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The Olver equation is governing a unidirectional model for describing long and small amplitude waves in shallow water waves.The
solitary wave solutions of the Olver and fifth-order KdV equations can be obtained by using extended tanh and sech-tanhmethods.
The present results are describing the generation and evolution of such waves, their interactions, and their stability. Moreover, the
methods can be applied to a wide class of nonlinear evolution equations. All solutions are exact and stable and have applications in
physics.

1. Introduction

The research on the Korteweg-de Vries (KdV) equations
attracted the interest of many scientists. The KdV equations
describe nonlinear dispersive long waves; many other partial
differential equations have been derived to model wave
phenomena in diverse nonlinear systems. The KdV equation
plays an important role in describing motions of long waves
in shallow water under gravity, one-dimensional nonlinear
lattice [1, 2], fluid mechanics [3, 4], quantum mechanics,
plasma physics, nonlinear optics, and other areas. The KdV
equation is a well-known model for the description of
nonlinear long internal waves in a fluid stratified by both
density and current.The steady-state version of this equation
was produced by Long [5], while Benney [6] gave the integral
expressions for calculation of the coefficients of the KdV
equation for waves in a fluid with arbitrary stratification in
the density and current.

There are many classical methods proposed to solve
the KdV equations, including direct integration, Lyapunov
approach, Hirota’s dependent variable transformation, the
inverse scattering transform, and the Bäcklund transfor-
mation [7–9]. A direct algebraic approach has also been
developed by Parkes and Duffy [10] in which the solutions

to the particular equation are represented by an automated
tanh-function method [10]. Recently, Wazwaz considered
the abundant solitons solutions, compactons and solitary
patterns solutions, some new solitons, and periodic solu-
tions of the fifth-order KdV equation [11, 12]. The adiabatic
parameter dynamics of 1-soliton solution of the generalized
fifth-order nonlinear KdV equation is obtained by virtue
of the soliton perturbation theory [13, 14]. The authors
present a Mathematica package that deals with complicated
algebraic system and outputs directly the required solutions
for particular nonlinear equations [15–21].

Exact solutions to nonlinear evolution equations (NEEs)
play an important role in nonlinear physical science, since
the characteristics of these solutions may well simulate real-
life physical phenomena [22–24]. The wave phenomena can
be observed in fluid dynamics, plasma physics, elastic media,
and so forth. The main task of this work is to show that our
proposed methods, improved tanh and sech-tanh methods,
are very efficient in solving the Olver equation and the fifth-
order KdV equation by using extended tanh method and
extended sech-tanh method [25–28].

This paper is organized as follows. An introduction in
is presented in Section 1. In Section 2, an analysis of the
extended tanh method and extended sech-tanh method is

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 839485, 11 pages
http://dx.doi.org/10.1155/2014/839485

http://dx.doi.org/10.1155/2014/839485


2 Journal of Applied Mathematics

formulated. In Section 3, the travelling wave solutions of the
Olver and the fifth-order KdV equations are obtained. Finally,
the paper ends with a conclusion in Section 4.

2. An Analysis of the Methods

2.1. The sech-tanh Method. We suppose that 𝑢(𝑥, 𝑡) = 𝑢(𝜉),
where 𝜉 = 𝑥−𝑘𝑡, and 𝑢(𝜉) has the following formal travelling
wave solution:

𝑢 (𝜉) =

𝑛

∑

𝑖=1

sech𝑖−1𝜉 (𝐴
𝑖
sech 𝜉 + 𝐵

𝑖
tanh 𝜉) , (1)

where 𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑛
and 𝐵

1
, . . . , 𝐵

𝑛
are constants to be

determined.

Step 1. Equating the highest-order nonlinear term and the
highest-order linear partial derivative in the ordinary differ-
ential equations yields the value of 𝑛.

Step 2. By setting the coefficients of sech𝑗tanh𝑖 for 𝑖 = 0, 1

and 𝑗 = 1, 2, . . . to zero, we have the following set of over
determined equations in the unknowns𝐴

0
, 𝐴
𝑖
, 𝐵
𝑖
, and 𝜇 and

𝑘 for 𝑖 = 1, 2, . . . , 𝑛.

Step 3. By usingMathematica andWu’s eliminationmethods,
the algebraic equations in Step 2 can be solved.

2.2. The Extended tanhMethod. The tanh method developed
and introduced an independent variable:

𝑌 = tanh (𝜇𝜉) , 𝜉 = 𝑥 − 𝑘𝑡, (2)

that is introduced and leads to the change of the following
derivatives:

𝑑

𝑑𝜉

= 𝜇 (1 − 𝑌
2

)

𝑑

𝑑𝑌

,

𝑑
2

𝑑𝜉
2
= −2𝜇

2

𝑌 (1 − 𝑌
2

) (

𝑑

𝑑𝑌

)

2

+ 𝜇
2

(1 − 𝑌
2

)

2 𝑑
2

𝑑𝑌
2
.

(3)

The extended tanh method admits the use of the finite
expansion:

𝑢 (𝜇𝜉) = 𝑆 (𝑌) =

𝑚

∑

𝑖=0

𝑎
𝑖
𝑌
𝑖

+

𝑚

∑

𝑖=1

𝑏
𝑖
𝑌
−𝑖

, (4)

where 𝑚 is a positive integer, in most cases, that will be
determined. Expansion equation (4) reduces to the standard
tanh method for 𝑏

𝑖
, 1 ⩽ 𝑖 ⩽ 𝑚. The parameter 𝑚 is usually

obtained by balancing the linear terms of highest-order in the
resulting equation with the highest-order nonlinear terms.
Substituting of (4) into theODE results in an algebraic system
of equations in powers of𝑌 that will lead to the determination
of the parameters 𝑎

𝑖
, (𝑖 = 0, . . . , 𝑚), 𝜇 and 𝑐.

Stability of Solution. Hamiltonian system for the momentum
is given by

] =
1

2

∫

∞

−∞

∫

∞

−∞

𝑢
2

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, at 𝑡 = 0. (5)

The sufficient condition for discussing the stability of
solution is 𝜕]/𝜕𝑘 > 0, where 𝑘 is coefficient of time.

3. Application of the Methods

3.1. The Olver Equation. In this section, we will employ the
proposed methods to solve Olver equation [23]:

V
𝑡
+ (1 −

𝑞
2

6

4𝑞
2

) V
𝑥
+ 𝑞
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V
𝑥𝑥𝑥𝑥𝑥

+ 𝑞
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𝑥
+ 𝑞
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+ 𝑞
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5
−

𝑞
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𝑞
6

2𝑞
2

) V
𝑥𝑥𝑥

= 0,

(6)

where the coefficients 𝑞
𝑖
, (𝑖 = 1, . . . , 6) are real constants

depending on surface tension. These coefficients are

𝑞
1
= (
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360
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𝜏
2

8

) 𝜁
2

, 𝑞
2
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8

𝜒
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𝑞
3
= (

5
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4
= (
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5
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1
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−
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) 𝜁, 𝑞
6
=

3

2

𝜒.

(7)

Here, 𝜏 represents a dimensionless surface tension coefficient,
𝜒 is the ratio of wave amplitude to undisturbed fluid depth,
and 𝜁 is the square of the ratio of fluid depth to wave length.

3.1.1. Using a sech-tanh Method. Equation (6) was equiva-
lently

(1 − 𝑘 −

𝑞
2

6

4𝑞
2

) V󸀠 + 𝑞
1
V󸀠󸀠󸀠󸀠󸀠 + 𝑞
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5
−

𝑞
3
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6
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) V󸀠󸀠󸀠 = 0,

(8)

obtained upon using the wave variable 𝜉 = 𝑥 − 𝑘𝑡. Balancing
V󸀠󸀠󸀠󸀠󸀠 with V󸀠V󸀠󸀠 in (8) gives𝑚 = 2. sech-tanhmethod equation
(1) admits the use of the finite expansion:

V (𝜉) = 𝐴
0
+ 𝐴
1
sech 𝜉 + 𝐵

1
tanh 𝜉

+ 𝐴
2
sech2 𝜉 + 𝐵

2
sech 𝜉 tanh 𝜉,

(9)

and by substituting from (9) into (8) and setting the coeffi-
cients of sech𝑗tanh𝑖 for 𝑖 = 0, 1 and 𝑗 = 1, 2, 3, 4, 5, 6, 7 to
zero, we have the following set of overdetermined equations
in the unknowns 𝐴

0
, 𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, and 𝑘.

By solving the set of result equations by using Mathemat-
ica, we obtain the following solutions.
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Case I. Consider
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In this case, the generalized soliton solution can be written as

V
1
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where𝐸 = √−40𝑞
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.

Figure 1(a) shows the stability dark solitary wave solu-
tions with (𝜒 = 0.25, 𝜁 = 0.025, and 𝜏 = 0.5) in the interval

[−10, 10] and time in the interval [0, 5]. Figure 1(b) shows the
stability contour of solitary wave solution with (𝜒 = 0.25,
𝜁 = 0.025, and 𝜏 = 0.5) in the interval [−10, 10] and time
in the interval [0, 5].

Case II. Consider
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In this case, the generalized soliton solution can be written as
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Figure 1: (a) Travelling waves solutions of (11) is plotted: stability dark solitary waves. (b) Travelling waves solutions of (11) is plotted: stability
contour of solitary waves.

Case III. Consider
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In this case, the generalized soliton solution can be written as
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+ 𝑞
4
) + 𝑞
2

3
(−𝐸 + 3𝑞

4
)

+ 2𝑞
2
(𝐸 + 𝑞

4
) 𝑞
5
+ 𝑞
3
(𝑞
4
(−𝐸 + 𝑞

4
)

− (𝐸 + 𝑞
4
) 𝑞
6
) )

+ (

3 (2𝑞
3
+ 𝑞
4
− 𝐸)

2𝑞
2

) sech2 [𝑥 − 𝑘𝑡]

∓ (

3

√2𝑞
2

√20𝑞
1
𝑞
2
− (2𝑞
3
+ 𝑞
4
)
2

+ (2𝑞
3
+ 𝑞
4
) 𝐸)

× sech [𝑥 − 𝑘𝑡] tanh [𝑥 − 𝑘𝑡] .

(15)

3.1.2. Using the Extended tanhMethod. We have

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝑌 + 𝑎
2
𝑌
2

+

𝑏
1

𝑌

+

𝑏
2

𝑌
2
. (16)

By substituting (16) into (8) and collecting the coefficient of
𝑌, we obtain a system of algebraic equations for 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑏
1
,

𝑏
2
, and 𝑘. Solving this system gives the following solution.

Case I. Consider

𝑎
1
= 𝑏
1
= 𝑏
2
= 0, 𝑎

2
= −

3𝜇
2

(2𝑞
3
+ 𝑞
4
± 𝐸)

𝑞
2

,

𝑎
0
=

1

𝑞
2
(𝑞
4
± 𝐸)

⋅ (4𝜇
2

(−20𝑞
1
𝑞
2
+ (𝑞
3
+ 𝑞
4
) (2𝑞
3
+ 𝑞
4
))

±4𝜇
2

𝐸 (𝑞
3
+ 𝑞
4
) + 2𝑞

2
𝑞
5
− 𝑞
3
𝑞
6
) ,
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𝑘 =

1

8𝑞
2
(−10𝑞

1
𝑞
2
+ 𝑞
3
(𝑞
3
+ 𝑞
4
))
2

⋅ (−19200𝜇
4

𝑞
3

1
𝑞
3

2

+ 4𝑞
2

2
𝑞
2

5
(2𝑞
2

3
− (±𝐸 − 2𝑞

3
) 𝑞
4
+ 𝑞
2

4
)

+ 4𝑞
2
𝑞
3
(2𝑞
3
(𝑞
3
+ 𝑞
4
)
2

− (2𝑞
2

3
− (±𝐸 − 2𝑞

3
) 𝑞
4
+ 𝑞
2

4
) 𝑞
5
𝑞
6
)

+ 40𝑞
2

1
𝑞
2

2
(20𝑞
2
+ 8𝜇
4

(12𝑞
2

3
+ 22𝑞

3
𝑞
4

+5𝑞
4
(±𝐸 + 𝑞

4
) ) − 5𝑞

2

6
)

+ 𝑞
2

3
𝑞
4
(±𝐸 + 2𝑞

3
+ 𝑞
4
) (16𝜇

4

(𝑞
3
+ 𝑞
4
)
2

− 𝑞
2

6
)

− 4𝑞
1
𝑞
2
(8𝑞
3
(𝑞
3
+ 𝑞
4
)

× (5𝑞
2
+ 2𝜇
4

× (3𝑞
2

3
+ 13𝑞

3
𝑞
4
+ 5𝑞
4
(±𝐸 + 𝑞

4
)))

+ 20𝑞
2

2
𝑞
2

5
− 20𝑞

2
𝑞
3
𝑞
5
𝑞
6

−5𝑞
3
(𝑞
3
+ 2𝑞
4
) 𝑞
2

6
)) .

(17)

In this case, the generalized soliton solution can be written as

𝑢
1
(𝑥, 𝑡) =

1

𝑞
2
(𝑞
4
± 𝐸)

⋅ (4𝜇
2

(−20𝑞
1
𝑞
2

+ (𝑞
3
+ 𝑞
4
) (2𝑞
3
+ 𝑞
4
))

±4𝜇
2

𝐸 (𝑞
3
+ 𝑞
4
) + 2𝑞

2
𝑞
5
− 𝑞
3
𝑞
6
)

−

3𝜇
2

(2𝑞
3
+ 𝑞
4
± 𝐸)

𝑞
2

tanh2 [𝑥 − 𝑘𝑡] ,

(18)

where𝐸 = √−40𝑞
1
𝑞
2
+ (2𝑞
3
+ 𝑞
4
)
2, and (2𝑞

3
+𝑞
4
)
2

> 40𝑞
1
𝑞
2
.

Figure 2(a) shows the stability dark solitary wave solu-
tions with (𝜒 = 0.25, 𝜁 = 0.025, and 𝜏 = 0.5) in the interval
[−10, 10] and time in the interval [0, 5]. Figure 2(b) shows the
stability contour of solitary wave solution with (𝜒 = 0.25,
𝜁 = 0.025, and 𝜏 = 0.5) in the interval [−10, 10] and time
in the interval [0, 5].

Case II. Consider

𝑎
1
= 𝑏
1
= 0, 𝑎

2
= 𝑏
2
= −

3𝜇
2

(2𝑞
3
+ 𝑞
4
± 𝐸)

𝑞
2

,

𝑎
0
=

1

𝑞
2
(𝑞
4
± 𝐸)

⋅ (4𝜇
2

(−20𝑞
1
𝑞
2
+ (𝑞
3
+ 𝑞
4
) (2𝑞
3
+ 𝑞
4
))

±4𝜇
2

𝐸 (𝑞
3
+ 𝑞
4
) + 2𝑞

2
𝑞
5
− 𝑞
3
𝑞
6
) ,

𝑘 =

1

8𝑞
2
(−10𝑞

1
𝑞
2
+ 𝑞
3
(𝑞
3
+ 𝑞
4
))
2

⋅ (−307200𝜇
4

𝑞
3

1
𝑞
3

2

+ 4𝑞
2

2
𝑞
2

5
(2𝑞
2

3
− (±𝐸 − 2𝑞

3
) 𝑞
4
+ 𝑞
2

4
)

+ 4𝑞
2
𝑞
3
(2𝑞
3
(𝑞
3
+ 𝑞
4
)
2

− (2𝑞
2

3
− (±𝐸 − 2𝑞

3
) 𝑞
4
+ 𝑞
2

4
) 𝑞
5
𝑞
6
)

+ 40𝑞
2

1
𝑞
2

2
(20𝑞
2

+ 128𝜇
4

(12𝑞
2

3
+ 22𝑞

3
𝑞
4

+5𝑞
4
(±𝐸 + 𝑞

4
) ) −5𝑞

2

6
)

+ 𝑞
2

3
𝑞
4
(±𝐸 + 2𝑞

3
+ 𝑞
4
) (256𝜇

4

(𝑞
3
+ 𝑞
4
)
2

− 𝑞
2

6
)

− 4𝑞
1
𝑞
2
(8𝑞
3
(𝑞
3
+ 𝑞
4
)

× (5𝑞
2
+ 32𝜇

4

× (3𝑞
2

3
+ 13𝑞

3
𝑞
4
+ 5𝑞
4
(±𝐸 + 𝑞

4
)))

+ 20𝑞
2

2
𝑞
2

5
− 20𝑞

2
𝑞
3
𝑞
5
𝑞
6

−5𝑞
3
(𝑞
3
+ 2𝑞
4
) 𝑞
2

6
)) .

(19)

In this case, the generalized soliton solution can be written as

𝑢
2
(𝑥, 𝑡) =

1

𝑞
2
(𝑞
4
± 𝐸)

⋅ (4𝜇
2

(−20𝑞
1
𝑞
2

+ (𝑞
3
+ 𝑞
4
) (2𝑞
3
+ 𝑞
4
))

±4𝜇
2

𝐸 (𝑞
3
+ 𝑞
4
) + 2𝑞

2
𝑞
5
− 𝑞
3
𝑞
6
)

−

3𝜇
2

(2𝑞
3
+ 𝑞
4
± 𝐸)

𝑞
2

× (tanh2 [𝑥 − 𝑘𝑡] + coth2 [𝑥 − 𝑘𝑡]) .

(20)

Case III. Consider

𝑎
1
= 𝑎
2
= 𝑏
1
= 0, 𝑏

2
= −

3𝜇
2

(2𝑞
3
+ 𝑞
4
± 𝐸)

𝑞
2

,

𝑎
0
=

1

𝑞
2
(𝑞
4
± 𝐸)

⋅ (4𝜇
2

(−20𝑞
1
𝑞
2
+ (𝑞
3
+ 𝑞
4
) (2𝑞
3
+ 𝑞
4
))

±4𝜇
2

𝐸 (𝑞
3
+ 𝑞
4
) + 2𝑞

2
𝑞
5
− 𝑞
3
𝑞
6
) ,
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Figure 2: (a) Travelling waves solutions of (18) is plotted: stability dark solitary waves. (b) Travelling waves solutions of (18) is plotted: stability
contour of solitary waves.

𝑘 =

1

8𝑞
2
(−10𝑞

1
𝑞
2
+ 𝑞
3
(𝑞
3
+ 𝑞
4
))
2

⋅ ( − 19200𝜇
4

𝑞
3

1
𝑞
3

2

+4𝑞
2

2
𝑞
2

5
(2𝑞
2

3
− (±𝐸 − 2𝑞

3
) 𝑞
4
+ 𝑞
2

4
)

+ 4𝑞
2
𝑞
3
(2𝑞
3
(𝑞
3
+ 𝑞
4
)
2

− (2𝑞
2

3
− (±𝐸 − 2𝑞

3
) 𝑞
4
+ 𝑞
2

4
) 𝑞
5
𝑞
6
)

+ 40𝑞
2

1
𝑞
2

2
(20𝑞
2

+ 8𝜇
4

(12𝑞
2

3
+ 22𝑞

3
𝑞
4

+5𝑞
4
(±𝐸 + 𝑞

4
) ) − 5𝑞

2

6
)

+ 𝑞
2

3
𝑞
4
(±𝐸 + 2𝑞

3
+ 𝑞
4
) (16𝜇

4

(𝑞
3
+ 𝑞
4
)
2

− 𝑞
2

6
)

− 4𝑞
1
𝑞
2
(8𝑞
3
(𝑞
3
+ 𝑞
4
)

× (5𝑞
2
+ 2𝜇
4

× (3𝑞
2

3
+ 13𝑞

3
𝑞
4
+ 5𝑞
4
(±𝐸 + 𝑞

4
)))

+ 20𝑞
2

2
𝑞
2

5
− 20𝑞

2
𝑞
3
𝑞
5
𝑞
6

−5𝑞
3
(𝑞
3
+ 2𝑞
4
) 𝑞
2

6
)) .

(21)

In this case, the generalized soliton solution can be writ-
ten as

𝑢
3
(𝑥, 𝑡) =

1

𝑞
2
(𝑞
4
± 𝐸)

⋅ (4𝜇
2

(−20𝑞
1
𝑞
2

+ (𝑞
3
+ 𝑞
4
) (2𝑞
3
+ 𝑞
4
)) ± 4𝜇

2

𝐸 (𝑞
3
+ 𝑞
4
)

+2𝑞
2
𝑞
5
− 𝑞
3
𝑞
6
)

−

3𝜇
2

(2𝑞
3
+ 𝑞
4
± 𝐸)

𝑞
2

coth2 [𝑥 − 𝑘𝑡] .

(22)

3.2. Solving the Fifth-Order Korteweg-de Vries Equation. In
this section we will employ the proposed methods to solve
the fifth-order Korteweg-de Vries equation:

𝜂
𝑡
+ 6𝜂𝜂

𝑥
+ 𝜂
3𝑥

+ 𝛼𝑐
1
𝜂
2

𝜂
𝑥
+ 𝛼𝑐
2
𝜂
𝑥
𝜂
𝑥𝑥

+ 𝛼𝑐
3
𝜂𝜂
3𝑥

+ 𝛼𝑐
4
𝜂
5𝑥

= 0, 𝛼 ≪ 1.

(23)

Or equivalently

− 𝑘𝜂
󸀠

+ 6𝜂𝜂
󸀠

+ 𝜂
󸀠󸀠󸀠

+ 𝛼𝑐
1
𝜂
2

𝜂
󸀠

+ 𝛼𝑐
2
𝜂
󸀠

𝜂
󸀠󸀠

+ 𝛼𝑐
3
𝜂𝜂
󸀠󸀠󸀠

+ 𝛼𝑐
4
𝜂
󸀠󸀠󸀠󸀠󸀠

= 0,

(24)

is obtained upon using the wave variable 𝜉 = 𝑥−𝑘𝑡, when the
higher-order coefficients are given by

(𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
) = (1,

1

12

,

1

3

,

1

480

) . (25)

3.2.1. Using a sech-tanhMethod. Balancing 𝜂󸀠󸀠󸀠󸀠󸀠 with 𝜂𝜂
󸀠󸀠󸀠 in

(24) gives 𝑚 = 2. sech-tanh method equation (1) admits the
use of the finite expansion:

𝜂 (𝜉) = 𝐴
0
+ 𝐴
1
sech 𝜉 + 𝐵

1
tanh 𝜉

+ 𝐴
2
sech2𝜉 + 𝐵

2
sech 𝜉 tanh 𝜉,

(26)

and by substituting from (27) into (24) and setting the coeffi-
cients of sech𝑗tanh𝑖 for 𝑖 = 0, 1 and 𝑗 = 1, 2, 3, 4, 5, 6, 7 to zero,
we have the following set of overdetermined equations in the
unknowns 𝐴

0
, 𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
, and 𝑘.

Solve the set of result equations by usingMathematica; we
obtain the following solutions.
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Case I. Consider

𝐴
1
= 𝐵
1
= 𝐵
2
= 0, 𝐴

2
=

3𝑐
2
+ 6𝑐
3
∓ 3𝑔

𝑐
1

,

𝐴
0
=

1

2𝛼𝑐
1
(−𝑐
3
(𝑐
2
+ 𝑐
3
) + 10𝑐

1
𝑐
4
)

⋅ (𝑐
3
(3 + 2𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
∓ 𝑔)

+ 𝑐
1
(𝑐
2
(1 − 20𝛼𝑐

4
) ± 𝑔

+20𝑐
4
(−3 − 2𝛼𝑐

3
± 𝛼𝑔))) ,

𝑘 =

−1

2𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)
2

⋅ (20𝑐
3

1
(𝑐
4
+ 240𝛼

2

𝑐
3

4
)

+ 𝑐
2
𝑐
2

3
(−3 + 2𝛼 (𝑐

2
+ 𝑐
3
))

× (3 + 2𝛼 (𝑐
2
+ 𝑐
3
)) (−𝑐
2
− 2𝑐
3
± 𝑔)

− 𝑐
2

1
(𝑐
2

2
(1 + 400𝛼

2

𝑐
2

4
)

+ 2 (𝑐
2

3
+ 60𝑐
3
𝑐
4
+ 60 (−15 + 8𝛼

2

𝑐
2

3
) 𝑐
2

4
)

+𝑐
2
(±𝑔 (1 − 400𝛼

2

𝑐
2

4
) + 2𝑐

3
(1 + 880𝛼

2

𝑐
2

4
)))

+ 2𝑐
1
𝑐
3
(40𝛼
2

𝑐
3

2
𝑐
4
+ 6𝑐
3
(𝑐
3
+ (−15 + 4𝛼

2

𝑐
2

3
) 𝑐
4
)

+ 𝑐
2

2
(3 + 8𝛼

2

𝑐
4
(18𝑐
3
∓ 5𝑔))

+ 𝑐
2
(3 (−60𝑐

4
± 𝑔) + 2𝑐

3

× (3 + 4𝛼
2

𝑐
4
(16𝑐
3
∓ 5𝑔))))) .

(27)

In this case, the generalized soliton solution can be written as

𝜂
1
(𝑥, 𝑡) =

1

2𝛼𝑐
1
(−𝑐
3
(𝑐
2
+ 𝑐
3
) + 10𝑐

1
𝑐
4
)

⋅ (𝑐
3
(3 + 2𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
∓ 𝑔)

+ 𝑐
1
(𝑐
2
(1 − 20𝛼𝑐

4
) ± 𝑔

+20𝑐
4
(−3 − 2𝛼𝑐

3
± 𝛼𝑔)))

+

3𝑐
2
+ 6𝑐
3
∓ 3𝑔

𝑐
1

sech2 [𝑥 − 𝑘𝑡] ,

(28)

where 𝑔 = √(𝑐
2
+ 2𝑐
3
)
2

− 40𝑐
1
𝑐
4
and (𝑐

2
+ 2𝑐
3
)
2

> 40𝑐
1
𝑐
4
.

Figure 3(a) shows the stability bright solitary wave solu-
tions with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5].

Figure 3(b) shows the stability contour of solitary wave
solution with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5].

Case II. Consider

𝐴
1
= 𝐵
1
= 0, 𝐴

2
=

3 (𝑐
2
+ 2𝑐
3
+ 𝑔)

2𝑐
1

,

𝐵
2
= ∓

3

√2𝑐
1

⋅ √−(𝑐
2
+ 2𝑐
3
)
2

+ 20𝑐
1
𝑐
4
− (𝑐
2
+ 𝑐
3
) 𝑔,

𝐴
0
=

−1

4𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

⋅ (𝑐
3
(6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
+ 𝑔)

− 2𝑐
1
(𝑔 + 5 (12 + 𝑔𝛼 + 2𝛼𝑐

3
) 𝑐
4

+𝑐
2
(−1 + 5𝛼𝑐

4
))) ,

𝑘 =

1

8𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)
2

⋅ ( − 80𝑐
3

1
𝑐
4
(1 + 15𝛼

2

𝑐
2

4
)

+ 𝑐
2
𝑐
2

3
(−6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
+ 𝑔)

− 4𝑐
1
𝑐
3
(5𝛼
2

𝑐
3

2
𝑐
4
+ 𝑐
2

2
(6 + 𝛼

2

(5𝑔 + 18𝑐
3
) 𝑐
4
)

+ 3𝑐
3
(4𝑐
3
+ (−60 + 𝛼

2

𝑐
2

3
) 𝑐
4
)

+ 𝑐
2
( − 6 (𝑔 + 60𝑐

4
)

+𝑐
3
(12 + 𝛼

2

(5𝑔 + 16𝑐
3
) 𝑐
4
)))

+ 4𝑐
2

1
(𝑐
2

2
(1 + 25𝛼

2

𝑐
2

4
)

+ 2 (𝑐
2

3
+ 60𝑐
3
𝑐
4
+ 30 (−30 + 𝛼

2

𝑐
2

3
) 𝑐
2

4
)

+𝑐
2
(𝑔 (−1 + 25𝛼

2

𝑐
2

4
) + 2𝑐

3
(1 + 55𝛼

2c2
4
)))) .

(29)

In this case, the generalized soliton solution can be written as

𝜂
2
(𝑥, 𝑡) =

−1

4𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

⋅ (𝑐
3
(6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
+ 𝑔)

− 2𝑐
1
(𝑔 + 5 (12 + 𝑔𝛼 + 2𝛼𝑐

3
) 𝑐
4

+𝑐
2
(−1 + 5𝛼𝑐

4
)))

+

3 (𝑐
2
+ 2𝑐
3
+ 𝑔)

2𝑐
1

sech2 [𝑥 − 𝑘𝑡] ∓

3

√2𝑐
1

⋅ √−(𝑐
2
+ 2𝑐
3
)
2

+ 20𝑐
1
𝑐
4
− (𝑐
2
+ 𝑐
3
) 𝑔

× sech [𝑥 − 𝑘𝑡] tanh [𝑥 − 𝑘𝑡] .

(30)

Case III. Consider

𝐴
1
= 𝐵
1
= 0, 𝐴

2
=

3 (𝑐
2
+ 2𝑐
3
− 𝑔)

2𝑐
1

,

𝐵
2
= ±

3

√2𝑐
1

⋅ √−(𝑐
2
+ 2𝑐
3
)
2

+ 20𝑐
1
𝑐
4
+ (𝑐
2
+ 𝑐
3
) 𝑔,

𝐴
0
=

−1

4𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

⋅ (𝑐
3
(6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
− 𝑔)

− 2𝑐
1
(−𝑔 + 5 (12 − 𝑔𝛼 + 2𝛼𝑐

3
) 𝑐
4

+𝑐
2
(−1 + 5𝛼𝑐

4
))) ,
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Figure 3: (a) Travelling waves solutions of (28) is plotted: stability bright solitary waves. (b) Travelling waves solutions of (28) is plotted:
stability contour of solitary waves.

𝑘 =

1

8𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)
2

⋅ ( − 80𝑐
3

1
𝑐
4
(1 + 15𝛼

2

𝑐
2

4
)

+ 𝑐
2
𝑐
2

3
(−6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (6 + 𝛼 (𝑐

2
+ 𝑐
3
))

× (𝑐
2
+ 2𝑐
3
− 𝑔)

− 4𝑐
1
𝑐
3
(5𝛼
2

𝑐
3

2
𝑐
4
+ 𝑐
2

2
(6 + 𝛼

2

(−5𝑔 + 18𝑐
3
) 𝑐
4
)

+ 3𝑐
3
(4𝑐
3
+ (−60 + 𝛼

2

𝑐
2

3
) 𝑐
4
)

+ 𝑐
2
( − 6 (−𝑔 + 60𝑐

4
)

+𝑐
3
(12 + 𝛼

2

(−5𝑔 + 16𝑐
3
) 𝑐
4
)))

+ 4𝑐
2

1
(𝑐
2

2
(1 + 25𝛼

2

𝑐
2

4
)

+ 2 (𝑐
2

3
+ 60𝑐
3
𝑐
4
+ 30 (−30 + 𝛼

2

𝑐
2

3
) 𝑐
2

4
)

+ 𝑐
2
( − 𝑔 (−1 + 25𝛼

2

𝑐
2

4
)

+2𝑐
3
(1 + 55𝛼

2

𝑐
2

4
)))) .

(31)

In this case, the generalized soliton solution can be written as

𝜂
3
(𝑥, 𝑡) =

−1

4𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

⋅ (𝑐
3
(6 + 𝛼 (𝑐

2
+ 𝑐
3
)) (𝑐
2
+ 2𝑐
3
− 𝑔)

− 2𝑐
1
(−𝑔 + 5 (12 − 𝑔𝛼 + 2𝛼𝑐

3
) 𝑐
4

+𝑐
2
(−1 + 5𝛼𝑐

4
)))

+

3 (𝑐
2
+ 2𝑐
3
− 𝑔)

2𝑐
1

sech2 [𝑥 − 𝑘𝑡]

±

3

√2𝑐
1

.√−(𝑐
2
+ 2𝑐
3
)
2

+ 20𝑐
1
𝑐
4
+ (𝑐
2
+ 𝑐
3
) 𝑔

× sech [𝑥 − 𝑘𝑡] tanh [𝑥 − 𝑘𝑡] .

(32)

3.2.2. Using the Extended tanhMethod. We have

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝑌 + 𝑎
2
𝑌
2

+

𝑏
1

𝑌

+

𝑏
2

𝑌
2
. (33)

By substituting (33) into (23) and collecting the coefficient of
𝑌, we obtain a system of algebraic equations for 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑏
1
,

𝑏
2
, and 𝑘. Solving this system gives the following solution.

Case I. Consider

𝑎
0
= ( − 6 ± 4𝑔𝜇

2

𝛼 + 4𝜇
2

𝛼 (𝑐
2
+ 2𝑐
3
)

+

(±𝑔 − 𝑐
2
) (𝑐
1
− 3𝑐
3
)

𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4

) × (2𝛼𝑐
1
)
−1

,

𝑎
1
= 𝑏
1
= 𝑏
2
= 0, 𝑎

2
= −

3𝜇
2

(±𝑔 + 𝑐
2
+ 2𝑐
3
)

𝑐
1

,

𝑘 =

−9 + 2𝜇
4

𝛼
2

𝑐
2
(±𝑔 + 𝑐

2
+ 2𝑐
3
)

𝑐
1
𝛼

− 24𝜇
4

𝛼𝑐
4
−

(±𝑔 − 𝑐
2
) 𝑐
2
(𝑐
1
− 3𝑐
3
)
2

2𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)
2

+

(𝑐
1
− 3𝑐
3
)
2

𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

.

(34)

In this case, the generalized soliton solution can be written as

𝜂
1
(𝑥, 𝑡) = ( − 6 ± 4𝑔𝜇

2

𝛼 + 4𝜇
2

𝛼 (𝑐
2
+ 2𝑐
3
)

+

(±𝑔 − 𝑐
2
) (𝑐
1
− 3𝑐
3
)

𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4

) × (2𝛼𝑐
1
)
−1

−

3𝜇
2

(±𝑔 + 𝑐
2
+ 2𝑐
3
)

𝑐
1

tanh2 [𝜇 (𝑥 − 𝑘𝑡)] ,

(35)

where 𝑔 = √(𝑐
2
+ 2𝑐
3
)
2

− 40𝑐
1
𝑐
4
and (𝑐

2
+ 2𝑐
3
)
2

> 40𝑐
1
𝑐
4
.

Figure 4(a) shows the stability bright solitary wave solu-
tions with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5].



Journal of Applied Mathematics 9

u
(
x
,
t
)

x

t

−5

−10

0
5

10 0.0

0.5

1.0

3.0

3.5

(a)

−2−4 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 4: (a) Travelling waves solutions of (35) is plotted: stability bright solitary waves. (b) Travelling waves solutions of (35) is plotted:
stability contour of solitary waves.

Figure 4(b) shows the stability contour of solitary wave
solution with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5].

Case II. Consider

𝑎
0
= ( − 6 ± 4𝑔𝜇

2

𝛼 + 4𝜇
2

𝛼 (𝑐
2
+ 2𝑐
3
)

+

(±𝑔 − 𝑐
2
) (𝑐
1
− 3𝑐
3
)

𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4

) × (2𝛼𝑐
1
)
−1

,

𝑎
1
= 𝑏
1
= 0, 𝑎

2
= 𝑏
2
= −

3𝜇
2

(±𝑔 + 𝑐
2
+ 2𝑐
3
)

𝑐
1

,

𝑘 =

−9 + 32𝜇
4

𝛼
2

𝑐
2
(±𝑔 + 𝑐

2
+ 2c
3
)

𝑐
1
𝛼

− 384𝜇
4

𝛼𝑐
4

−

(±𝑔 − 𝑐
2
) 𝑐
2
(𝑐
1
− 3𝑐
3
)
2

2𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)
2

+

(𝑐
1
− 3𝑐
3
)
2

𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

.

(36)

In this case, the generalized soliton solution can be writ-
ten as

𝜂
2
(𝑥, 𝑡) = ( − 6 ± 4𝑔𝜇

2

𝛼 + 4𝜇
2

𝛼 (𝑐
2
+ 2𝑐
3
)

+

(±𝑔 − 𝑐
2
) (𝑐
1
− 3𝑐
3
)

𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4

) × (2𝛼𝑐
1
)
−1

−

3𝜇
2

(±𝑔 + 𝑐
2
+ 2𝑐
3
)

𝑐
1

× (tanh2 [𝜇 (𝑥 − 𝑘𝑡)] + coth2 [𝜇 (𝑥 − 𝑘𝑡)]) .

(37)
Figure 5(a) shows the stability bright solitary wave solu-

tions with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5].

Figure 5(b) shows the stability contour of solitary wave
solution with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5].

Case III. Consider

𝑎
0
= ( − 6 ± 4𝑔𝜇

2

𝛼 + 4𝜇
2

𝛼 (𝑐
2
+ 2𝑐
3
)

+

(±𝑔 − 𝑐
2
) (𝑐
1
− 3𝑐
3
)

𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4

) × (2𝛼𝑐
1
)
−1

𝑎
1
= 𝑎
2
= 𝑏
1
= 0, 𝑏

2
= −

3𝜇
2

(±𝑔 + 𝑐
2
+ 2𝑐
3
)

𝑐
1

,

𝑘 =

−9 + 2𝜇
4

𝛼
2

𝑐
2
(±𝑔 + 𝑐

2
+ 2𝑐
3
)

𝑐
1
𝛼

− 24𝜇
4

𝛼𝑐
4

−

(±𝑔 − 𝑐
2
) 𝑐
2
(𝑐
1
− 3𝑐
3
)
2

2𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)
2

+

(𝑐
1
− 3𝑐
3
)
2

𝛼𝑐
1
(𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4
)

.

(38)

In this case, the generalized soliton solution can be writ-
ten as

𝜂
3
(𝑥, 𝑡) = ( − 6 ± 4𝑔𝜇

2

𝛼 + 4𝜇
2

𝛼 (𝑐
2
+ 2𝑐
3
)

+

(±𝑔 − 𝑐
2
) (𝑐
1
− 3𝑐
3
)

𝑐
3
(𝑐
2
+ 𝑐
3
) − 10𝑐

1
𝑐
4

) × (2𝛼𝑐
1
)
−1

−

3𝜇
2

(±𝑔 + 𝑐
2
+ 2𝑐
3
)

𝑐
1

coth2 [𝜇 (𝑥 − 𝑘𝑡)] .

(39)

Figure 6(a) shows the stability bright solitary wave solu-
tions with (𝛼 = −1) in the interval [−5, 5] and time in the
interval [0, 0.5]. Figure 6(b) shows the stability contour of
solitary wave solution with (𝛼 = −1) in the interval [−5, 5]
and time in the interval [0, 0.5].
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Figure 5: (a) Travellingwaves solutions of (37) is plotted: stability dark solitarywaves. (b) Travellingwaves solutions of (37) is plotted: stability
contour of solitary waves.
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Figure 6: (a) Travelling waves solutions of (39) is plotted: stability dark solitary waves. (b) Travelling waves solutions of (39) is plotted:
stability contour of solitary waves.

4. Conclusion

Contour plots produced by Mathematica are drawn shaded,
in such a way that regions with higher values of 𝑢

𝑖
(𝑥, 𝑡),

V
𝑖
(𝑥, 𝑡), and 𝜂

𝑖
(𝑥, 𝑡), 𝑖 = 1, 2, 3, are drawn lighter. As with

all Mathematica graphics commands, options allow you to
control the appearance of the graph. Contours plot allows you
to determine the number of contours to be drawn.Thedefault
is ten equally spaced curves. An analytic study was conducted
on the Olver and fifth-order KdV equations. We formally
derived travellingwave solutions for theOlver and fifth-order
KdV equations. However, by using another distinct approach,
we derived one traveling wave solutions for each Olver and

fifth-order KdV equations. The structures of the obtained
solutions are distinct and stable.
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