonometric B-spline method used in this paper is simple
and straightforward to apply. An advantage of using the cubic
trigonometric B-spline method outlined in this paper is that
it produces a spline function on each new time line which
can be used to obtain the solutions at any intermediate point
in the space direction whereas the finite difference approach
yields the solution only at the selected points. The CuTBSM
has approximated the solution with more accurate results for
time step size 𝑘 = 𝑠ℎ

2, 𝑠 = 1, 2, 4, 5, as compared to some
finite difference schemes with smaller time step size 𝑘 =

0.4ℎ
2 such as BTCS, Crandall’s formula, FTCS, the Dufort-

Frankel scheme, and TMOL based on reproducing kernel.
The proposed method is shown to be unconditionally stable.
It is also evident from the examples that the approximate
solution is very close to the exact solution.
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