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We propose a method to deal with the general sine-Gordon equation. Several new exact travelling wave solutions with the form of
JacobiAmplitude function are derived for the general sine-Gordon equation by using some reasonable transformation. Compared
with previous solutions, our solutions are more general than some of the previous.

1. Introduction

The sine-Gordon equation
Wy = Wy, + sin (w) 1

appears in differential geometry and relativistic field theory.
It is denominated following its similar form to the Klein-
Gordon equation. The equation, as well as several solution
techniques, was known in the 19th century, but the equation
grew greatly in importance when it was realized that it
led to solutions (“kink” and “antikink”) with the collisional
properties of solitons [1, 2]. The sine-Gordon equation is
widely applied in physical and engineering applications,
including the propagation of fluxons in Josephson junctions
(a junction between two superconductors), the motion of
rigid pendular attached to a stretched wire, and dislocations
in crystals [3-6]. It also arises in nonlinear optics *He spin
waves and other fields. The single sine-Gordon equation
and double sine-Gordon equation are usually applied for the
propagation and creation of ultrashort optical pulses in the
resonant fivefold degenerate medium [7].

Indeed, there are two equivalent forms of the single sine-
Gordon equation (SSG for short). Equation (1) is the form
of the (real) space-time, where t and x represent the space
and time coordinates, respectively [8]. If we use the light cone
coordinates (u, v), akin to asymptotic coordinates, where u =
(x +t)/2and v = (x — t)/2, then we get the equivalent form
as

w,, = sin (w). (2)

Many mathematicians have put forward a number of
approaches to solve the sine-Gordon equation based on
different conditions due to its wide applications. Most of these
approaches are followed by a travelling wave transformation
which is a powerful means to unite a partial differential equa-
tion (PDE for short) into an ordinary differential equation
(ODE for short). A number of solutions with tan™" coth(&),
tan~! tanh(&), tan 'sech(&), tan"'sn(£), and so on have been
provided in different functional forms by different methods
[9-15]. References [16, 17] present several cases of solu-
tions for the single sine-Gordon equation (2) by using the
knowledge of elliptic equation and Jacobian elliptic functions
through different transformations. The tanh method assumes
that the travelling wave solutions can be expressed in terms of
the tanh function [18-20]. And [21] also presents some exact
travelling wave solutions for a more general sine-Gordon
equation:

Wy = aw,.,, + bsin (Aw) . (3)

In this paper, a method will be employed to derive a set
of exact travelling wave solutions with a JacobiAmplitude
function form which has been employed to the Dodd-
Bullough equation and some new travelling wave solutions
have been derived [22]. Compared with other solutions, we
find that some previous solutions presented in [18, 21] are
special cases of our solutions.

2. The Proposed Method

Our method is based on two assumptions.
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(1) After the travelling wave transformation, the involved
equation can be represented as the form

F (w") =G(g(w)), (4)

where F, G, and g might be any functions.

(2) The traveling wave solutions for the above equation
meets that @' can be expressed in a specific function
form of w.

Then, the main steps are as follows.

(1) Unite the independent variables x and t into one wave
variable £ = x + ct. Consider that

P (th, W, @, ,) =0 (5)
can change into an ODE
O(w®),w' ©),0" €),...,)=0. (6)

The precondition for our method is that (6) meets a
form of (4) after some transformation.

(2) Find solutions for (4). Firstly, we assume that

W' = f(g(). (7)
So,
W= f(9(w) g (@a (8)
It is trivial to obtain that
W' =f(9)f (9@)g @). )

Then, by substituting (9) into (4), we have

F(f(g)f (9)g @)=G(gw). (10
Let ¢ = g(w). We have

F(f) f')v')=Gy). (1)

(3) Find the solutions for f from (11). In some cases, (11)
is a variable separated ODE.

(4) Get & by integration. Equation (7) is also a variable
separated ODE, so the solution for & can be retrieved.

We have
dw
T 4
f(g(w) J (12
dw
—_— d = s
wa«w) JE P )

where P is an integration constant.

In some cases, the integration of the left side of (13) is
so complex that only the implicit solutions can be derived.
However, we can get the explicit solutions by seeking the
inverse function otherwise.
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3. The Solution for Sine-Gordon Equation

Firstly, we unite the independent variables ¢ and x into one
wave variable £ = ¢ + cx to carry out a PDE in two variables
into an ODE. Thus, we get that

(1 - acz) " = bsin (). (14)

Next, we assume that w'(§) meets an ODE form of some
function of sin(Aw) given by the following equation for " (£)
satisfying a simple function form of sin(Aw):

@' = f (sin (Aw)). (15)
From (15), we can get that
w'" = Af (sin (Aw)) f' (sin (Aw)) cos (Aw) .~ (16)
Consequently, we substitute (16) into (14); we obtain

(1 - acz) Af (sin (Aw)) f' (sin (Aw)) cos (Aw) = bsin (Aw) .
(17)

Remember that w is a function of sin(Aw), so we can view
sin(Aw) as a new variable y; that is, y = sin(Aw), and then f
is a function of y. We have

(1-a) 27 () f' ) (+1-22) =ty (19

Now, we try to get the form of the function f.

Equation (18) is a variable separated ODE; using a symbol
computation software program, such as Mathematica, we
obtain

f(y)=i\j}t(%2z;cz)\/1—y2+ﬂ (19)

where P is a constant of integration.
By substituting (19) into (15), we get that

dw ] -2b
— =W (g)zi\]mCOS(A(D)‘FP. (20)

Equation (20) is also a variable separated ODE; using symbol
computation tool, we obtain two sets of solutions for two
different cases.

Case 1. For bA(1 — ac?®) < 0, we can get that

A(1-ac’
£+Q=27 ( )
A \-2b+(1-ac?)PA
(21)
Aw 4b
EllipticF | —, ————~+— | »
* TP (2 2b—(1—ac2)Px\>
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where Q is a constant of integration. JacobiAmplitude is the
inverse of the elliptic integral of the first kind. We have

2b+ (—1 + acz)PA
(-1+ac?)A

W= %]acobiAmplitude J_r% (&+Q \j

4b
2b+ (-1 +ac?) PA

(22)

Then, by substituting & with ¢ + cx we get the exact solution
of the sine-Gordon equation (2) as follows:

2b

W= %]acobiAmplitude (i% (t+cx+ Q)\/m +P,

4b
2b+(-1+ac?)PL )’
(23)

Case 2. On the contrary, for bA(1 — ac®) > 0, we can get that

A(-1+ac?
£+Q=12 ( )
A \-2b+ (-1 +ac?)PA
(24)
-7 + Aw 4b
EllipticF , )
< HHpHe ( 2 2b—(—1+ac2)P/\>

where Q is a constant of integration. Similar to Case 1, we
obtain

biAmslitad A 2b+ (1 -ac*) PA
1 it +— R
x JacobiAmplitude 2(.f+Q) (=a)A

4b
2b + (1 —ac?) PA

(25)

Substituting & with ¢ + cx, we get another exact solution of the
sine-Gordon equation (3) as follows:

2b

x JacobiAmplitude <i% (t+ex+Q) \] m +P,

4b
2b+(1-ac?)Pr )’
(26)

4. Comparing to Previous Solutions

Many researchers have proposed different solutions for sine-
Gordon equation. Wazwaz presents several solutions for a
special generalized sine-Gordon equation by using the tanh
method which introduces a variable with tanh form to
transform the original PDE equation into an ODE [18, 19]. Fu
et al. solve the single sine-Gordon equation by taking three
kinds of different transformations and gain a list of solutions
for 22 cases in [17]. Furthermore, [16] provides three kinds
of solutions by transforming the equation in three different
ways and summarizes some results in [17]. Reference [21]
presents two exact travelling waving solutions. In this section,
we compare our results with the solutions in [18, 21].

4.1. Comparing to Solutions in [21]. Two exact travelling
solutions are provided in [21]. In fact these two solutions
are special cases of our solutions (23) and (26). For P is a
constant of integration, we can fix it to satisfy the fact that
4b/(2b + (=1 + ac®)PA) = 1; that is, P = 2b/A(-1 + ac?).

Then, the JacobiAmplitude function in (23) and (26)
degenerates to Arctan function. Thus, (23) and (26) change
into

w—% —E+2arctan exp| £A L
A\ 2 PLF (-1+ac?)A

><(t+cx+Q)>>>,

bA(l - acz) < 0;
(27)

4 b
W= arctan(exp(i/\\/m (t+cx +Q)>>,

b)t(l —acz) > 0.
(28)

It is clear that the two sets of travelling waving solutions
proposed in [21] are equal to (27) and (28), respectively.
Indeed, these two solutions are only special cases of our
solutions by fixing the constant of integration to a special
value.

4.2. Comparing to Solutions in [18]. The tanh method is
usually used to solve the nonlinear equations by transforming
a PDE equation into an ODE. Four kinds of solutions
are presented in [18] for a special generalized sine-Gordon
equation by fixinga = 1,b=1,and A = 2:

Wy — Wy, + 5in Cw) . (29)

Indeed, the proposed solutions in [18] are also special cases of
our results. In (23) and (26), we also set P = 2b/A(~1 + ac?)



and then 4b/(2b + (=1 + ac®)PA) = 1. Meanwhile, leta = 1,
b =1,and A = 2. Then, we get that

T 1
w = _E + 2 arctan (exp (iz\jm (t+ CX+Q)>) ,

1—c2<0;
w=2arctan | exp| +2 #(t+cx+Q)
- P\ Nz - o) ’
1-¢2>o.
(30)

It is easy to verify that (30) are equivalent to the solutions that
occurred in [18] for the generalized sine-Gordon equations by
reasonable transformations.

5. Conclusions

This paper develops a method to deal with the general sine-
Gordon equation w,, = aw,, + bsin(Aw). The proposed
method is based on the assumption that the travelling wave
solution meets a specific form w = f(sin(Aw)). Two sets
of new exact solutions for the general sine-Gordon equation
have been retrieved. And, by comparison, we find that some
previous solutions presented in [18, 21] are special cases of our
solutions.
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