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Functional dependency is the basis of database normalization. Various types of fuzzy functional dependencies have been proposed
for fuzzy relational database and applied to the process of database normalization. However, the problem of achieving lossless join
decomposition occurs when employing the fuzzy functional dependencies to database normalization in an extended possibility-
based fuzzy data models. To resolve the problem, this study defined fuzzy functional dependency based on a notion of approximate
equality for extended possibility-based fuzzy relational databases. Examples show that the notion is more applicable than other
similarity concept to the research related to the extendedpossibility-based datamodel.Weprovide a decompositionmethodof using
the proposed fuzzy functional dependency for database normalization and prove the lossless join property of the decomposition
method.

1. Introduction

Database normalization plays a crucial role in the design
theory of relational database to avoid insertion and deletion
and update anomalies in a database. The database normal-
ization involves decomposition of a relation schema (table)
into several smaller ones. The essential requirement of the
decomposition is lossless join property, which ensures that the
original relation can be obtained from its decomposed results
via combination operations [1]. Several methods have been
proposed to design normalized relation schemes based on
the keys and functional dependencies of a relation to achieve
lossless join decomposition [2, 3]. The design theory has
been applied to fuzzy databases, in which uncertain and
imprecise information can be represented and manipulated.
The fuzzy databases are extended from the classical databases
based on fuzzy sets and possibility theory [4], and they can be
resemblance-based fuzzy model [5, 6] and possibility-based
fuzzy model [7, 8]. In the context of fuzzy databases, fuzzy
functional dependency (FFD) has emerged to extend the clas-
sical functional dependency to represent functional relation-
ships between classes/attributes of objects for fuzzy database

models. Various FFD definitions have been proposed in some
fuzzy data models for database normalization [9, 10].

However, very few research methods discuss lossless
join property for the normalization in possibility-based
fuzzy databases. To achieve lossless join decomposition by
using FFDs for the possibility-based fuzzy databases is more
difficult than for the resemblance-based fuzzy databases,
especially for extended possibility-based fuzzy database. The
extended possibility-based fuzzy database [7] is an exten-
sion of possibility-based fuzzy database [8] by including a
resemblance-based fuzzy model [6]. In the fuzzy database,
attribute values could be the possibility distributions of the
attribute on its domain. Additionally, the elements in a
domain have some degree of resemblance. Previous work has
applied FFDs on the decomposition for the fuzzy database
[10–12]. Informally, these FFDs are based on a certain degree
of similarity between two attribute values. Namely, two
tuples that are similar but not identical might be regarded
as redundant. Applying the similarity-based FFDs on rela-
tion decomposition prompts the difficulty for lossless join
decomposition on two facets: (i) redundancy removal: how
to eliminate redundant tuples that are not identical from the
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decomposed results so that the results can be, later on, used
to produce the original relation without losing information
and (ii) tuple merging: how to combine two relations via
merging their tuples of which attribute values are similar but
not identical.

Complicating this problem further, most similarity mea-
sures [7, 13, 14] of values in the form of possibility distribution
are not transitive. When tuple redundancy is determined
by the similarity measures of nontransitivity, the result of
eliminating redundant tuples from a decomposed relation
might be not unique (or order sensitive1). An inconsistent
data redundancy removal not only leads to unstable results
of data integration, as described in [15], but also causes
decomposition results not lossless. When the decomposition
result of a relation is not unique, the combination of the result
will have many different outcomes, at least one of which is
different from the original relation. Accordingly, the decom-
position inevitably violates the lossless join property. More-
over, the nonunique results occur for relation combination
when the attribute values to be joined/merged have similarity
relation of nontransitivity.

To avoid nontransitivity, Chen et al. provided FFD with
embedded classical FD [11, 16], where redundancy removal
is restricted to duplicate tuples. But, this restriction draws
the normalization process back to the traditional operations
of crisp data. To obtain transitive relationship among tuples,
some research applied the max-min transitive closure on the
relationship matrix of similarity degree between tuples [17].
The max-min transitive closure of a relationship matrix must
be amatrix withmax-min transitivity [18]. By referring to the
transitive closure of the relationship matrix, the tuples which
have similarity higher than a given threshold can be grouped
into disjointed sets. The tuples in the same set were regarded
as redundant. However, this approach cannot determine the
similarity of two tuples by merely examining these two, and
the similarity is changed by inserting or deleting other tuples.
The nondeterministic and dynamic characteristic is not
applicable to the practice of databases.

To our knowledge, very few studies provide a complete
guideline to perform normalization that ensures lossless join
decomposition in the fuzzy databases.Therefore, the purpose
of this study is to fill up this gap. This study first proposes a
notion of approximate equality which represents the transi-
tive equivalent relation among tuples. Then, it provides new
definition of FFD and lossless join decomposition based on
approximate equality for the fuzzy databases. Both functional
dependencies and lossless join decomposition in a traditional
database are special cases in this proposal. Examples show
that the notion is more applicable than other similarity
concepts to the research related to the fuzzy databases. This
work also provides the method of achieving the lossless join
decomposition for the fuzzy databases.

The remainder of this paper is organized as follows.
Section 2 gives a brief introduction to database normalization
and fuzzy database and the survey of the similarity mea-
sures related to the fuzzy database. Section 3 demonstrates
the problem of using nontransitive similarity measures for
determining tuple redundancy and provides a notion of
approximate equality for it. The FFD is then defined based

on the approximate equality in Section 4. Besides, the lossless
join decomposition is proposed for the fuzzy databases, and
its property is proven as well. Section 5 draws the conclusion
of this paper.

2. Preliminaries

This section first briefly reviews the essential operations for
lossless join decomposition in traditional databases. Then,
it introduces the fuzzy databases considered in this work
and the similarity measures of values in form of possibility
distribution.

2.1. Essential Operations for Lossless Join Decomposition. In
traditional relational database, a row is called a tuple; a
column header is called an attribute; and the table is called a
relation. Given an𝑚-ary relation schema 𝑅(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
),

an instance of 𝑅 denoted by 𝑟(𝑅) is the set of all tuples in 𝑅.
Let Α denote a set of attributes 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
. A functional

dependency FD 𝐴
𝑖
→ 𝐴

𝑗
existing in 𝑅(A) represents the

tuples having the same values on attribute 𝐴
𝑖
that must be

identical on 𝐴
𝑗
, where 𝐴

𝑖
, 𝐴
𝑗
∈ A. Two operations are

related to the lossless join decomposition: projection and
natural join. The operation projection generates a result by
selecting certain attributes from given relation and removing
redundant tuples. LetΘ denote a set of attributes in𝑅(A); that
is, Θ ⊂ A. The result of projection 𝑅 over attributes Θ ⊆ A
is Π
Θ
(𝑅) = {𝑡[Θ] | 𝑡 ∈ 𝑟(𝑅)}, where 𝑡[Θ] represents the

composite of values onΘ in tuple 𝑡.The natural join (denoted
by ∗) of 𝑅(XY) and 𝑅


(YZ) is obtained by removing

duplicate attribute from the results of equal join on joined
attribute Y and is denoted as shown below:

𝑅

∗ 𝑅


= {(𝑡

[X] , 𝑡 [Y] , 𝑡 [Z]) : 𝑡 [Y] = 𝑡 [Y] | 𝑡 ∈ 𝑟 (𝑅) ,

𝑡

∈ 𝑟 (𝑅


)} .

(1)

The natural join and projection operations are, respectively,
used to combine and decompose relations.

Formally, decomposition {𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑘
} of 𝑅 is lossless

join if equation 𝑟(𝑅) = Π
𝑅
1

(𝑅) ∗Π
𝑅
2

(𝑅) ∗ ⋅ ⋅ ⋅ ∗ Π
𝑅
𝑘

(𝑅) holds.
In other words, the lossless join decomposition ensures that
the combination of the decomposed results of a relation has
no spurious tuple or missing tuple to the relation via natural
join operation [1].

For example, given a relation 𝑅, the results of 𝑅 =

Π
𝐴
1
,𝐴
2

(𝑅) and 𝑅 = Π
𝐴
2
,𝐴
3

(𝑅) are shown in Table 1.
In this case, the decomposition {𝑅, 𝑅} of 𝑅 has lossless

join property because the natural join result of 𝑅 and 𝑅 is
exactly the same as 𝑅 (as shown in Table 2).

2.2.The Fuzzy Databases. In last two decades, fuzzy concepts
have been incorporated in traditional databases [5, 8, 19]
and applied to measure the relation between data [20–
22]. The fuzzy databases enable dealing with imprecision
and uncertainty in the real world based on the theory of
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Table 1

𝑅 𝑅


𝑅


𝐴
1

𝐴
2

𝐴
3

𝐴
1

𝐴
2

𝐴
2

𝐴
3

𝑡
1
: 𝑥 𝑝 𝑚 𝑥 𝑝 𝑝 𝑚

𝑡
2
: 𝑦 𝑝 𝑚 𝑦 𝑝 𝑞 𝑛

𝑡
3
: 𝑧 𝑞 𝑛 𝑧 𝑞

Table 2

equal join of 𝑅 and 𝑅 on 𝐴
2

𝑅

∗𝑅


𝐴
1

𝐴
2

𝐴
2

𝐴
3

𝐴
1

𝐴
2

𝐴
3

𝑡
1
: 𝑥 𝑝 𝑝 𝑚 𝑥 𝑝 𝑚

𝑡
2
: 𝑦 𝑝 𝑝 𝑚 𝑦 𝑝 𝑚

𝑡
3
: 𝑧 𝑞 𝑞 𝑛 𝑧 𝑞 𝑛

fuzzy sets and possibility distribution theory.The possibility-
based fuzzy theory has been widely applied in environmental
management, such as flood-diversion planning [23], water
resources management [24], and air quality management
[25]. This work considers the extended possibility-based
databases proposed by Chen et al. [7] because it can capture
both the possibility-based fuzzy model and the resemblance-
based fuzzy concept. The fuzzy database has drawn much
attention of research on semanticmeasures, information pro-
cessing, update operation, and UML class diagram therewith
[20, 26, 27].The data model of the fuzzy databases is a hybrid
of a possibility-based data model in [8] and a resemblance-
based data model in [6]. The possibility-based model derives
from Zadeh’s fuzzy theory. In the theory [4], a fuzzy set 𝐹 on
a universe of discourse 𝑈 is described by {𝜇

𝐹
(𝑢)/𝑢 | 𝑢 ∈ 𝑈},

where 𝜇
𝐹
: 𝑈 → [0, 1] is a membership function for the

fuzzy set 𝐹 and 𝜇
𝐹
(𝑢) denotes the degree of membership

of 𝑢 in 𝐹. In a possibility-based database [8], the value of
an attribute 𝐴 on a domain 𝐷 is a possibility distribution
𝜋
𝐴
= {𝜋
𝐴
(𝑢)/𝑢 | 𝑢 ∈ 𝐷}, where 𝜋

𝐴
(𝑢) denotes the possibility

that 𝑢 is the actual value of 𝐴. For example, 𝐷 = {𝑢
1
, 𝑢
2
, 𝑢
3
}

and𝜋
𝐴
= {0.8/𝑢

1
, 0.5/𝑢

2
, 0.6/𝑢

3
}. An example of applying the

possibility-based fuzzy theory2 in real world is shown below.
Consider a domain of attribute “eye color” is black, brown,
blue, green and a possibility distribution is given below:

Asia-Color = { 1.0

black
,

0.8

brown
,

0.3

blue
,

0.1

green
} . (2)

Suppose that John’s eye color is an “Asia color.” Then,
according to the interpretation for possibility-based fuzzy
theory, one concludes that the possibility of John’s eye being
brown blue color is 0.3.

In the extended possibility-based database, attribute val-
ues are represented by possibility distributions of an attribute
on its domain, and a domain is associated with a similarity
relation of domain elements. Formally, an 𝑚-ary relation
instance 𝑟 on a schema 𝑅(𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑚
) in the fuzzy

database is a subset of Cartesian product ofΦ(𝐴
1
) ×Φ(𝐴

2
) ×

⋅ ⋅ ⋅ × Φ(𝐴
𝑚
), where Φ(𝐴

𝑖
) represents a set of all possibility

distributions of attribute 𝐴
𝑖
on its domain. For a domain

𝐷
𝑖
, a proximity relation is given to describe the resemblance

between domain elements in 𝐷
𝑖
. A proximity is a mapping

𝑠
𝑖
: 𝐷
𝑖
× 𝐷
𝑖
→ [0, 1] with reflexivity and symmetry; that is,

𝑠
𝑖
(𝑢, 𝑢) = 1 and 𝑠

𝑖
(𝑢, V) = 𝑠

𝑖
(V, 𝑢). The elements in a domain

cannot directly be partitioned into disjoint equivalent classes
by a threshold cutting on the proximity relation for the
domain elements.

To acquire equivalent classes of a proximity relation on
a domain, Shenoi et al. [18] proposed 𝛼-proximate relation.
Two elements 𝑢, V ∈ 𝐷 are 𝛼-proximate (denoted by 𝑢𝑆+

𝛼
V)

if 𝑠(𝑢, V) > 𝛼 or there exists a sequence 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑟
∈ 𝐷,

Such that min{𝑠(𝑢, 𝑤
1
), 𝑠(𝑤
1
, 𝑤
2
), . . . , 𝑠(𝑤

𝑟−1
, 𝑤
𝑟
), 𝑠(𝑤
𝑟
, V)} >

𝛼. Given a proximity relation 𝑠 and a threshold 𝛼 for domain
𝐷, the domain can be partitioned into disjoint subsets (called
𝛼-proximate equivalent classes) such that the elements in a
partition are𝛼-proximate.The equivalent classes are regarded
as basic concepts for themethods being reviewed or proposed
hereinafter.

By extending traditional functional dependency, research
has proposed variety of fuzzy functional dependencies
(FFDs) for fuzzy databases [14, 21, 28]. The FFDs are deter-
mined by the degree of similarity of attribute values rather
than by the identity. Several similarity measures of attribute
values are proposed for the extended possibility-based frame-
works [7, 16, 20, 29]. Most of them provide the estimates
within the interval [0, 1]. The similarity measures are briefly
restated hereinafter, in which 𝑠 and 𝛼 ∈ [0, 1], respec-
tively, denote the proximity relation and a threshold defined
on a given domain 𝐷 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
}; 𝜋
𝐴
and 𝜋

𝐵
represent

two possibility distributions on 𝐷. The degree of closeness
between 𝜋

𝐴
and 𝜋

𝐵
, denoted by 𝜉

1
(𝜋
𝐴
, 𝜋
𝐵
), is defined as

follows [29]:

𝜉
1
(𝜋
𝐴
, 𝜋
𝐵
)

=

{
{

{
{

{

0 min
𝑢
𝑖
,𝑢
𝑗
∈�̂�

𝑠 (𝑢
𝑖
, 𝑢
𝑗
) < 𝛼

min
𝑢
𝑖
∈𝐷

(1 −




𝜋
𝐴
(𝑢
𝑖
) − 𝜋
𝐵
(𝑢
𝑖
)




) otherwise,

(3)

where𝐷 = {𝑢
𝑖
∈ 𝐷 : 𝜋

𝐴
(𝑢
𝑖
) > 0} ∪ {𝑢

𝑖
∈ 𝐷 : 𝜋

𝐵
(𝑢
𝑖
) > 0}.

The measure of 𝜉
1
may give low degree of similarity for

two values that are very similar to each other, for example,
𝜉
1
({0.9/excellent, 1/good}, {1/good}) = 0.1. To prevent some

counter-intuitive estimates of 𝜉
1
, Chen et al. defined the

possibility that 𝜋
𝐴
= 𝜋
𝐵
is true as shown below [7] (here ∧

denotes minimum):

𝜉
2
(𝜋
𝐴
, 𝜋
𝐵
) = sup
𝑠(𝑢𝑖 ,𝑢𝑗)≥𝛼,𝑢𝑖 , 𝑢𝑗∈𝐷

(𝜋
𝐴
(𝑢
𝑖
) ∧ 𝜋
𝐵
(𝑢
𝑗
)) . (4)

This assessment is widely adopted in the extended possibility-
based databases and is adoptable for the application with
subnormal distribution (i.e., 𝜉

2
(𝜋
𝐴
, 𝜋
𝐴
) < 1, or see [4] for

details). For normal distribution, Chen et al. [16] included
identity relation (denoted by =id) into (4) as follows:

𝜉
3
(𝜋
𝐴
, 𝜋
𝐵
) =

{

{

{

1 𝜋
𝐴
=id𝜋𝐵

sup
𝑠(𝑢𝑖 ,𝑢𝑗)≥𝛼,𝑢𝑖 ,𝑢𝑗∈𝐷

𝜋
𝐴
(𝑢
𝑖
) ∧ 𝜋
𝐵
(𝑢
𝑗
) o.w.

(5)
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Ma et al. defined the similaritymeasure from the perspec-
tive of the semantic closeness between two attribute values
[20] as shown below:

𝜉
4
(𝜋
𝐴
, 𝜋
𝐵
) = 𝛿 (𝜋

𝐴
, 𝜋
𝐵
) ∧ 𝛿 (𝜋

𝐵
, 𝜋
𝐴
) , (6)

where 𝛿 denotes a semantic inclusion degree. Consider the
following:

𝛿 (𝜋
𝐴
, 𝜋
𝐵
) =

∑
𝑢
𝑖
,𝑢
𝑗
∈𝐷,𝑠(𝑢𝑖 ,𝑢𝑗)≥𝛼

(𝜋
𝐴
(𝑢
𝑖
) ∧ 𝜋
𝐵
(𝑢
𝑗
))

∑
𝑛

𝑗=1
𝜋
𝐵
(𝑢
𝑗
)

. (7)

Thenotion of 𝜉
4
may violate the convention that the similarity

degree of two values lies within [0, 1]; 𝜉
4
(𝜋
𝐴
, 𝜋
𝐵
) = 1.52

for the case that 𝜋
𝐴
= {0.9/excellence, 0.8/good} and 𝜋

𝐵
=

{0.7/excellence, 0.6/good}when the similarity of “excellence”
and “good” is larger than the given threshold; that is,
𝑠 (excellence, good) ≥ 𝛼. It is difficult to set up a proper
threshold for estimates that range out of [0, 1], having an
unpredictable upper bound.

Liu et al. [13] extended the semantic equivalence to ensure
that the result of similarity measure lies within [0, 1]. The
measurement adjusts the possibility distributions of values
based on 𝛼-proximate equivalent classes of the domain
before measuring their similarity. Let 𝐶 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑟
} be

the𝛼-proximate equivalent classes of domain𝐷.The adjusted
value of possibility distribution 𝜋

∙
is defined as follows:

�̃�
∙
=

𝑟

⋃

𝑘=1

{

𝑢
∙𝑘

𝑢

: 𝑢

∈ 𝐶
𝑘
} , (8)

where 𝑢
∙𝑘

= ∑
|𝐶
𝑘
|

𝑗=1,𝑢
𝑗
∈𝐶
𝑘

𝜋
∙
(𝑢
𝑗
)/|𝐶
𝑘
| and 𝐶

𝑘
= {𝑢
𝑗
∈ 𝐶
𝑘
:

𝜋
∙
(𝑢
𝑗
) > 0}, 𝑘 = 1, . . . , 𝑟. Then,

𝜉
5
(𝜋
𝐴
, 𝜋
𝐵
) = 𝛿 (𝜋

𝐴
, 𝜋
𝐵
) ∧ 𝛿 (𝜋

𝐵
, 𝜋
𝐴
) ,

where 𝛿 (𝜋
𝐴
, 𝜋
𝐵
) =

∑
𝑛

𝑖=1
(�̃�
𝐴
(𝑢
𝑖
) ∧ �̃�
𝐵
(𝑢
𝑖
))

∑
𝑛

𝑗=1
�̃�
𝐵
(𝑢
𝑗
)

.

(9)

Although the methods mentioned above differ from each
other on measuring similarity of attribute values, most of the
methods of measuring the similarity of tuples are the same.
The methods adopt the minimum of the similarity of each
pair of attribute values. Given tuples 𝑡 = (𝜋

𝐴
1

, 𝜋
𝐴
2

, . . . , 𝜋
𝐴
𝑚

)

and 𝑡 = (𝜋
𝐴
1

, 𝜋


𝐴
2

, . . . , 𝜋


𝐴
𝑚

), the resemblance of tuples 𝑡 and
𝑡
, denoted by 𝜂(𝑡, 𝑡), is given by

𝜂 (𝑡, 𝑡

) = min
𝑖=1,...,𝑚

𝜉
∙
(𝜋
𝐴
𝑖

, 𝜋


𝐴
𝑖

) , (10)

where 𝜉
∙
could be either 𝜉

1
, 𝜉
2
, 𝜉
3
, 𝜉
4
, or 𝜉
5
in (3)–(9). Tuples

𝑡 and 𝑡 are redundant to each other if 𝜂(𝑡, 𝑡) ≥ 𝛼, where
𝛼 is a given threshold. The similarity measure of tuples has
been applied to extract representative tuples for reducing
information redundancy [17].

Fuzzy functional dependency (FFD) is a concept derived
from traditional FD. Both FFD and FD have several appli-
cations on databases, for example, redundancy elimination

[30], missing data prediction, fuzzy data compression [17, 31],
and lossless join decomposition [10, 28, 32]. In literature,
various FFDs are defined for different fuzzy data model. For
some fuzzy data representation, FFDs are defined based on
the equivalence classes of tuples, such as the similarity-based
fuzzy data model [33]. In the extended possibility-based
databases, the definition of FFD is also of variety, such as liter-
ature [10, 14, 34, 35]. One example among the FFD definitions
in the literature is listed below.

Definition 1 (see [10], fuzzy functional dependency). Let𝑋 ∼

> 𝑌 denote that attribute𝑋 is fuzzy functional which depends
on attribute 𝑌 in a relation 𝑅. The FFD: 𝑋 ∼> 𝑌 holds in the
instance 𝑟(𝑅) if and only if 𝜂(𝑡[𝑋], 𝑡[𝑋]) ≦ 𝜂(𝑡[𝑌], 𝑡[𝑌]) for
every 𝑡, 𝑡 ∈ 𝑟(𝑅).

The example helps in understanding the problem of
applying the FFDs on relation decomposition in the fuzzy
databases illustrated in Section 3.

3. Redundancy Removal and Tuple Merging

Several factors determine whether the relation decomposi-
tion possesses the lossless join property. They are the ways
to decompose a relation, to remove redundant tuples, and to
combine the decomposed results. Redundancy removal is to
eliminate redundant tuples. If the similarity measures used
to measure tuple redundancy are not transitive, the result
of redundancy removal could be nonunique. An example
of nontransitivity is that tuples 𝑡 and 𝑡

 are redundant to
each other, and 𝑡

 and 𝑡
 are redundant as well, but 𝑡 and

𝑡
 are not redundant. In this case, the result of redundancy
removal will be {𝑡, 𝑡} if 𝑡 is deleted first, which differs from
the one-tuple result (either {𝑡} or {𝑡}) when first deleting the
tuples other than 𝑡. The nontransitivity makes the result of
redundancy removal order sensitive and hinders the lossless
join decomposition.

Nevertheless, most well-defined similarity measures [7,
10, 20, 29] for the values of possibility distribution are
reflexive and symmetric but not transitive. For example, con-
sider adopting (4) to measure the similarity of tuples. Given
three values 𝜋

𝐴
= {0.6/𝑢

1
, 1.0/𝑢

2
, 0.6/𝑢

3
}, 𝜋
𝐴

= {1.0/𝑢
1
,

1.0/𝑢
2
, 0.6/𝑢

3
}, and 𝜋



𝐴
= {1.0/𝑢

1
, 0.6/𝑢

2
, 0.6/𝑢

3
}, then we

have 𝜉
2
(𝜋
𝐴
, 𝜋


𝐴
) = 1, 𝜉

2
(𝜋


𝐴
, 𝜋


𝐴
) = 1, and 𝜉

2
(𝜋
𝐴
, 𝜋


𝐴
) = 0.6.

Considering tuples 𝑡 = (𝜋
𝐴
), 𝑡 = (𝜋



𝐴
), and 𝑡 = (𝜋



𝐴
), we

have 𝜂(𝑡, 𝑡) ≥ 𝛼 and 𝜂(𝑡, 𝑡) ≥ 𝛼 but 𝜂(𝑡, 𝑡) < 𝛼 for any
𝛼 > 0.6 according to (10). Thus, the similarity measure of
tuples is not transitive.

In generalizing projection and equal join operations of
traditional database to fuzzy databases, when the redundancy
removal is order sensitive, it is hard to obtain lossless join
decomposition. Consider the case that 𝑌 ∼> 𝑍 holds in the
instance 𝑟(𝑅) of relation 𝑅(𝑋, 𝑌, 𝑍) based on Definition 1;
namely, 𝜂(𝑡[𝑌], 𝑡[𝑌]) ≦ 𝜂(𝑡[𝑍], 𝑡


[𝑍]) for every 𝑡, 𝑡


∈

𝑟(𝑅). Assuming that 𝑟(𝑅) consists of three tuples ⟨𝑥
1
, 𝑦, 𝑧⟩,

⟨𝑥
2
, 𝑦

, 𝑧

⟩, ⟨𝑥
3
, 𝑦

, 𝑧

⟩ and𝑋 is a key attribute, it is possible

that the two values in each of pairs (𝑦, 𝑦), (𝑦, 𝑦), (𝑧, 𝑧), and
(𝑧, 𝑧

) are redundant to each other, but (𝑦, 𝑦) and (𝑧, 𝑧)
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are not. Since 𝑌 ∼> 𝑍, 𝑅 should be decomposed to avoid
redundancy. After decomposing 𝑅(𝑋, 𝑌, 𝑍) to 𝑅(𝑋, 𝑌) and
𝑅

(𝑌, 𝑍), if tuple ⟨𝑦, 𝑧⟩ is first removed because it is redun-

dant to tuple ⟨𝑦, 𝑧⟩, the result of 𝑅(𝑌, 𝑍) contains two
tuples ⟨𝑦, 𝑧⟩ and ⟨𝑦, 𝑧⟩. The natural join of 𝑅(𝑋, 𝑌) and
𝑅

(𝑌, 𝑍) generates a four-tuple result ⟨𝑥

1
, 𝑦, 𝑧

⟩, ⟨𝑥
1
, 𝑦, 𝑧

⟩,

⟨𝑥
2
, 𝑦

, 𝑧

⟩, ⟨𝑥
3
, 𝑦

, 𝑧

⟩, which contains spurious tuple.

To resolve this problem, this study proposes the oper-
ations of projection and equal join for the fuzzy databases,
which involves evaluation of redundancy and tuple merging.
Since the decomposition of relations is based on FFD, it
depends on the similarity of tuples. For the data in the fuzzy
model, (3)–(9) can be used tomeasure the similarity of tuples
and define FFDs in the fuzzy databases. However, (5) restricts
redundant tuples to those duplicate. Equations (3), (4), and
(6) lack transitivity. Therefore, this work adopts (9) and (10)
to define approximate equality for the tuples that might not
be identical but have high similarity degree.The approximate
equality enables obtaining a unique result of redundancy
removal.

Definition 2 (approximately equal tuples). Two tuples 𝑡 =

(𝜋
1
, 𝜋
2
, . . . , 𝜋

𝑚
) and 𝑡


= (𝜋



1
, 𝜋


2
, . . . , 𝜋



𝑚
) are approxi-

mately equal, denoted by 𝑡 ≅ 𝑡
, if it is satisfied that

min
𝑗=1,...,𝑚

{𝜉
5
(𝜋
𝑗
, 𝜋


𝑗
)} = 1.

In other words, tuples 𝑡 and 𝑡 are approximately equal if
their similarity 𝜂(𝑡, 𝑡) = 1.

Lemma 3. The approximate equality of tuples (or attribute
values) is transitive.

Proof. Based on (9), it is obvious that if 𝜉
5
(𝜋
𝐴
, 𝜋
𝐵
) = 1 and

𝜉
5
(𝜋
𝐵
, 𝜋
𝐺
) = 1, then 𝜉

5
(𝜋
𝐴
, 𝜋
𝐺
) = 1.Thus, if 𝑡 ≅ 𝑡 and 𝑡 ≅ 𝑡,

then 𝑡 ≅ 𝑡 based on (10).

The tuples of approximate equality are considered to be
redundant to each other. The notion of approximate equality
can be applied to query processingwith the predicate contain-
ing fuzzy concept [36] for fuzzy databases in differentmodels.
For simplicity, we let𝜋

𝐴
≅ 𝜋
𝐵
denote 𝜉

5
(𝜋
𝐴
, 𝜋
𝐵
) = 1 hereafter.

Example 4. Given values 𝜋
𝐴
= {0.75/pretty, 0.65/cuteness}

and 𝜋
𝐵
= {0.6/pretty, 0.7/charm, 0.8/cuteness} on domain

𝐷 and equivalent classes 𝐶
1
= {pretty} and 𝐶

2
= {charm,

cuteness} for 𝐷, the average possibilities of 𝜋
𝐵
are 𝑢
𝐵1

=

0.6/1 = 0.6 and 𝑢
𝐵2

= (0.7 + 0.9)/2 = 0.8, yielding
�̃�
𝐵
= {0.6/pretty, 0.8/charm, 0.8/cuteness}. Likewise, 𝑢

𝐴1
=

0.8, 𝑢
𝐴2

= 0.65, and �̃�
𝐴

= {0.75/pretty, 0.65/charm,
0.65/cuteness}. We have 𝛿(𝜋

𝐴
, 𝜋
𝐵
) = (0.6+0.65+0.65)/(0.6+

0.8 + 0.8) = 0.86 and 𝛿(𝜋
𝐵
, 𝜋
𝐴
) = 1.9/2.05 = 0.92. Thus,

𝜉
5
(𝜋
𝐴
, 𝜋
𝐵
) = min{0.86, 0.92} = 0.86. Given 𝜋

𝐺
= {0.6/pretty,

0.65/charm, 0.85/cuteness} on 𝐷, we have 𝜋
𝐺

≅ 𝜋
𝐵
even

though 𝜋
𝐺
is not identical to 𝜋

𝐵
.

Proposition 5. The approximate equality can be used to clas-
sify values of the fuzzy database into disjoint sets (equivalence
classes).

Proof. Based on the definition of (9), it is obvious that 𝜉
5

is reflective and symmetric; that is, 𝜉
5
(𝜋
𝐴
, 𝜋
𝐴
) = 1 and

𝜉
5
(𝜋
𝐴
, 𝜋
𝐵
) = 𝜉

5
(𝜋
𝐵
, 𝜋
𝐴
) for values 𝜋

𝐴
and 𝜋

𝐵
. Besides,

approximate equality is transitive according to Lemma 3.
Therefore, two different sets of approximately equal values are
either disjoint sets or same class sets, where any two of the
values are approximately equal to each other.

The transitivity of similarity measure is important to any
operation involving redundancy removal or tuple merging.
Besides, the measure of transitivity can be applied to cluster-
ing methods or data groupings, such as the ones in [36, 37].

Proposition 6. Given 𝜋
𝐴
and its adjusted value �̃�

𝐴
following

(8), 𝜋
𝐴
≅ �̃�
𝐴
.

Proof. It is obvious by the definition of (9).

Buckles and Petry first proposed the way of tuplemerging
and applied it to remove redundant tuples in a fuzzy database
[5]. Tuple merging can also be used at join operation.
This study extends the tuple merging of Chen et al. [16]
to be (11) for relation combination as well as redundancy
removal. Given tuples 𝑡 = (𝜋

𝐴
1

, 𝜋
𝐴
2

, . . . , 𝜋
𝐴
𝑚

) and 𝑡

=

(𝜋


𝐴
1

, 𝜋


𝐴
2

, . . . , 𝜋


𝐴
𝑚

), tuplemerging of 𝑡 and 𝑡, denoted by 𝑡∘𝑡,
is given by

𝑡 ∘ 𝑡

= (�̃�
𝐴
1

∪
𝐹
�̃�


𝐴
1

, �̃�
𝐴
2

∪
𝐹
�̃�


𝐴
2

, . . . , �̃�
𝐴
𝑚

∪
𝐹
�̃�


𝐴
𝑚

) , (11)

where each �̃�
∙
(or �̃�
∙
) is the adjusted value of 𝜋

∙
(or 𝜋
∙
)

according to (8) and ∪
𝐹
denotes fuzzy union. For single-value

tuples 𝑡 = (𝜋
𝐴
1

) and 𝑡 = (𝜋
𝐴
1

), tuple merging is alternatively
denoted by 𝜋

𝐴
1

∘ 𝜋


𝐴
1

.

Lemma 7. Let 𝜋
𝐴
and 𝜋

𝐴
be two possibility distributions on

the same domain. If 𝜋
𝐴
≅ 𝜋


𝐴
, then 𝜋

𝐴
≅ 𝜋
𝐴
∘ 𝜋


𝐴
≅ 𝜋


𝐴
.

Proof. Based on (9) and (11), it is obvious that if 𝜉
5
(𝜋
𝐴
, 𝜋


𝐴
) =

1, then 𝜉
5
(𝜋
𝐴
, 𝜋
𝐴
∘ 𝜋


𝐴
) = 1 and 𝜉

5
(𝜋


𝐴
, 𝜋
𝐴
∘ 𝜋


𝐴
) = 1.

Based on the literature review and Lemma 7, we sum-
marize the property of different similarity measures with
threshold 𝛼 = 1 in Table 3 to show the merit of (9) adopted
in this work.

4. Approximate Lossless Join Decomposition

This section first offers the operations for relation decom-
position and combination. Then, it proposes a notion of
approximate lossless join decomposition (ALJD), which incor-
porates fuzzy concepts into lossless join decomposition. It
also provides the method to achieve the ALJD.

Similar to the works in [37], this study generalizes the
projection and natural join operations in traditional database
to the fuzzy databases, as below. Here, given a relation 𝑅,
Θ denotes a set of attributes in 𝑅 (i.e., Θ ⊂ 𝑅), and 𝑡[Θ]

denotes the composite of values in tuple 𝑡 over attribute Θ.
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Table 3: Property of different similarity measures with threshold 𝛼 = 1.

Properties\measures Equation (5) [16] Equation (6) [20] Equation (9) [13]
Transitivity Yes No Yes
Result after merging Lossless Non-lossless Approximate lossless
Predicates for lossless join Identical values Different values Different values

For example, given 𝑡 ∈ 𝑟(𝑅), 𝑡 = (𝜋
𝐴
1

, 𝜋
𝐴
2

, . . . , 𝜋
𝐴
𝑚

), and
Θ = (𝐴

2
, 𝐴
3
, 𝐴
4
), then 𝑡[Θ] = (𝜋

𝐴
2

, 𝜋
𝐴
3

, 𝜋
𝐴
4

).

Projection. Projecting the instance of relation 𝑅 on attributes
Θ ⊂ 𝑅, denoted by Π

Θ
(𝑅), is given by

Π
Θ
(𝑅) = {𝑡 [Θ] ∘ 𝑡


[Θ] : 𝑡 [Θ] ≅ 𝑡


[Θ] | 𝑡, 𝑡


∈ 𝑟 (𝑅)} .

(12)

Natural Join. Natural join instances of 𝑅(𝑋, 𝑌) and 𝑅(𝑌, 𝑍),
denoted by 𝑅 ⊗ 𝑅, are defined as follows:

𝑅 ⊗ 𝑅


= {(𝑡 [𝑋] , 𝑡 [𝑌] ∘ 𝑡

[𝑌] , 𝑡


[𝑍]) : 𝑡 [𝑌] ≅ 𝑡


[𝑌] | 𝑡 ∈ 𝑟 (𝑅) ,

𝑡

∈ 𝑟 (𝑅


)} .

(13)

In (12) and (13), tuple redundancy is determined by approx-
imate equality (e.g., 𝑡[𝑌] ≅ 𝑡


[𝑌]; see Definition 2), and

both redundancy removal and tuple combination use tuple
merging in (11).

Proposition 8. Theprojection result of a relation based on (12)
must be unique.

Proof. It can be directly derived from Proposition 5.

Based on the operations (12) and (13), the ALJD is
formally defined following the extension of approximate
equality from tuple level to relation level in Definition 9.

Definition 9 (approximately equal relation instances). Two
relation instances 𝑟(𝑅) and 𝑟


(𝑅) in the fuzzy database are

approximately equal, denoted by 𝑟(𝑅) ≈ 𝑟

(𝑅), if for every

tuple 𝑡 ∈ 𝑟(𝑅), there must exist a tuple 𝑡 ∈ 𝑟

(𝑅) such that

𝑡 ≅ 𝑡
 and vice versa.

Definition 10 (approximate lossless join). A composition
{𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑘
} of a relation 𝑅 in the fuzzy database is

approximate lossless join if 𝑟(𝑅) ≈ (Π
𝑅
1

(𝑅) ⊗ Π
𝑅
2

(𝑅) ⊗ ⋅ ⋅ ⋅ ⊗

Π
𝑅𝑘
(𝑅)).

The approximate lossless join decomposition means the
natural join of all decomposed results of a relation instance is
approximately equal to the original relation instance. More
specifically, every tuple in the original relation is approxi-
mately equal to one of tuples in the combination result.

Proposition 11. Consider the following:

Π
Θ
(𝑅) ≈ {𝑡 [Θ] 𝑡 ∈ 𝑟 (𝑅)} . (14)

Proof. It can be derived from (11) and (12).

Corollary 12. Consider the following:

Π
𝑅
(𝑅) ≈ 𝑟 (𝑅) . (15)

Proof. It can be derived directly from Proposition 11.

The projection of a relation over the same schema, as
shown in Corollary 12, represents no operations other than
removing redundant tuples from the instance of the relation
via tuplemerging. Corollary 12 shows that the result of redun-
dancy removal of a relation instance is approximately equal
to the original instance. This property is essential for obtain-
ing the combination result that is approximately equal to
the original instance after relation decomposition.

This study proposes FFD for the decomposition in the
fuzzy database as shown below.

Definition 13. The FFD𝑋 ∼> 𝑌 holds in the relation instance
𝑟(𝑅) if 𝑟(𝑅) satisfies that, for every 𝑡, 𝑡 ∈ 𝑟(𝑅); if 𝑡[𝑋] ≅ 𝑡[𝑋],
then 𝑡[𝑌] ≅ 𝑡[𝑌].

Remark 14. An FD in a traditional database is a special case
of the FFD. If a FD𝑋 → 𝑌 holds in 𝑟(𝑅), then𝑋 ∼> 𝑌 holds
as well. It is because 𝑡[Θ] ≅ 𝑡[Θ]must be true for any Θ ⊂ 𝑅

if 𝑡[Θ] = 𝑡[Θ].

Lemma 15. Given relations 𝑅 and 𝑅 and 𝑟(𝑅) ≈ 𝑟(𝑅), if 𝑟(𝑅)
satisfies a set F of FFDs, then 𝑟(𝑅) satisfies 𝐹.

Proof. Proof by contradiction: we assumed that 𝑟(𝑅) ≈ 𝑟(𝑅)
and there exists an FFD𝑋 ∼> 𝑌 such that 𝑅 satisfies𝑋 ∼> 𝑌

and 𝑅 does not. Because𝑋 ∼> 𝑌 exists in 𝑟(𝑅),

for every 𝑡
1
, 𝑡
2
∈ 𝑟 (𝑅) if 𝑡

1 [
𝑋] ≅ 𝑡2 [

𝑋] ,

then 𝑡
1 [
𝑌] ≅ 𝑡2 [

𝑌] .

(16)

Since 𝑋 ∼> 𝑌 does not exist in 𝑟(𝑅

), there exists 𝑡

1
, 𝑡


2
∈

𝑟(𝑅

), such that 𝑡

1
[𝑋] ≅ 𝑡



2
[𝑋] and 𝜂(𝑡

1
[𝑌], 𝑡


2
[𝑌]) ̸= 1. Since

𝑟(𝑅

) ≈ 𝑟(𝑅), there exists 𝑡 ∈ 𝑟(𝑅) such that 𝑡 ≅ 𝑡



1
and

𝑡

≅ 𝑡


2
. Then, we have 𝑡, 𝑡 ∈ 𝑟(𝑅) and 𝑡[𝑋] ≅ 𝑡


[𝑋] but

𝜂(𝑡[𝑌], 𝑡

[𝑌]) ̸= 1, which contradicts (16).

It is noted that the FFD in Definition 13 satisfies Arm-
strong’s axioms (inference rules), including reflexive rule,
augmentation rule, and transitive rule3.This property enables
the result of lossless join decomposition that has dependency
preservation property4 [1].
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Inputs R and F, where R is a relation and F is the set of FFDs exists in 𝑟(𝑅).
Step 1. LetR = {𝑅} and 𝐹 be the set of all 𝑓 ∈ 𝐹 that are not trivial.
Step 2. For a 𝑓:𝑋 ∼> 𝑌 in 𝐹, Let 𝑅 be the relation chosen fromR such that both𝑋 and 𝑌 are in 𝑅.
Step 3. If X is not a key attribute in 𝑅, do followings:

(1) decompose 𝑅 into 𝑅
1
and 𝑅

2
, such that 𝑅

1
= Π
(𝑋,𝑌)

(𝑅

) and 𝑅

2
= Π
𝑅

(𝑋)
(𝑅

)

(2) let 𝐹 = 𝐹 − {𝑓} (remove 𝑓 from 𝐹
)

(3) letR = R ∪ {𝑅
1
, 𝑅
2
} − {𝑅


}.

Step 4. Go to Step 2 if 𝐹 is not empty.
Output isR, the set of relations decomposed from 𝑅.
Note: 𝑅(𝑋) represents the list of all attributes in 𝑅 other than X.

Algorithm 1: ALJD Algorithm.

Lemma 16. Let 𝑅(𝐴,𝑋, 𝑌) be a relation and 𝑋 ∼> 𝑌 be an
FFD in 𝑟(𝑅). If 𝑅

1
= Π
(𝐴,𝑋)

(𝑅) and 𝑅
2
= Π
(𝑋,𝑌)

(𝑅), then
the decomposition {𝑅

1
, 𝑅
2
} of 𝑅 has approximate lossless join

property.

Proof. We proved that 𝑟(𝑅) ≈ Π
𝑅
1

(𝑅) ⊗ Π
𝑅
2

(𝑅) based on
Definition 10. Let 𝑅 be a relation such that 𝑟(𝑅) = Π

𝑅
1

(𝑅) ⊗

Π
𝑅
2

(𝑅). We first prove that, for all 𝑡 ∈ 𝑟(𝑅), there exist 𝑡 ∈
𝑟(𝑅

) and 𝑡 ≅ 𝑡 and then prove that, for all 𝑡 ∈ 𝑟(𝑅


), there

must exist 𝑡 ∈ 𝑟(𝑅) and 𝑡 ≅ 𝑡. Proof by contradiction: let
us assume that 𝑡 ∈ 𝑟(𝑅) is the tuple such that no 𝑡 ∈ 𝑟(𝑅


)

satisfies 𝑡 ≅ 𝑡. Let 𝑡
1
and 𝑡
2
be tuples such that 𝑡

1
= 𝑡[𝐴,𝑋]

and 𝑡
2
= 𝑡[𝑋, 𝑌]. Based on Proposition 11, there must be �̂�

1
∈

𝑟(𝑅
1
) and �̂�

2
∈ 𝑟(𝑅
2
) such that �̂�

1
≅ 𝑡
1
and �̂�
2
≅ 𝑡
2
because𝑅

1
=

Π
(𝐴,𝑋)

(𝑅) and 𝑅
2
= Π
(𝑋,𝑌)

(𝑅). Since 𝑟(𝑅) ≈ Π
𝑅
1

(𝑅)⊗Π
𝑅
2

(𝑅)

and 𝑡
1
[𝑋] ≅ 𝑡[𝑋] ≅ 𝑡

2
[𝑋], there must exist 𝑡 ∈ 𝑟(𝑅


) such

that 𝑡 ≅ (𝑡
1
[𝐴], 𝑡
1
[𝑋] ∘ 𝑡

2
[𝑋], 𝑡
2
[𝑌]) according to (13). Also,

since 𝑡
1
= 𝑡[𝐴,𝑋] and 𝑡

2
= 𝑡[𝑋, 𝑌], we have (𝑡

1
[𝐴], 𝑡
1
[𝑋] ∘

𝑡
2
[𝑋], 𝑡
2
[𝑌]) ≅ (𝑡[𝐴], 𝑡[𝑋], 𝑡[𝑌]) by Lemma 7. Thus,

𝑡

≅ 𝑡, which contradicts the assumption.
Proof by contradiction for second part with renewed

symbols: assume that 𝑡 ∈ 𝑟(𝑅

) is the tuple such that no

𝑡 ∈ 𝑟(𝑅) satisfies 𝑡 ≅ 𝑡. Since 𝑟(𝑅)Π
𝑅
1

(𝑅)⊗Π
𝑅
2

(𝑅), there exist
𝑡
1
∈ 𝑟(𝑅

1
) and 𝑡

2
∈ 𝑟(𝑅

2
) such that 𝑡

1
≅ 𝑡

[𝐴,𝑋], 𝑡

2
≅

𝑡

[𝑋, 𝑌], and 𝑡

1
[𝑋] ≅ 𝑡

2
[𝑋] based on (13). Also, we let �̂�

1
and

�̂�
2
be the tuples such that

�̂�
1
∈ 𝑟 (𝑅

1
) , �̂�

2
∈ 𝑟 (𝑅

2
) ,

�̂�
1
≅ 𝑡

[𝐴,𝑋] , �̂�

2
≅ 𝑡

[𝑋, 𝑌] .

(17)

Since 𝑅
1
= Π
(𝐴,𝑋)

(𝑅), based on Proposition 11, there must
exist 𝑡 ∈ 𝑟(𝑅) such that

𝑡 [𝐴,𝑋] ≅ �̂�1
. (18)

Likewise, there must also exist 𝑡 ∈ 𝑟 (𝑅)

such that 𝑡 [𝑋, 𝑌] ≅ �̂�2.
(19)

Based on (17) and (18), we have 𝑡[𝑋] ≅ 𝑡

[𝑋]. Because 𝑋 ∼

> 𝑌, 𝑡[𝑌] ≅ 𝑡[𝑌] holds based on Definition 13. Thus, 𝑡[𝑌] ≅
�̂�
2
[𝑌] ≅ 𝑡


[𝑌] based on (19), and 𝑡 ≅ 𝑡, which contradicts the

assumption.

In Lemma 16, each one of 𝐴, 𝑋, and 𝑌 could be a single
attribute or a set of attributes.

Definition 17. Let 𝐹 be the set of FFDs. An FFD 𝑓 : 𝑋 ∼> 𝑌

in 𝐹 is trivial if there exists an FFD 𝑓

: 𝑋 ∼> Y in 𝐹 such

that 𝑌 ⊂ Y.

Based on Armstrong’s inference rules, IR1 and IR3 (see
endnote 2), if a set 𝐹 of FFD contains 𝑋 ∼> 𝑌𝑍, the closure
of 𝐹 will also contain 𝑋 ∼> 𝑌 and 𝑋 ∼> 𝑍, which is trivial.
When a relation is decomposed into more relations, it takes
more join operations to obtain the original data for query
process. Considering the cost of join operations, it is not
efficient to decompose a relation that has already been in the
third normal form. A relation is in the third normal form if
there is no functional dependency between nonkey attributes
in the relation [1]. Accordingly, the relation decomposition
has two prerequisites as follows.

(i) It needs to avoid decomposing a relation based on
trivial FFDs.

(ii) It needs to make sure that the decomposed result
preserves the closure of FFDs in the original relation.

For example, if 𝑋 is not a key in 𝑟(𝑅), then 𝑅 will be
decomposed based on 𝑋 ∼> 𝑌𝑍 rather than on trivial FFD
𝑋 ∼> 𝑌 or 𝑋 ∼> 𝑍. Based on Lemma 16 and Definition 17,
we propose an algorithm for ALJD (see Algorithm 1).

In the ALJD algorithm, an FFD containing key attributes
is excluded from the decomposition process at Step 3.
This follows the concept of the normalization of traditional
databases, where only the FD of nonkey attributes is consid-
ered. To have a consistent presentation of data, this work gen-
eralizes the definition of key attributes for the fuzzy databases;
namely, an attribute 𝐴 is a key attribute in 𝑅 if there does
not exist two tuples 𝑡 and 𝑡 in 𝑟(𝑅) such that 𝑡[𝐴] ≅ 𝑡


[𝐴].

The exclusion of processing FFDs containing key attributes
can prevent unnecessary decomposing on the relations which
have no update anomaly problem. Although the decomposi-
tion without the key exclusion is still an ALJD, it increases
the cost of the join operations of query process.

Proposition 18. Let 𝑅(𝐴,𝑋, 𝑌) be a relation and let 𝑋 ∼> 𝑌

be an FFD in 𝑟(𝑅). If 𝑅
1
= Π
(𝐴,𝑋)

(𝑅) and 𝑅
2
= Π
(𝑋,𝑌)

(𝑅),
then (i) each FFD existing in 𝑟(𝑅

1
) or 𝑟(𝑅

2
)must exist in 𝑟(𝑅)
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and (ii) every FFD existing in 𝑟(𝑅)must either exist in 𝑟(𝑅
1
) or

𝑟(𝑅
2
) or be derived via FFDs in 𝑟(𝑅

1
) and 𝑟(𝑅

2
).

Proof. Statement (i) can be derived by Proposition 11 and
Lemma 15. Statement (ii) can be derived by Lemma 16 and the
property of FFD (namely, Armstrong’s axiom IRs 1, 2, and 3,
described at endnote 2).

The above statements show that the ALJD also preserves
the closure of FFDs in the original relation, which is impor-
tant to the issues related to the application of FFDs.

5. Conclusion

The contribution of this work is threefold. First, it highlights
the problem of relation decomposition when tuple elimina-
tion is order sensitive. To overcome the problem, it proposes
the notion of approximate equality for the tuples or relations
in the fuzzy databases and provides the measure of the
approximate equality.Themeasurement is reflexive, symmet-
ric, and transitive. It enables classifying tuples into disjoint
sets and ensures that a decomposed relation has unique
result after redundancy removal or tuple merging. Therefore,
the notion of approximate equality is important for data
operations in the fuzzy databases. Second, it proposes approx-
imate lossless join decomposition for the fuzzy databases
and defines two operations projection and equal join for the
decomposition, all of which are based on the approximate
equality. The data operations and ALJD can be applied
to the issue on data compression in the fuzzy databases.
Third, this work defines FFDs and proposes an algorithm
to decompose relations in the fuzzy databases based on
the FFDs. The decomposition by the algorithm ensures
the approximate lossless join property. The FFD and ALJD
proposed for the fuzzy databases are, respectively, the general
cases of the traditional FD and lossless join decomposi-
tion. The general property is important for dealing with
the databases containing crisp data and fuzzy data. Forth,
similar to the existing approaches of database normalization
on resemblance-based fuzzy databases, this study provides
several propositions to prove that the proposed approach
of decomposition satisfies a degree of lossless join property.
Compared to the normalization approaches for resemblance-
based fuzzy databases, achieving lossless join decomposition
for the extended possibility-based fuzzy databases is more
difficult because of having more complex data.

There are some directions of future work. Future study
can adopt the notion of approximate equality to define data
operations for the query processing in the fuzzy databases.
Research can apply the notion on the research related to data
compression, fuzzy association rules, missing value predic-
tion, relation compactness, and the integrity constraint in the
fuzzy databases. Study aims to incorporate the fuzzy concept
into clustering methods or data groupings for decision-
making in marketing, healthcare applications, or business
operations that can adopt the approximate equality for the
similarity measures. Since the fuzzy concept has been incor-
porated into object-oriented databases in literature, future

work can provide the approximate equality specifically for the
data in the fuzzy object-oriented data models.
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Endnotes

1. Different orders on removing redundant tuples could
lead to different results.

2. For further details on possibility distribution and on the
difference between possibility and probability measures,
the reader is referred to [38].

3. IR1 (reflexive rule):𝑋 → 𝑌 if𝑌 ⊆ 𝑋; IR2 (augmentation
rule): if 𝑋 → 𝑌, then 𝑋𝑍 → 𝑌𝑍; IR3 (transitive rule):
if𝑋 → 𝑌 and 𝑌 → 𝑍, the𝑋 → 𝑍 (see [1]).

4. Each FFD in 𝑟(𝑅) either directly exists in some indi-
vidual relations that decomposed from 𝑅 or can be
represented via Armstrong’s inference rules of the FFDs
in these relations.
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