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Circulant matrix families have become an important tool in network engineering. In this paper, two new patterned matrices over
Z𝑝 which include row skew first-plus-last right circulant matrix and row first-plus-last left circulant matrix are presented. Their
basic properties are discussed. Based on Newton-Hensel lifting and Chinese remaindering, two different algorithms are obtained.
Moreover, the cost in terms of bit operations for each algorithm is given.

1. Introduction

Circulant matrix families play an important role in net-
work engineering. Basic [1] gave a simple condition for
characterizing weighted circulant graphs allowing perfect
state transfer in terms of their eigenvalues. Noual et al.
[2] showed some preliminary results on the dynamical
behaviours of some specific nonmonotone Boolean automata
networks that were called xor circulant networks. Using the
circulant matrix, the charge transport and the noise of a
quantum wire network, made of three semi-infinite external
leads attached to a ring crossed by a magnetic flux, were
investigated [3]. Based on the circulant adjacency matrices of
the networks induced by these interior symmetries, Aguiar
and Ruan [4] analyzed the impact of interior symmetries on
the multiplicity of the eigenvalues of the Jacobian matrix at
a fully synchronous equilibrium for the coupled cell systems
associated with homogeneous networks. Involving circulant
matrix, the storage of binary cycles in Hopfield-type and
other neural networks was investigated [5]. A new structure
for the decoupling of circulant symmetric arrays of more
than four elements was presented in [6]. Wang and Cheng
[7] studied the existence of doubly periodic travelling waves
in cellular networks involving the discontinuous Heaviside
step function by circulant matrix. Pais et al. [8] proved
conditions for the existence of stable limit cycles arising
from multiple distinct Hopf bifurcations of the dynamics in

the case of circulant fitness matrices. Cho and Chung [9]
discussed the routing of a message on circulant networks,
that is, a key to the performance of this network. Grassi
[10] designed DTCNNs where each trajectory converges to
a unique equilibrium point, which depends only on the
input and not on the initial state, by exploiting the global
asymptotic stability of the equilibrium point of DTCNNs
with circulant matrices. Wu [11] obtained the coexistence
of multiple large-amplitude wave solutions for the delayed
Hopfield-Cohen-Grossberg model of neural networks with
a symmetric circulant connection matrix. The system model
of the OFDM is based on AF relay networks as well as
the strategy of the superimposed training involved circulant
matrix [12]. Two-way transmission model was considered in
[13] and ensured circular convolution between two frequency
selective channels.

In this paper, we give two algorithms for an 𝑛 × 𝑛
nonsingular RSFPLR circulant matrix overZ𝑝. The primitive
problem is transformed into an equivalent problem over
Z𝑝[𝑥]. The first algorithm supposes the factorization of 𝑝 is
given and the costs of multiplications and additions over Z𝑝
are 𝑛 log2𝑛 + 𝑛 log𝑝 and 𝑛 log2𝑛 log log 𝑛, respectively. We
obtain the bit complexity bound:

𝑂((𝑛 log2𝑛 + 𝑛 log𝑝) 𝜇 (log𝑝) + 𝑛 log2𝑛 log log 𝑛 log𝑝) ,
(1)
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where 𝜇(𝑑) denotes the bit complexity of multiplying 𝑑-bit
integers. The second algorithm does not know the factoriza-
tion of 𝑝 and its cost is greater, by a factor log𝑝, than in the
first algorithm.

Definition 1. A row skew first-plus-last right (RSFPLR) cir-
culant matrix with the first row (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) over Z𝑝,
denoted by RSFPLRcircfr(𝑎0, 𝑎1, . . . , 𝑎𝑛−1), meant a square
matrix of the form

(

(

𝑎0 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛−1
−𝑎𝑛−1 𝑎0 + 𝑎𝑛−1 d 𝑎𝑛−2
.
.
. −𝑎𝑛−1 + 𝑎𝑛−2 d

.

.

.

−𝑎2

.

.

. d 𝑎1
−𝑎1 −𝑎2 + 𝑎1 ⋅ ⋅ ⋅ 𝑎0 + 𝑎𝑛−1

)

)𝑛×𝑛

. (2)

Obviously, the RSFPLR circulant matrix over a field is
a 𝑥𝑛 − 𝑥 + 1-circulant matrix [14], and that is neither the
extention of circulant matrix overZ𝑝 [15] nor its special case,
and they are two different families of patterned matrices.

We define Θ(−1,1) as the basic RSFPLR circulant matrix
over Z𝑝; that is,

Θ(−1,1) =
(

(

0 1 0 ⋅ ⋅ ⋅ 0

.

.

. d d d
.
.
.

.

.

. d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1

−1 1 0 ⋅ ⋅ ⋅ 0

)

)𝑛×𝑛

= RSFPLRcircfr (0, 1, 0, . . . , 0) .

(3)

It is easily verified that 𝑔(𝑥) = 𝑥𝑛 − 𝑥 + 1 has no repeated
roots over Z𝑝 and 𝑔(𝑥) = 𝑥

𝑛
− 𝑥 + 1 is both the minimal

polynomial and the characteristic polynomial of the matrix
Θ(−1,1). In addition, Θ(−1,1) is nonderogatory and satisfies
Θ
𝑗

(−1,1)
= RSFPLRcircfr(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑗−1

) and Θ𝑛
(−1,1)

=

𝐼𝑛 −Θ(−1,1). In view of the structure of the powers of the basic
RSFPLR circulant matrix Θ(−1,1) over Z𝑝, it is clear that

𝐴 = RSFPLRcircfr (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) =
𝑛−1

∑

𝑖=0

𝑎𝑖Θ
𝑖

(−1,1)
. (4)

Thus, 𝐴 is a RSFPLR circulant matrix over Z𝑝 if and only
if 𝐴 = 𝑓(Θ(−1,1)) for some polynomial 𝑓(𝑥) over Z𝑝. The
polynomial 𝑓(𝑥) = ∑𝑛−1

𝑖=0
𝑎𝑖𝑥
𝑖 will be called the representer

of the RSFPLR circulant matrix 𝐴 over Z𝑝. By Definition 1
and (4), it is clear that A is a RSFPLR circulant matrix over
Z𝑝 if and only if 𝐴 commutes with Θ(−1,1); that is, 𝐴Θ(−1,1) =
Θ(−1,1)𝐴.

In addition to the algebraic properties that can be easily
derived from the representation (4), wemention that RSFPLR
circulant matrices have very nice structure. The product of
two RSFPLR circulant matrices is a RSFPLR circulant matrix
and 𝐴−1 is a RSFPLR circulant matrix, too. Furthermore, let
Z𝑝[Θ(−1,1)] = {𝐴 | 𝐴 = 𝑓(Θ(−1,1)), 𝑓(𝑥) ∈ Z𝑝[𝑥]}. It is a
routine to prove that Z𝑝[Θ(−1,1)] is a commutative ring with
the matrix addition and multiplication.

Definition 2. A row first-plus-last left (RSLPFL) circulant
matrix with the first row (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) overZ𝑝, denoted by
RSLPFLcircfr(𝑎0, 𝑎1, . . . , 𝑎𝑛−1), meant a square matrix of the
form

(

(

𝑎0 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛−2 𝑎𝑛−1
𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛−1 + 𝑎0 −𝑎0
.
.
.

.

.

. c −𝑎0 + 𝑎1

.

.

.

𝑎𝑛−2 c c
.
.
. −𝑎𝑛−3

𝑎𝑛−1 + 𝑎0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −𝑎𝑛−3 + 𝑎𝑛−2 −𝑎𝑛−2

)

)𝑛×𝑛

. (5)

Lemma 3. Let

𝐼𝑛 = (

0 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 1 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 0 ⋅ ⋅ ⋅ 0 0

) (6)

be the 𝑛 × 𝑛matrix of the counteridentity. Then

(i) RSLPFLcircfr(𝑎0, 𝑎1, . . . , 𝑎𝑛−1)
= RSFPLRcircfr(𝑎𝑛−1, . . . , 𝑎1, 𝑎0)𝐼𝑛;

(ii) RSLPFLcircfc(𝑎0, 𝑎1, . . . , 𝑎𝑛−1)𝐼𝑛
= RSFPLRcircfc(𝑎𝑛−1, . . . , 𝑎1, 𝑎0).

Let 𝐴 be a nonsingular matrix over Z𝑝; we explore
the problem of finding a RSFPLR circulant matrix 𝐵 =
∑
𝑛−1

𝑖=0
𝑏𝑖Θ
𝑖

(−1,1)
, such that 𝐴𝐵 = 𝐼.

Solving 𝐴−1 is clearly equivalent to finding a polynomial
𝑔(𝑥) = ∑

𝑛−1

𝑖=0
𝑏𝑖𝑥
𝑖 in Z𝑝[𝑥] such that

𝑓 (𝑥) 𝑔 (𝑥) ≡ 1 (mod 𝑥𝑛 − 𝑥 + 1) . (7)

The congruence modulo 𝑥𝑛 − 𝑥 + 1 follows from the
equality Θ𝑛

(−1,1)
= 𝐼𝑛 − Θ(−1,1). Hence, the problem of solving

𝐴
−1 is equivalent to inversion in the ringZ𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩.

The following theorem describes a necessary and suffi-
cient condition for the nonsingularity of a RSFPLR circulant
matrix over Z𝑝.

Theorem 4. Let 𝐴 = RSFPLRcircfr(𝑎0, 𝑎1, . . . , 𝑎𝑛−1) be a
RSFPLR circulant matrix over Z𝑝; then the matrix 𝐴 is
nonsingular if and only if

𝑔𝑐𝑑 (𝑓 (𝑥) , 𝑥
𝑛
− 𝑥 + 1) = 1 𝑖𝑛 Z𝑝𝑖 [𝑥] , (8)

for 𝑖 = 1, . . . , 𝑙, where 𝑝 = 𝑝𝑘1
1
𝑝
𝑘2
2
⋅ ⋅ ⋅ 𝑝
𝑘𝑙

𝑙
is the prime powers

factorization of 𝑝 and 𝑓(𝑥) = ∑𝑛−1
𝑗=0
𝑎𝑗𝑥
𝑗.

Proof. If 𝐴 is nonsingular, by (7), there exists 𝑠(𝑥) such that,
for 𝑖 = 1, . . . , 𝑙,

𝑓 (𝑥) 𝑔 (𝑥) + 𝑠 (𝑥) (𝑥
𝑛
− 𝑥 + 1) = 1 in Z𝑝𝑖 [𝑥] ; (9)

that is, gcd(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) = 1 in Z𝑝𝑖[𝑥].
The proof of sufficient condition for nonsingularity will

be given in Section 2 (Lemmas 5 and 6).
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Review of Bit Complexity Results [15]. The sum of two
polynomials in Z𝑝[𝑥] of degree at most 𝑛 can be trivially
calculated in 𝑂(𝑛 log𝑝) bit operations. The product of two
such polynomials can be calculated in 𝑂(𝑛 log 𝑛) multipli-
cations and 𝑂(𝑛 log 𝑛 log log 𝑛) additions or subtractions
in Z𝑝. Therefore, the cost of polynomial multiplication is
𝑂(∏(𝑝, 𝑛)) bit operations, where
Π(𝑝, 𝑛) = 𝑛 log 𝑛𝜇 (log𝑝) + 𝑛 log 𝑛 log log 𝑛 log𝑝. (10)

Let 𝑎(𝑥), 𝑏(𝑥) be two polynomials of degree at most 𝑛
over Z𝑝[𝑥] (𝑝 prime); we calculate 𝑑(𝑥) = gcd(𝑎(𝑥), 𝑏(𝑥))
in 𝑂(Γ(𝑝, 𝑛)) bit operations, where

Γ (𝑝, 𝑛) = Π (𝑝, 𝑛) log 𝑛 + 𝑛𝜇 (log𝑝) log log 𝑝. (11)

2. Finding Inversion in Z𝑝[𝑥]/⟨𝑥
𝑛
−𝑥+1⟩ for

Factorization of 𝑝 Given

In this section, let 𝑝 = 𝑝𝑘1
1
𝑝
𝑘2
2
⋅ ⋅ ⋅ 𝑝
𝑘𝑙

𝑙
be the given prime

powers factorization of 𝑝. In the following, we discuss the
inverse of a RSFPLR circulant matrix overZ𝑝 by studying the
equivalent problem, that is, finding the inversion of a poly-
nomial 𝑓(𝑥) over Z𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩. We obtain algorithms

of calculating the inverse via Chinese remaindering, the
extended Euclidean algorithm, and Newton-Hensel lifting.

Lemma 5. Let 𝑔1(𝑥), . . . , 𝑔𝑙(𝑥) be known such that

𝑓 (𝑥) 𝑔𝑖 (𝑥) ≡ 1 (𝑚𝑜𝑑 𝑥
𝑛
− 𝑥 + 1) 𝑖𝑛 Z

𝑝
𝑘𝑖

𝑖

[𝑥] , (12)

for 𝑖 = 1, 2, . . . , 𝑙 and 𝑝 = 𝑝𝑘1
1
𝑝
𝑘2
2
⋅ ⋅ ⋅ 𝑝
𝑘𝑙

𝑙
and 𝑓(𝑥) is a

polynomial in Z𝑝[𝑥].
One can solve 𝑔(𝑥) ∈ Z𝑝[𝑥] such that

𝑓 (𝑥) 𝑔 (𝑥) ≡ 1 (𝑚𝑜𝑑 𝑥
𝑛
− 𝑥 + 1) , (13)

and the cost of bit operations is 𝑂(𝑛𝑙𝜇(log𝑝) +
𝜇(log𝑝) log log 𝑝).

Proof. Due to 𝑓(𝑥)𝑔𝑖(𝑥) ≡ 1(mod 𝑥𝑛 − 𝑥 + 1) in Z
𝑝
𝑘𝑖

𝑖

[𝑥], we
get

𝑓 (𝑥) 𝑔𝑖 (𝑥) ≡ 1 + 𝜆𝑖 (𝑥) ⟨𝑥
𝑛
− 𝑥 + 1⟩ (mod𝑝𝑘𝑖

𝑖
) . (14)

Let 𝛼𝑖 = 𝑝/𝑝
𝑘𝑖
𝑖
. Distinctly, for 𝑗 ̸= 𝑖, 𝛼𝑖 ≡ 0 (mod𝑝𝑘𝑗

𝑗
).

Since gcd(𝛼𝑖, 𝑝
𝑘𝑖
𝑖
) = 1, we can solve 𝛽𝑖 which satisfies 𝛼𝑖𝛽𝑖 ≡ 1

(mod𝑝𝑘𝑖
𝑖
). Let 𝑔(𝑥) = ∑𝑙

𝑖=1
𝛼𝑖𝛽𝑖𝑔𝑖(𝑥), 𝜆(𝑥) = ∑

𝑙

𝑖=1
𝛼𝑖𝛽𝑖𝜆𝑖(𝑥).

By construction, for 𝑖 = 1, 2, . . . , 𝑙, we get 𝑔(𝑥) ≡ 𝑔𝑖(𝑥)
(mod𝑝𝑘𝑖

𝑖
) and 𝜆(𝑥) ≡ 𝜆𝑖(𝑥) (mod𝑝𝑘𝑖

𝑖
). Then, for 𝑖 =

1, 2, . . . , 𝑙, we obtain 𝑓(𝑥)𝑔(𝑥) = ∑𝑙
𝑗=1
𝛼𝑗𝛽𝑗𝑓(𝑥)𝑔𝑗(𝑥) ≡

𝑓(𝑥)𝑔𝑖(𝑥)(mod𝑝𝑘𝑖
𝑖
) ≡ 1 + 𝜆𝑖(𝑥)⟨𝑥

𝑛
− 𝑥 + 1⟩(mod𝑝𝑘𝑖

𝑖
) ≡ 1 +

𝜆(𝑥)⟨𝑥
𝑛
− 𝑥 + 1⟩(mod𝑝𝑘𝑖

𝑖
). We come to the conclusion that

𝑓 (𝑥) 𝑔 (𝑥) ≡ 1 + 𝜆 (𝑥) ⟨𝑥
𝑛
− 𝑥 + 1⟩ (mod𝑝) ; (15)

that is,
𝑓 (𝑥) 𝑔 (𝑥) ≡ 1 (mod 𝑥𝑛 − 𝑥 − 1) in Z𝑝 [𝑥] . (16)

The computation of 𝑔(𝑥) consists in 𝑛 (one for each
coefficient) applications of Chinese remaindering. Obviously,

the computation of 𝛼𝑖, 𝛽𝑖, 𝑖 = 1, . . . , 𝑙 should be done
only once. Since integer division has the same asymp-
totic cost as multiplication, the cost of bit operations for
𝛼𝑖, . . . , 𝛼𝑙 is 𝑂(𝑙𝜇(log𝑝)). Because each 𝛽𝑖 is got via an
inversion in Z

𝑝
𝑘𝑖

𝑖

, the cost of bit operations for 𝛽1, . . . , 𝛽𝑙
is 𝑂(∑𝑙

𝑗=1
𝜇(log𝑝𝑘𝑗

𝑗
) log log𝑝𝑘𝑗

𝑗
). Finally, the cost of bit

operations for calculating 𝑔(𝑥) is 𝑂(𝑛𝑙𝜇(log𝑝)) by using
𝛼1, . . . , 𝛼𝑙, 𝛽1, . . . , 𝛽𝑙, 𝑔1(𝑥), . . . , 𝑔𝑙(𝑥).The thesis follows using
the inequality

𝜇 (log 𝑎) log log 𝑎 + 𝜇 (log 𝑏) log log 𝑏

≤ 𝜇 (log (𝑎𝑏)) log log (𝑎𝑏) .
(17)

By Lemma 5, we can find the inversion of a polynomial
over Z𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩ when 𝑝 = 𝑟𝑘 is a prime power. The

following lemma presents how to solve this special problem.

Lemma 6. Suppose 𝑔𝑐𝑑(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) = 1 in Z𝑟[𝑥]; then
𝑓(𝑥) is invertible in Z𝑟𝑘[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩, where 𝑓(𝑥) is a

polynomial inZ𝑟𝑘[𝑥]. In this case, the cost of bit operations for
the inverse of 𝑓(𝑥) is 𝑂(Γ(𝑟, 𝑛) + Π(𝑟𝑘, 𝑛)), where Γ(𝑟, 𝑛) and
Π(𝑟
𝑘
, 𝑛) are the same as (11) and (10), respectively.

Proof. Suppose gcd(𝑓(𝑥), 𝑥𝑛−𝑥+1) = 1 inZ𝑟[𝑥]; by Bezout’s
lemma, there exist 𝑠(𝑥), 𝑡(𝑥) which satisfy

𝑓 (𝑥) 𝑠 (𝑥) + ⟨𝑥
𝑛
− 𝑥 + 1⟩ 𝑡 (𝑥) ≡ 1 (mod 𝑟) . (18)

In the following, we consider Newton-Hensel lifting; that is,

𝑔0 (𝑥) = 𝑠 (𝑥) ,

𝑔𝑖 (𝑥) = 2𝑔𝑖−1 (𝑥) − [𝑔𝑖−1 (𝑥)]
2
𝑓 (𝑥) mod 𝑥𝑛 − 𝑥 + 1.

(19)

It is easy to verify by induction that 𝑔𝑖(𝑥)𝑓(𝑥) ≡ 1 +
𝑟
2
𝑖

𝜆𝑖(𝑥)(mod𝑥𝑛 − 𝑥 + 1). Therefore, the inverse element of
𝑓(𝑥) in Z𝑟𝑘[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩ is 𝑔⌈log 𝑘⌉(𝑥).

The cost of bit operations for calculating 𝑠(𝑥) is𝑂(Γ(𝑟, 𝑛)).
Calculating 𝑔1(𝑥), 𝑔2(𝑥), . . . , 𝑔⌈log 𝑘⌉(𝑥) is calculating each 𝑔𝑖
modulo 𝑟2

𝑖

.Therefore, the cost of bit operations for the whole
sequence is 𝑂(Π(𝑟2, 𝑛) + Π(𝑟4, 𝑛) + ⋅ ⋅ ⋅ + Π(𝑟2

⌈log 𝑘⌉
, 𝑛)) =

𝑂(Π(𝑟
𝑘
, 𝑛)).

By Theorem 4 and Lemmas 5 and 6, we obtain
Algorithm 1 for the inversion of a polynomial 𝑓(𝑥) over
Z𝑝[𝑥]/⟨𝑥

𝑛
−𝑥+1⟩.The cost of bit operations for the algorithm

is𝑇(𝑝, 𝑛) = 𝑂(𝑛𝑙𝜇(log𝑝)+𝜇(log𝑝) log log𝑝+∑𝑙
𝑗=1
Γ(𝑝𝑗, 𝑛)+

Π(𝑝
𝑘𝑗

𝑗
, 𝑛)), where 𝑙 and 𝑝𝑗 are bounded by log 𝑝 and 𝑝𝑘𝑗

𝑗
,

respectively. On the side, by usingΠ(𝑎, 𝑛)+Π(𝑏, 𝑛) ≤ Π(𝑎𝑏, 𝑛)
and Γ(𝑎, 𝑛) + Γ(𝑏, 𝑛) ≤ Γ(𝑎𝑏, 𝑛), we get

𝑇 (𝑝, 𝑛) = 𝑂 (𝑛 log𝑝𝜇 (log𝑝) + 𝜇 (log𝑝) log log𝑝

+Γ (𝑝, 𝑛) + Π (𝑝, 𝑛))

= 𝑂 (𝑛 log𝑝𝜇 (log𝑝) + Π (𝑝, 𝑛) log 𝑛) .

(20)

Particularly, if 𝑝 = 𝑂(𝑛), the ascendent term is Π(𝑝, 𝑛) log 𝑛.
That is, the cost of calculating the inverse of 𝑓(𝑥) is gradually
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Inverse1 (𝑓(𝑥), 𝑝, 𝑛) → 𝑔(𝑥)
{Calculates the inverse 𝑔(𝑥) of 𝑓(𝑥) in Z𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩}

(1) let 𝑝 = 𝑝𝑘1
1
𝑝
𝑘2
2
, . . . , 𝑝

𝑘𝑙

𝑙
;

(2) for 𝑗 = 1, 2, . . . , 𝑙 do
(3) if gcd(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) = 1 in Z𝑝𝑗 [𝑥] then
(4) calculate 𝑔𝑗(𝑥) which satisfy

𝑓(𝑥)𝑔𝑗(𝑥) ≡ 1(mod 𝑥𝑛 − 𝑥 + 1) in Z
𝑝
𝑘𝑗

𝑗

[𝑥]

(5) using Newton-Hensel lifting (Lemma 6);
(6) else
(7) return “𝑓(𝑥) is not invertible”;
(8) endif
(9) endfor
(10) calculate 𝑔(𝑥) using Chinese remaindering (Lemma 5).

Algorithm 1: Finding inversion in Z𝑝[𝑥]/⟨𝑥
𝑛
− 𝑥 + 1⟩ for factorization of 𝑝 given.

Inverse2 (𝑓(𝑥), 𝑝) → 𝑔(𝑥)
{Calculates the inverse 𝑔(𝑥) of 𝑓(𝑥) in Z𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩}

(1) if gcd(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) = 1 then
(2) let 𝑠(𝑥), 𝑡(𝑥) which satiefy 𝑓(𝑥)𝑠(𝑥) + (𝑥𝑛 − 𝑥 + 1)𝑡(𝑥) = 1 in Z𝑝[𝑥];
(3) return 𝑠(𝑥);
(4) else if gcd(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) = 𝑎(𝑥), deg(𝑎(𝑥)) > 0 then
(5) return “𝑓(𝑥) is not invertible”;
(6) else if gcd(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) fails let 𝑑 satisfy 𝑑 | 𝑝;
(7) let (𝑚1, 𝑚2) ←GetFactors (𝑝, 𝑑);
(8) if 𝑚2 ̸= 1, then
(9) 𝑔1(𝑥) ← Inverse2 (𝑓(𝑥),𝑚1);
(10) 𝑔2(𝑥) ← Inverse2 (𝑓(𝑥),𝑚2);
(11) calculate 𝑔(𝑥) using Chinese remaindering (Lemma 5);
(12) else
(13) 𝑔1(𝑥) ← Inverse2 (𝑓(𝑥),𝑚1);
(14) calculate 𝑔(𝑥) using Newton-Hensel lifting (Lemma 6);
(15) endif
(16) return 𝑔(𝑥);
(17) endif
GetFactors (𝑝, 𝑑) → (𝑚1, 𝑚2)
(18) let 𝑚1 ← gcd(𝑝, 𝑑⌊log𝑝⌋);
(19) if (𝑝/𝑚1) ̸= 1 then
(20) return (𝑚1, 𝑝/𝑚1);
(21) endif
(22) let 𝑒 ← 𝑝/𝑑;
(23) let 𝑚1 ← gcd(𝑝, 𝑒⌊log𝑝⌋);
(24) if (𝑝/𝑚1) ̸= 1 then
(25) return (𝑚1, 𝑝/𝑚1);
(26) endif
(27) let 𝑚1 ← lcm(𝑑, 𝑒);
(28) return (𝑚1, 1);

Algorithm 2: Finding inversion in Z𝑝[𝑥]/⟨𝑥
𝑛
− 𝑥 + 1⟩ for factorization of 𝑝 unknown.

bounded by the cost of executing log 𝑛 multiplications in
Z𝑝[𝑥].

3. Algorithm of Finding
Inversion in Z𝑝[𝑥]/⟨𝑥

𝑛
−𝑥+1⟩ for

Factorization of 𝑝 Unknown

In this section, we show how to compute the inverse of
𝑓(𝑥) without knowing the factorization of the modulus. The

number of bit operations of the new algorithm is only a factor
𝑂(log𝑝) greater than in the previous case.

Our idea consists in trying to compute gcd(𝑓(𝑥), 𝑥𝑛 −
𝑥 + 1) in Z𝑝[𝑥] using the gcd algorithm for Z𝑝[𝑥]. Such
algorithm requires the inversion of some scalars, which is not
a problem in Z𝑝[𝑥], but it is not always possible if 𝑝 is not
prime.Therefore, the computation of gcd(𝑓(𝑥), 𝑥𝑛−𝑥+1)may
fail. However, if the gcd algorithm terminates, we have solved
the problem. In fact, together with the alleged gcd 𝑎(𝑥), the
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algorithm also returns 𝑠(𝑥), 𝑡(𝑥) such that𝑓(𝑥)𝑠(𝑥)+(𝑥𝑛−𝑥+
1)𝑡(𝑥) = 𝑎(𝑥) inZ𝑝[𝑥]. If 𝑎(𝑥) = 1, then 𝑠(𝑥) is the inverse of
𝑓(𝑥). If deg(𝑎(𝑥)) ̸= 0, one can easily prove that 𝑓(𝑥) is not
invertible in Z𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩. Note that we must force the

gcd algorithm to return a monic polynomial.
If the computation of gcd(𝑓(𝑥), 𝑥𝑛 − 𝑥 + 1) fails, we use

recursion. In fact, the gcd algorithm fails if it cannot invert
an element 𝑦 ∈ Z𝑝. Inversion is done by using the integer
gcd algorithm. If 𝑦 is not invertible, the integer gcd algorithm
returns 𝑑 = gcd(𝑝, 𝑦), with 𝑑 > 1. Hence, 𝑑 is a nontrivial
factor of 𝑝. We use 𝑑 to compute either a pair 𝑚1, 𝑚2, such
that gcd(𝑚1, 𝑚2) = 1 and 𝑚1𝑚2 = 𝑝, or a single factor 𝑚1,
such that 𝑚1 | 𝑝 and 𝑝 | (𝑚1)

2. In the first case, we invert
𝑓(𝑥) in Z𝑚1[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩ and Z𝑚2[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩, and

we use Chinese remaindering to get the desired result. In the
second case, we invert 𝑓(𝑥) in Z𝑚1[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩ and we

use one step of Newton-Hensel lifting to get the inverse in
Z𝑝[𝑥]/⟨𝑥

𝑛
− 𝑥 + 1⟩.

The computation of the factors 𝑝1, 𝑝2 is done by proce-
dure GetFactors whose correctness is proven by Lemmas 4.1
and 4.2 in [15]. Combining these procedures together, we get
Algorithm 2.

Theorem 7. Suppose 𝑓(𝑥) is invertible inZ𝑝[𝑥]/⟨𝑥𝑛 − 𝑥+ 1⟩;
the cost of bit operations for Algorithm 2 which returns the
inverse 𝑔(𝑥) is 𝑂(Γ(𝑝, 𝑛) log𝑝).

Proof. It is similar to the proof of Theorem 4.3 in [15].

In addition, by Lemma 3 andAlgorithms 1 and 2, it is easy
to get two algorithms for inverting RSLPFL circulantmatrices
over Z𝑝, respectively.

4. Conclusion

In this paper, we consider the problem of finding inverse
matrix for a 𝑛 × 𝑛 RSFPLR circulant matrix with entries
over Z𝑝. We present two different algorithms. Our algo-
rithms require different degrees of knowledge of 𝑝 and
𝑛, and their costs range, roughly, from 𝑛 log 𝑛 log log 𝑛 to
𝑛 log2𝑛 log log 𝑛 log𝑝 operations overZ𝑝. Moreover, for each
algorithm, we give the cost in terms of bit operations. Finally,
the extended algorithms are used to solve the problem of
inverting RSLPFL circulant matrices over Z𝑝. Based on the
existing problem in [16–19], we will develop solving these
problems by circulant matrices technology.
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[8] D. Pais, C. H. Caicedo-Núñez, and N. E. Leonard, “Hopf bifur-
cations and limit cycles in evolutionary network dynamics,”
SIAM Journal on Applied Dynamical Systems, vol. 11, no. 4, pp.
1754–1784, 2012.

[9] Y. Cho and I. Chung, “A parallel routing algorithm on circulant
networks employing the Hamiltonian circuit Latin square,”
Information Sciences, vol. 176, no. 21, pp. 3132–3142, 2006.

[10] G. Grassi, “On the design of discrete-time cellular neural
networks with circulant matrices,” International Journal of
Circuit Theory and Applications, vol. 28, pp. 193–202, 2000.

[11] J. Wu, “Symmetric functional-differential equations and neural
networks with memory,” Transactions of the American Mathe-
matical Society, vol. 350, no. 12, pp. 4799–4838, 1998.

[12] F. Gao, B. Jiang, X. Gao, and X. Zhang, “Superimposed training
based channel estimation for OFDM modulated amplify-and-
forward relay networks,” IEEE Transactions on Communica-
tions, vol. 59, no. 7, pp. 2029–2039, 2011.

[13] G. Wang, F. Gao, Y. Wu, and C. Tellambura, “Joint CFO and
channel estimation for OFDM-based two-way relay networks,”
IEEE Transactions on Wireless Communications, vol. 10, no. 2,
pp. 456–465, 2011.

[14] D. Chillag, “Regular representations of semisimple algebras,
separable field extensions, group characters, generalized cir-
culants, and generalized cyclic codes,” Linear Algebra and Its
Applications, vol. 218, pp. 147–183, 1995.

[15] D. Bini, G.M. D. Corso, G.Manzini, and L.Margara, “Inversion
of circulant matrices over Zm,” Mathematics of Computation,
vol. 70, pp. 1169–1182, 2000.

[16] H. Dong, Z. Wang, and H. Gao, “Distributed H∞ filtering
for a class of markovian jump nonlinear time-delay systems
over lossy sensor networks,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 10, pp. 4665–4672, 2013.

[17] Z. Wang, H. Dong, B. Shen, and H. Gao, “Finite-horizon 𝐻∞
filtering with missing measurements and quantization effects,”
IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1707–
1718, 2013.



6 Abstract and Applied Analysis

[18] D. Ding, Z. Wang, J. Hu, and H. Shu, “Dissipative control for
state-saturated discrete time-varying systems with randomly
occurring nonlinearities and missing measurements,” Interna-
tional Journal of Control, vol. 86, no. 4, pp. 674–688, 2013.

[19] J. Hu, Z. Wang, B. Shen, and H. Gao, “Quantised recursive
filtering for a class of nonlinear systems with multiplicative
noises and missing measurements,” International Journal of
Control, vol. 86, no. 4, pp. 650–663, 2013.


