
Research Article
Spectrums of Solvable Pantograph Differential-Operators for
First Order

Z. I. Ismailov1 and P. Ipek2

1 Department of Mathematics, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
2 Institute of Fundamental Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey

Correspondence should be addressed to Z. I. Ismailov; zameddin@yahoo.com

Received 23 May 2014; Revised 17 July 2014; Accepted 25 July 2014; Published 14 August 2014

Academic Editor: Abdullah S. Erdoğan

Copyright © 2014 Z. I. Ismailov and P. Ipek. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

By using the methods of operator theory, all solvable extensions of minimal operator generated by first order pantograph-type
delay differential-operator expression in the Hilbert space of vector-functions on finite interval have been considered. As a result,
the exact formula for the spectrums of these extensions is presented. Applications of obtained results to the concrete models are
illustrated.

1. Introduction

The quantitative and qualitative theory of linear pantograph
differential equations, sometimes known as pantograph-type
delay differential equations, was first studied in detail by T.
Kato and J. B. McLeod [1], L. Fox et al. [2], and A. Iserles [3]
in the nineteen seventies.

These equations arose as a mathematical model of an
industrial problem involving wave motion in the overhead
supply line to an electrified railway system, so they are often
called pantograph equations.

In industrial applications in works [2, 4] and in studies
on biology and economics, control and electrodynamics in
works [5–7] have been researched (for more comprehensive
list of features see [3]).

Since an analytical computation of solutions, eigenval-
ues, and eigenfunctions of corresponding problems is very
difficult theoretically and technically, then in this theory
methods of numerical analysis play a significant role (for
more information see [8–13]).

Let us remember that an operator 𝑆 : 𝐷(𝑆) ⊂ 𝐻 → 𝐻 in
Hilbert space𝐻 is called solvable, if 𝑆 is one-to-one, 𝑆𝐷(𝑆) =
𝐻, and 𝑆 −1 ∈ 𝐿(𝐻).

In this work, by usingmethods of operator theory all solv-
able extensions of minimal operator generated by panto-
graph-type delay differential-operator expression for first

order in the Hilbert space of vector-functions at a finite
interval have been described in terms of boundary values
in Section 2. Consequently, the resolvent operators of these
extensions can be written clearly.

The exact formula for the spectrums of these extensions
has been given in Section 3. Applications of obtained results
to the concrete models have been illustrated in Section 4.

2. Description of Solvable Extensions

In theHilbert space𝐿2(𝐻, (0, 1)) of vector-functions consider
a linear pantograph differential-operator expression for first
order in the form

𝑙 (𝑢) = 𝑢
󸀠

(𝑡) +

𝑛

∑

𝑚=1

𝐴
𝑚

(𝑡) 𝑢 (𝛼
𝑚

𝑡) , (1)

where

(1) 𝐻 is a separable Hilbert space with inner product
(⋅, ⋅)
𝐻

and norm ‖ ⋅ ‖
𝐻

,
(2) operator-function 𝐴

𝑚

(⋅) : [0, 1] → 𝐿(𝐻), 𝑚 =

1, 2, 3, . . . , 𝑛, is continuous on the uniform operator
topology,

(3) 𝑚 = 1, 2, 3, . . . , 𝑛 − 1, 0 < 𝛼
𝑚

< 1, 𝛼
𝑛

= 1.
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2 Abstract and Applied Analysis

On the other hand, here the following differential expres-
sion will be considered:

𝑚(𝑢) = 𝑢
󸀠

(𝑡) (2)

in the Hilbert space 𝐿2(𝐻, (0, 1)) corresponding to (1).
It is clear that the formally adjoint expression of (2) is of

the form

𝑚
+

(V) = −V󸀠 (𝑡) . (3)

Now define operator 𝑀󸀠
0

on the dense in 𝐿2(𝐻, (0, 1)) set of
vector-functions𝐷󸀠

0

,

𝐷
󸀠

0

:= {𝑢 (𝑡) ∈ 𝐿
2

(𝐻, (0, 1)) : 𝑢 (𝑡) =

𝑛

∑

𝑘=1

𝜑
𝑘

(𝑡) 𝑓
𝑘

,

𝜑
𝑘

(𝑡) ∈ 𝐶
∞

0

(0, 1) , 𝑓
𝑘

∈ 𝐻, 𝑘 = 1, 2, . . . , 𝑛, 𝑛 ∈ N} ,

(4)

as𝑀󸀠
0

𝑢 = 𝑚(𝑢).
The closure of 𝑀󸀠

0

in 𝐿
2

(𝐻, (0, 1)) is called the minimal
operator generated by differential-operator expression (2)
and is denoted by𝑀

0

.
In a similar way, theminimal operator𝑀+

0

in 𝐿2(𝐻, (0, 1))

corresponding to differential expression (3) can be defined.
The adjoint operator of𝑀+

0

(𝑀
0

) in 𝐿2(𝐻, (0, 1)) is called
the maximal operator generated by (2)((3)) and is denoted by
𝑀(𝑀

+

).
Now define an operator 𝑃

𝛼

𝑚

in 𝐿2(𝐻, (0, 1)) in the form

𝑃
𝛼

𝑚

𝑢 (𝑡) = 𝑢 (𝛼
𝑚

𝑡) , 𝑢 ∈ 𝐿
2

(𝐻, (0, 1)) , 𝑚 = 1, 2, 3, . . . , 𝑛.

(5)

Then for 𝑢 ∈ 𝐿
2

(𝐻, (0, 1)) and for 𝑚 = 1, 2, 3, . . . , 𝑛 it is
obtained that

󵄩󵄩󵄩󵄩󵄩
𝑃
𝛼

𝑚

𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿

2
(𝐻,(0,1))

= ∫

1

0

(𝑢 (𝛼
𝑚

𝑡) , 𝑢 (𝛼
𝑚

𝑡))
𝐻

𝑑𝑡

=
1

𝛼
𝑚

∫

𝛼

𝑚

0

(𝑢 (𝑥) , 𝑢 (𝑥))
𝐻

𝑑𝑥

≤
1

𝛼
𝑚

∫

1

0

‖𝑢 (𝑥)‖
2

𝐻

𝑑𝑥 =
1

𝛼
𝑚

‖𝑢‖
2

𝐿

2
(𝐻,(0,1))

.

(6)

Therefore we have 𝑃
𝛼

𝑚

∈ 𝐿(𝐿
2

(𝐻, (0, 1))) and ‖𝑃
𝛼

𝑚

‖ ≤ 1/

√𝛼
𝑚

,𝑚 = 1, 2, 3, . . . , 𝑛.
In this situation the following defined operator

𝐴
𝛼

(𝑡) =

𝑛

∑

𝑚=1

𝐴
𝑚

(𝑡) 𝑃
𝛼

𝑚

, 0 < 𝛼 < 1, (7)

is a linear bounded operator in 𝐿2(𝐻, (0, 1)).

Throughout this work the following defined operators

𝐿
0

:= 𝑀
0

+ 𝐴
𝛼

(𝑡) ,

𝐿
0

:
𝑜

𝑊

1

2

(𝐻, (0, 1)) ⊂ 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1)) ,

𝐿 := 𝑀 + 𝐴
𝛼

(𝑡) ,

𝐿 : 𝑊
1

2

(𝐻, (0, 1)) ⊂ 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1))

(8)

will be called the minimal and maximal operators corre-
sponding to differential expression (1) in𝐿2(𝐻, (0, 1)), respec-
tively.

Now let 𝑈(𝑡, 𝑠), 𝑡, 𝑠 ∈ [0, 1], be the family of evolution
operators corresponding to the homogeneous differential
equation

𝑈
𝑡

(𝑡, 𝑠) 𝑓 + 𝐴
𝛼

(𝑡) 𝑈 (𝑡, 𝑠) 𝑓 = 0, 𝑡, 𝑠 ∈ [0, 1] ,

𝑈 (𝑠, 𝑠) 𝑓 = 𝑓, 𝑓 ∈ 𝐻.

(9)

The operator𝑈(𝑡, 𝑠), 𝑡, 𝑠 ∈ [0, 1], is linear continuous, bound-
edly invertible in𝐻 and

𝑈
−1

(𝑡, 𝑠) = 𝑈 (𝑠, 𝑡) , 𝑠, 𝑡 ∈ [0, 1] (10)

(for more detailed analysis of this concept see [14]).
Let us introduce the operator

𝑈𝑧 (𝑡) := 𝑈 (𝑡, 0) 𝑧 (𝑡) ,

𝑈 : 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1)) .

(11)

In this case it is easy to see that, for the differentiable vector-
function 𝑧 ∈ 𝐿

2

(𝐻, (0, 1)), 𝑧 : [0, 1] → 𝐻 satisfies the
following relation:

𝑙 (𝑈𝑧) = (𝑈𝑧)
󸀠

(𝑡) + 𝐴
𝛼

(𝑡) 𝑈𝑧 (𝑡)

= 𝑈𝑧
󸀠

(𝑡) + (𝑈
󸀠

𝑡

+ 𝐴
𝛼

(𝑡) 𝑈) 𝑧 (𝑡) = 𝑈𝑚 (𝑧) .

(12)

From this𝑈−1𝑙(𝑈𝑧) = 𝑚(𝑧). Hence it is clear that if 𝐿̃ is some
extension of the minimal operator 𝐿

0

, that is, 𝐿
0

⊂ 𝐿̃ ⊂ 𝐿,
then

𝑈
−1

𝐿
0

𝑈 = 𝑀
0

,

𝑀
0

⊂ 𝑈
−1

𝐿𝑈 = 𝑀̃ ⊂ 𝑀,

𝑈
−1

𝐿𝑈 = 𝑀.

(13)

For example, prove the validity of the last relation. It is known
that

𝐷(𝑀
0

) =
𝑜

𝑊

1

2

(𝐻, (0, 1)) , 𝐷 (𝑀) = 𝑊
1

2

(𝐻, (0, 1)) .

(14)

If 𝑢 ∈ 𝐷(𝑀), then 𝑙(𝑈𝑧) = 𝑈𝑚(𝑧) ∈ 𝐿
2

(𝐻, (0, 1)); that is,
𝑈𝑢 ∈ 𝐷(𝐿). From the last relation𝑀 ⊂ 𝑈

−1

𝐿𝑈. Contrarily, if
a vector-function 𝑢 ∈ 𝐷(𝐿), then

𝑚(𝑈
−1V) = 𝑈

−1

𝑙 (V) ∈ 𝐿2 (𝐻, (0, 1)) ; (15)

that is,𝑈−1V ∈ 𝐷(𝑀). From last relation𝑈−1𝐿 ⊂ 𝑀𝑈; that is,
𝑈
−1

𝐿𝑈 ⊂ 𝑀. Hence, 𝑈−1𝐿𝑈 = 𝑀.
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Theorem 1. Each solvable extension 𝐿̃ of the minimal operator
𝐿
0

in 𝐿2(𝐻, (0, 1)) is generated by the pantograph differential-
operator expression (1) and boundary condition

(𝐾 + 𝐸) 𝑢 (0) = 𝐾𝑈 (0, 1) 𝑢 (1) , (16)

where𝐾 ∈ 𝐿(𝐻) and 𝐸 is an identity operator in𝐻.The opera-
tor 𝐾 is determined uniquely by the extension 𝐿̃; that is, 𝐿̃ =

𝐿
𝐾

.
On the contrary, the restriction of the maximal operator 𝐿

0

to the manifold of vector-functions satisfies condition (16) for
some bounded operator𝐾 ∈ 𝐿(𝐻) is a solvable extension of the
minimal operator 𝐿

0

in the 𝐿2(𝐻, (0, 1)).

Proof. Firstly, all solvable extensions 𝑀̃ of theminimal opera-
tor 𝑀

0

in 𝐿
2

(𝐻, (0, 1)) in terms of boundary values are
described.

Consider the following so-called Cauchy extension𝑀
𝑐

𝑀
𝑐

𝑢 = 𝑢
󸀠

(𝑡) , 𝑢 (0) = 0,

𝑀
𝑐

: 𝐷 (𝑀
𝑐

) = {𝑢 ∈ 𝑊
1

2

(𝐻, (0, 1)) : 𝑢 (0) = 0}

⊂ 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1))

(17)

of the minimal operator 𝑀
0

. It is clear that 𝑀
𝑐

is a solvable
extension of𝑀

0

and

𝑀
−1

𝑐

𝑓 (𝑡) = ∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥, 𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) ,

𝑀
−1

𝑐

: 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1)) .

(18)

Now assume that 𝑀̃ is a solvable extension of the minimal
operator𝑀

0

in 𝐿2(𝐻, (0, 1)). In this case it is known that the
domain of 𝑀̃ can be written in direct sum in the form

𝐷(𝑀̃) = 𝐷 (𝑀
0

) ⊕ (𝑀
−1

𝑐

+ 𝐾)𝑉, (19)

where 𝑉 = Ker𝑀 = 𝐻,𝐾 ∈ 𝐿(𝐻) [15, 16]. Therefore for each
𝑢(𝑡) ∈ 𝐷(𝑀̃) it is true that

𝑢 (𝑡) = 𝑢
0

(𝑡) + 𝑀
−1

𝑐

𝑓 + 𝐾𝑓, 𝑢
0

∈ 𝐷 (𝑀
0

) , 𝑓 ∈ 𝐻. (20)

That is, 𝑢(𝑡) = 𝑢
0

(𝑡) + 𝑡𝑓 + 𝐾𝑓, 𝑢
0

∈ 𝐷(𝑀
0

), 𝑓 ∈ 𝐻. Hence
𝑢(0) = 𝐾𝑓, 𝑢(1) = 𝑓 + 𝐾𝑓 = (𝐾 + 𝐸)𝑓. Hence 𝑢(0) = 𝐾𝑓,
𝑢(1) = 𝑓 + 𝐾𝑓 = (𝐾 + 𝐸)𝑓 and from these relations it is
obtained that

(𝐾 + 𝐸) 𝑢 (0) = 𝐾𝑢 (1) . (21)

On the other hand, uniqueness of operator𝐾 ∈ 𝐿(𝐻) follows
from [15]. Therefore, 𝑀̃ = 𝑀

𝐾

. This completes the necessary
part of this assertion.

On the contrary, if 𝑀
𝐾

is an operator generated by dif-
ferential expression (2) and boundary condition (21), then
𝑀
𝐾

is bounded, boundedly invertible, and

𝑀
−1

𝐾

: 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1)) ,

𝑀
−1

𝐾

𝑓 (𝑡) = ∫

𝑡

0

𝑓 (𝑥) 𝑑𝑥 + 𝐾∫

1

0

𝑓 (𝑥) 𝑑𝑥,

𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) .

(22)

Consequently, all solvable extensions of theminimal operator
𝑀
0

in𝐿2(𝐻, (0, 1)) are generated by differential expression (2)
and boundary condition (21) with any linear bounded opera-
tor 𝐾.

Now consider the general case. For this in the
𝐿
2

(𝐻, (0, 1)) introduce an operator in the form

𝑈 : 𝐿
2

(𝐻, (0, 1)) 󳨀→ 𝐿
2

(𝐻, (0, 1)) ,

(𝑈𝑧) (𝑡) := 𝑈 (𝑡, 0) 𝑧 (𝑡) , 𝑧 ∈ 𝐿
2

(𝐻, (0, 1)) .

(23)

From the properties of the family of evolution operators
𝑈(𝑡, 𝑠), 𝑡, 𝑠 ∈ [0, 1], it is implied that an operator 𝑈 is linear
bounded and has a bounded inverse and

(𝑈
−1

𝑧) (𝑡) = 𝑈 (0, 𝑡) 𝑧 (𝑡) . (24)

On the other hand, from the relations

𝑈
−1

𝐿
0

𝑈 = 𝑀
0

, 𝑈
−1

𝐿̃𝑈 = 𝑀̃, 𝑈
−1

𝐿𝑈 = 𝑀, (25)

it is implied that an operator 𝑈 is one-to-one between sets
of solvable extensions of minimal operators 𝐿

0

and 𝑀
0

in
𝐿
2

(𝐻, (0, 1)).
The extension 𝐿̃ of the minimal operator 𝐿

0

is solvable
in 𝐿2(𝐻, (0, 1)) if and only if the operator 𝑀̃ = 𝑈

−1

𝐿̃𝑈 is an
extension of the minimal𝑀

0

in 𝐿2(𝐻, (0, 1)). Then, 𝑢 ∈ 𝐷(𝐿̃)
if and only if

(𝐾 + 𝐸)𝑈 (0, 0) 𝑢 (0) = 𝐾𝑈 (0, 1) 𝑢 (1) ; (26)

that is, (𝐾 + 𝐸)𝑢(0) = 𝐾𝑈(0, 1)𝑢(1). This proves the validity
of the claims in the theorem.

Corollary 2. In particular the resolvent operator 𝑅
𝜆

(𝐿
𝐾

), 𝜆 ∈
𝜌(𝐿
𝐾

), of any solvable extension 𝐿
𝐾

of the minimal operator
𝐿
0

, generated by pantograph-type delay differential expression

𝑙 (𝑢) = 𝑢
󸀠

(𝑡) + 𝐴 (𝑡) 𝑢 (𝛼𝑡) , 0 < 𝛼 < 1, (27)

with boundary condition in 𝐿2(𝐻, (0, 1)),

(𝐾 + 𝐸) 𝑢 (0) = 𝐾𝑈 (0, 1) 𝑢 (1) , (28)

is of the form

𝑅
𝜆

(𝐿
𝐾

) 𝑓 (𝑡)

= 𝑈 (𝑡, 0) [(𝐸 + 𝐾 (1 − 𝑒
𝜆

))
−1

𝐾∫

1

0

𝑒
𝜆(1−𝑠)

𝑈 (0, 𝑠) 𝑓 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑒
𝜆(𝑡−𝑠)

𝑈 (0, 𝑠) 𝑓 (𝑠) 𝑑𝑠] ,

(29)

𝑓 ∈ 𝐿
2

(𝐻, (0, 1)).

Remark 3. Note that in the general case 𝐴𝑃
𝛼

̸= 𝑃
𝛼

𝐴, for any
𝐴 ∈ 𝐿(𝐻).
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Indeed, if

(𝐴𝑓) (𝑡) = 𝑡𝑓 (𝑡) , 𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) ,

𝐴 : 𝐿
2

(0, 1) 󳨀→ 𝐿
2

(0, 1) ,

(30)

then for 0 < 𝛼 < 1 and 𝑓 ∈ 𝐿
2

(0, 1)

(𝐴𝑃
𝛼

) 𝑓 (𝑡) = 𝐴 (𝑃
𝛼

𝑓 (𝑡)) = 𝐴 (𝑓 (𝛼𝑡))

= 𝑡𝑓 (𝛼𝑡) , 0 < 𝑡 < 1,

(𝑃
𝛼

𝐴)𝑓 (𝑡) = 𝑃
𝛼

(𝐴𝑓 (𝑡)) = 𝑃
𝛼

(𝑡𝑓 (𝑡))

= (𝛼𝑡) 𝑓 (𝛼𝑡) , 0 < 𝑡 < 1.

(31)

Corollary 4. Assume that for any 𝑡 ∈ (0, 1) and any 𝑢 ∈

𝑊
1

2

(𝐻, (0, 1))

(𝐴
𝛼

𝑢) (𝛼𝑡) = 𝐴
𝛼

𝑢 (𝛼𝑡) . (32)

In this case, all solvable extensions of minimal operator 𝐿
0

are
generated by the following differential expression

𝑙 (𝑢) = 𝑢
󸀠

(𝑡) + 𝐴 (𝑡) 𝑢 (𝛼𝑡) , 0 < 𝛼 < 1, (33)

and boundary condition

(𝐾 + 𝐸) 𝑢 (0) = 𝐾

∞

∑

𝑛=0

(−1)
𝑛

𝑛!
𝐴
𝑛

𝑢 (𝛼
𝑛

) , 𝐾 ∈ 𝐵 (𝐻) (34)

in the Hilbert 𝐿2(𝐻, (0, 1)) and vice versa.
Note that the series in the right side of the last equality is

convergent, because for any 𝑢 ∈ 𝑊1
2

(𝐻, (0, 1))

∞

∑

𝑛=0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(−1)
𝑛

𝑛!
𝐴
𝑛

𝑢 (𝛼
𝑛

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤

∞

∑

𝑛=0

‖𝐴‖
𝑛

𝑛!
max
[0,1]

‖𝑢‖
𝐻

< +∞. (35)

Corollary 5. All solvable extensions 𝐿
𝐾

of the minimal opera-
tor 𝐿
0

generated by pantograph differential expression 𝑙(𝑢) =

𝑢
󸀠

(𝑡) + 𝑢(𝛼𝑡), 0 < 𝛼 < 1, are described with boundary
conditions

(𝐾 + 𝐸) 𝑢 (0) = 𝐾[𝑢 (1) −
𝑢 (𝛼)

1!
−

𝑢 (𝛼
2

)

2!
+ ⋅ ⋅ ⋅ ]

= 𝐾

∞

∑

𝑛=0

1

𝑛!
𝑢 (𝛼
𝑛

)

(36)

in the Hilbert space 𝐿2(𝐻, (0, 1)).

Corollary 6. It can be proved that all the solvable extensions
of the minimal operator are generated by pantograph-type
differential-operator expressions for first order

𝑙 (𝑢) = 𝑢
󸀠

(𝑡) + 𝑢 (𝛼
1

𝑡) + 𝑢 (𝛼
2

𝑡) (37)

in 𝐿2(𝐻, (0, 1)) generated by 𝑙(⋅) and boundary condition

(𝐾 + 𝐸) 𝑢 (0) = 𝐾 [𝑢 (1) − (𝑢 (𝛼
1

) + 𝑢 (𝛼
2

))

+
1

2!
(𝑢 (𝛼
2

1

) + 2𝑢 (𝛼
1

𝛼
2

) + 𝑢 (𝛼
2

2

))

−
1

3!
(𝑢 (𝛼
3

1

) + 𝑢 (𝛼
1

𝛼
2

2

) + 2𝑢 (𝛼
2

1

𝛼
2

)

+2𝑢 (𝛼
1

𝛼
2

2

) + 𝑢 (𝛼
2

1

𝛼
2

) + 𝑢 (𝛼
3

2

)) + ⋅ ⋅ ⋅ ]

(38)

in 𝐿2(𝐻, (0, 1)).

Remark 7. Theorem 1 can be generalized in the differential
expression

𝑙
𝜑

(𝑢) := 𝑢
󸀠

(𝑡) +

𝑛

∑

𝑚=1

𝐴
𝑚

(𝑡) 𝑢 (𝜑
𝑚

(𝑡)) , (39)

where 𝜑
𝑚

: [0, 1] → [0, 1], 𝜑
𝑚

> 0 (< 0), 𝜑
𝑚

∈ 𝐶
1

[0, 1],
𝑃
𝜑

𝑚

: 𝐿
2

(𝐻, (0, 1)) → 𝐿
2

(𝐻, (0, 1)), 𝑃
𝜑

𝑚

𝑢(𝑡) = 𝑢(𝜑
𝑚

(𝑡)),𝑚 =

1, 2, . . . , 𝑛, 𝐴
𝜑

(𝑡) := ∑
𝑛

𝑚=1

𝐴
𝑚

(𝑡)𝑃
𝜑

𝑚

.

Theorem 8. All solvable extensions of minimal operator cor-
responding to pantograph-type delay differential-operator
expression 𝑙

𝜑

(⋅) in Hilbert space 𝐿2(𝐻, (0, 1)) are described by
𝑙
𝜑

(⋅) and boundary condition

(𝐾 + 𝐸) 𝑢 (0) = 𝐾𝑈
𝜑

(0, 1) 𝑢 (1) , (40)

where 𝐾 ∈ 𝐵(𝐻) and 𝑈
𝜑

(𝑡, 𝑠), 𝑡, 𝑠 ∈ [0, 1], is a family of
evolution operators corresponding to the homogeneous differ-
ential equation

(𝑈
𝜑

)
󸀠

𝑡

(𝑡, 𝑠) + 𝐴
𝜑

(𝑡) 𝑈 (𝑡, 𝑠) = 0, 𝑡, 𝑠 ∈ [0, 1] , (41)

with boundary condition 𝑈
𝜑

(𝑠, 𝑠)𝑓 = 𝑓, 𝑓 ∈ 𝐻 and vice versa.

3. Spectrum of Solvable Extensions

In this section, the spectrum structure of solvable extensions
of minimal operator 𝐿

0

in 𝐿2(𝐻, (0, 1)) will be investigated.
Firstly, prove the following fact.

Theorem 9. If 𝐿̃ is a solvable extension of a minimal operator
𝐿
0

and 𝑀̃ = 𝑈
−1

𝐿̃𝑈 corresponds to the solvable extension of a
minimal operator𝑀

0

, then the spectrum of these extensions is
true 𝜎(𝐿̃) = 𝜎(𝑀̃).

Proof. Consider a problem to the spectrum for a solvable
extension 𝐿

𝐾

of a minimal operator 𝐿
0

generated by panto-
graph differential-operator expression (1); that is,

𝐿
𝐾

𝑢 = 𝜆𝑢 + 𝑓, 𝜆 ∈ C, 𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) . (42)

From this it is obtained that

(𝐿
𝐾

− 𝜆𝐸) 𝑢 = 𝑓 (43)

or (𝑈𝑀
𝐾

𝑈
−1

− 𝜆𝐸)𝑢 = 𝑓. Hence 𝑈(𝑀
𝐾

− 𝜆)(𝑈
−1

𝑢) = 𝑓.
Therefore, the validity of the theorem is clear.
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Now prove the following result for the spectrum of solva-
ble extension.

Theorem 10. If 𝐿
𝐾

is a solvable extension of the minimal
operator 𝐿

0

in the space 𝐿2(𝐻, (0, 1)), then spectrum of 𝐿
𝐾

has
the form

𝜎 (𝐿
𝐾

) = {𝜆 ∈ C : 𝜆 = ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑖 arg(
𝜇 + 1

𝜇
)

+2𝑛𝜋𝑖, 𝜇 ∈ 𝜎 (𝐾) \ {0, −1} , 𝑛 ∈ Z} .

(44)

Proof. Firstly, the spectrum of the solvable extension 𝑀
𝐾

=

𝑈
−1

𝐿
𝐾

𝑈 of the minimal operator𝑀
0

in 𝐿2(𝐻, (0, 1)) will be
investigated.

Consequently, consider the following problem for the
spectrum; that is, 𝑀

𝐾

𝑢 = 𝜆𝑢 + 𝑓, 𝜆 ∈ C, 𝑓 ∈ 𝐿
2

(𝐻, (0, 1)).
Then

𝑢
󸀠

= 𝜆𝑢 + 𝑓,

(𝐾 + 𝐸) 𝑢 (0) = 𝐾𝑢 (1) , 𝜆 ∈ C,

𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) , 𝐾 ∈ 𝐿 (𝐻) .

(45)

It is clear that a general solution of the above differential equa-
tion in 𝐿2(𝐻, (0, 1)) has the form

𝑢
𝜆

(𝑡) = 𝑒
𝜆𝑡

𝑓
0

+ ∫

𝑡

0

𝑒
𝜆(𝑡−𝑠)

𝑓 (𝑠) 𝑑𝑠, 𝑓
0

∈ 𝐻. (46)

Therefore, from the boundary condition (𝐾 + 𝐸)𝑢
𝜆

(0) =

𝐾𝑢
𝜆

(1) it is obtained that

(𝐸 + 𝐾 (1 − 𝑒
𝜆

)) 𝑓
0

= 𝐾∫

1

0

𝑒
𝜆(1−𝑠)

𝑓 (𝑠) 𝑑𝑠. (47)

For 𝜆
𝑚

= 2𝑚𝜋,𝑚 ∈ Z, from the last relation it is established
that

𝑓
(𝑚)

0

= 𝐾∫

1

0

𝑒
𝜆

𝑚
(1−𝑠)

𝑓 (𝑠) 𝑑𝑠, 𝑚 ∈ Z. (48)

Consequently, in this case the resolvent operator of𝑀
𝐾

is in
the form

𝑅
𝜆

𝑚

(𝑀
𝐾

) 𝑓 (𝑡)

= 𝐾𝑒
𝜆

𝑚
𝑡

∫

1

0

𝑒
𝜆

𝑚
(1−𝑠)

𝑓 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑒
𝜆(𝑡−𝑠)

𝑓 (𝑠) 𝑑𝑠,

𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) , 𝑚 ∈ Z.

(49)

On the other hand, it is clear that 𝑅
𝜆

𝑚

(𝑀
𝐾

) ∈ 𝐵(𝐿
2

(𝐻,

(0, 1))),𝑚 ∈ Z.
Now assume that 𝜆 ̸= 2𝑚𝜋, 𝑚 ∈ Z, 𝜆 ∈ C. Then using

(47) we have

(𝐾 −
1

𝑒𝜆 − 1
𝐸)𝑓
0

=
1

1 − 𝑒𝜆
𝐾∫

1

0

𝑒
𝜆(1−𝑠)

𝑓 (𝑠) 𝑑𝑠,

𝑓
0

∈ 𝐻, 𝑓 ∈ 𝐿
2

(𝐻, (0, 1)) .

(50)

Therefore, 𝜆 ∈ 𝜎(𝑀
𝐾

) if and only if

𝜇 =
1

𝑒𝜆 − 1
∈ 𝜎 (𝐾) . (51)

In this case since 𝜇 ̸= 0,

𝑒
𝜆

=
𝜇 + 1

𝜇
, 𝜇 ∈ 𝜎 (𝐾) , 𝜇 ̸= −1. (52)

Then

𝜆
𝑛

= ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑖 arg(
𝜇 + 1

𝜇
) + 2𝑛𝜋𝑖, 𝑛 ∈ Z. (53)

Later on, using the last relation andTheorem 9 the validity of
the claim in the theorem is proved.

Now one result on the asymptotic behavior of eigenvalues
of solvable extensions in special cases will be proved.

Theorem 11. Let 𝐾 ∈ 𝐿(𝐻), 𝐾 ̸= 0, and 𝜎(𝐾) = 𝜎
𝑃

(𝐾).
In addition, assume that there exists 𝛼, 𝛽 > 0 such that
for any 𝜇𝜖𝜎

𝑃

(𝐾) are true |𝜇| ≥ 𝛼 > 0 and |𝜇 + 1| ≥

𝛽 > 0. Then 𝜆
𝑛

(𝐿
𝐾

) ∼ 2𝑛𝜋 as 𝑛 → ∞. (i.e., there exist
lim
𝑛→∞

(|𝜆
𝑛

(𝐿
𝑘

)|/2𝑛𝜋) and 0 < lim
𝑛→∞

(|𝜆
𝑛

(𝐿
𝑘

)|/2𝑛𝜋) < ∞).

Proof. In this case for 𝑛 ≥ 1

󵄨󵄨󵄨󵄨𝜆𝑛 (𝑀𝐾)
󵄨󵄨󵄨󵄨

2

= ln2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝜇 + 1

𝜇
) + 2𝑛𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

. (54)

Since for any 𝜇 ∈ 𝜎
𝑝

(𝐾)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
𝛽

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

≥
𝛽

‖𝐾‖
> 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1 +
1

󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

≤ 1 +
1

𝛼
,

(55)

then

ln
𝛽

‖𝐾‖
≤ ln

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ln(1 + 1

𝛼
) . (56)

Therefore, for any 𝜇 ∈ 𝜎
𝑝

(𝐾) is true

min{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln(
𝛽

‖𝐾‖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln(1 + 1

𝛼
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 + 1

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln(
𝛽

‖𝐾‖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln(1 + 1

𝛼
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
} .

(57)

On the other hand, for any 𝑛 ∈ Z

(2𝑛𝜋)
2

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝜇 + 1

𝜇
) + 2𝑛𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ (2 (𝑛 + 1) 𝜋)
2

. (58)
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Consequently, for any 𝑛 ∈ N

(2𝑛𝜋)
2

(1 +
1

4𝑛2𝜋2
min2 {

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln(
𝛽

‖𝐾‖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln(1 + 1

𝛼
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
})

≤
󵄨󵄨󵄨󵄨𝜆𝑛 (𝑀𝐾)

󵄨󵄨󵄨󵄨

2

≤ (2𝑛𝜋)
2

((
2 (𝑛 + 1) 𝜋

2𝑛𝜋
)

2

+
1

(2𝑛𝜋)
2

max2 {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ln(
𝛽

‖𝐾‖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ln(1 + 1

𝛼
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
} ) .

(59)

This means that 𝜆
𝑛

(𝑀
𝐾

) ∼ 2𝑛𝜋 as 𝑛 → ∞.

4. Applications

Example 12. Let

(𝐻, ‖⋅‖
𝐻

) = (C, |⋅|) , 𝐴 (𝑡) = 𝑎 (𝑡) ∈ 𝐶 (R) . (60)

ByTheorem 1, all solvable extensions 𝐿
𝑘

of minimal operator
𝐿
0

generated by 𝑙(𝑢) = 𝑢
󸀠

(𝑡) +𝑎(𝑡)𝑢(𝛼𝑡), 0 < 𝛼 < 𝑡, in 𝐿2(0, 1)
are described with 𝑙(⋅) and boundary condition

(𝑘 + 1) 𝑢 (0) = 𝑘 exp(−∫
1

0

𝑎 (𝑡) 𝑑𝑡) 𝑢 (1) , 𝑘 ∈ C. (61)

In addition, the resolvent operator of these extensions is in
the form

𝑅
𝜆

(𝐿
𝑘

) 𝑓 (𝑡)

= exp(−∫
𝑡

0

𝑎 (𝑥) 𝑃
𝛼

𝑑𝑥)

× [ (1 + 𝑘(1 − 𝑒
𝜆

)
−1

) 𝑘

× ∫

1

0

exp(𝜆 (1 − 𝑠) + ∫
𝑠

0

𝑎 (𝑥) 𝑃
𝛼

𝑑𝑥)𝑓 (𝑠) 𝑑𝑠

+∫

𝑡

0

exp(𝜆 (𝑡 − 𝑠) + ∫
𝑠

0

𝑎 (𝑥) 𝑃
𝛼

𝑑𝑥)𝑓 (𝑠) 𝑑𝑠] ,

(62)

𝜆 ∈ 𝜎(𝐿
𝑘

), 𝑓 ∈ 𝐿
2

(0, 1) and for 𝑘 ̸= 0, −1 spectrum of this
extension 𝐿

𝑘

is in the form

𝜎 (𝐿
𝑘

)

= {𝜆 ∈ C : 𝜆 = ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘 + 1

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑖 arg(𝑘 + 1
𝑘

) + 2𝑛𝜋𝑖, 𝑛 ∈ Z} .

(63)

Example 13. Let

(𝐻, ‖⋅‖
𝐻

) = (C, |⋅|) , 𝑎, 𝑏 ∈ 𝐶 (C) . (64)

Consider the following pantograph functional-differential
expression in the form

𝑙 (𝑢) = 𝑢
󸀠

(𝑡) + 𝑎 (𝑡) 𝑢 (𝑡) + 𝑏 (𝑡) 𝑢 (𝛼𝑡) , 0 < 𝛼 < 1, (65)

in 𝐿
2

(0, 1). Then by Theorem 1, all solvable extensions 𝐿
𝑘

of minimal operator 𝐿
0

are generated by 𝑙(⋅) and boundary
condition

(𝑘 + 1) 𝑢 (0) = 𝑘 exp(∫
1

0

(𝑎 (𝑠) + 𝑏 (𝑠) 𝑃
𝛼

) 𝑑𝑠) 𝑢 (1) ,

𝑘 ∈ C

(66)

and vice versa.
Moreover, the resolvent operator of these extensions is

𝑅
𝜆

(𝐿
𝑘

) 𝑓 (𝑡) = exp(−∫
𝑡

0

(𝑎 (𝑠) + 𝑏 (𝑠) 𝑃
𝛼

) 𝑑𝑠)

× [(1 + 𝑘(1 − 𝑒
𝜆

)
−1

) 𝑘∫

1

0

exp (𝜆 (1 − 𝑠)

+ ∫

𝑠

0

(𝑎 (𝑥) + 𝑏 (𝑥) 𝑃
𝛼

) 𝑑𝑥) 𝑓 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

exp (𝜆 (𝑡 − 𝑠)

+∫

𝑠

0

(𝑎 (𝑥) + 𝑏 (𝑥) 𝑃
𝛼

) 𝑑𝑥) 𝑓 (𝑠) 𝑑𝑠] ,

𝜆 ∈ C, 𝑓 ∈ 𝐿
2

(0, 1) .

(67)

On the other hand, by Theorem 9 for 𝑘 ∈ C \ {(0, 0), (−1, 0)}

the spectrum of solvable extension 𝐿
𝑘

is in the form

𝜎 (𝐿
𝑘

)

= {𝜆 ∈ C : 𝜆 = ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏 + 1

𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑖 arg(𝜏 + 1

𝜏
) + 2𝑛𝜋𝑖, 𝑛 ∈ Z} .

(68)

Now consider the following differential equation

𝑢
󸀠

(𝑡) = 𝑎 (𝑡) 𝑢 (𝛼𝑡) + 𝑏 (𝑡) 𝑢 (𝑡) + 𝑓 (𝑡) (69)

with initial-boundary value problem

𝑢 (0) = 𝑢
0

(70)

in the Hilbert space 𝐿2(0, 1), where 𝑎(⋅), 𝑏(⋅) ∈ 𝐶[0, 1], 𝑓 ∈

𝐿
2

(0, 1), and 𝑢
0

∈ C.
In order to solve this problem change the function 𝑢(𝑡) by

𝑦 (𝑡) = 𝑢 (𝑡) − 𝑢
0

, 0 < 𝑡 < 1. (71)

Then the considered problem transforms the following
problem:

𝑦
󸀠

(𝑡) = 𝑎 (𝑡) 𝑦 (𝛼𝑡) + 𝑏 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑦 (0) = 0, (72)

where 𝑔(𝑡) = 𝑓(𝑡) − (𝑎(𝑡) + 𝑏(𝑡))𝑢
0

.
The last problem can be written in the form

𝑦
󸀠

(𝑡) + 𝐴
𝛼

(𝑡) 𝑦 (𝑡) = 𝑔 (𝑡) , 𝑦 (0) = 0, (73)

where 𝐴
𝛼

(𝑡) = −𝑎(𝑡)𝑃
𝛼

− 𝑏(𝑡)𝐸.
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Then solution of the above Cauchy problem by
Corollary 2 can be analytically expressed in the form
(𝐾 = 0)

𝑦 (𝑡) = 𝑅
0

(𝐿
𝑐

) 𝑔 (𝑡) = 𝐿
−1

𝑐

𝑔 (𝑡)

= 𝑈 (𝑡, 0) ∫

𝑡

0

𝑈 (0, 𝑥) 𝑔 (𝑥) 𝑑𝑥.

(74)

Another approach to this problem has been investigated in
[17].

Example 14. Consider the following integrodifferential equa-
tion for first order in the form

𝑢
󸀠

(𝑡) + ∫

𝑡

0

𝑢 (𝛼𝑥) 𝑑𝑥 = 𝑓 (𝑡) , 0 < 𝛼 < 1, 𝑢 (0) = 𝑢
0

(75)

in Hilbert space 𝐿2(0, 1). Changing the unknown function
𝑢(𝑡) by

𝑦 (𝑡) = 𝑢 (𝑡) − 𝑢
0

, 0 < 𝑡 < 1, (76)

the following initial-value problem for integrodifferential
equation is obtained:

𝑦
󸀠

(𝑡) + ∫

𝑡

0

𝑦 (𝛼𝑥) 𝑑𝑥 = 𝑔 (𝑡) , 𝑦 (0) = 0, (77)

where 𝑔(𝑡) = 𝑓(𝑡) − 𝑢
0

𝑡, in 𝐿2(0, 1).
The last equation can be rewritten in the form

𝑦
󸀠

(𝑡) + 𝑃
𝛼

𝑦 (𝑡) = 𝑔 (𝑡) , 𝑦 (0) = 0. (78)

It is easy to see that the analytical solution of this problem is
in the form

𝑦 (𝑡) = ∫

𝑡

0

𝑒
−𝑃

𝛼
(𝑡−𝑠)

𝑔 (𝑠) 𝑑𝑠. (79)

Consequently, for 0 < 𝑡 < 1

𝑢 (𝑡) = 𝑢
0

+ ∫

𝑡

0

𝑒
−𝑃

𝛼
(𝑡−𝑠)

(𝑓 (𝑠) − 𝑢
0

𝑠) 𝑑𝑠

= 𝑢
0

− 𝑒
−𝑃

𝛼
𝑡

∫

𝑡

0

𝑠𝑒
𝑃

𝛼
𝑠

𝑑𝑠𝑢
0

+ 𝑒
−𝑃

𝛼
𝑡

∫

𝑡

0

𝑒
𝑃

𝛼
𝑠

𝑓 (𝑠) 𝑑𝑠.

(80)

Example 15. All solvable extensions ofminimal operator gen-
erated by differential expression

𝑙 (𝑢) =
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
+ 𝑥𝑢 (𝛼𝑡, 𝑥) , 𝑥 ∈ (−1, 1) ,

0 < 𝑡 < 1, 0 < 𝛼 < 1,

(81)

in the Hilbert space 𝐿2((−1, 1) × (0, 1)) are described by this
𝑙(⋅) and boundary condition

(𝐾 + 𝐸) 𝑢 (0, 𝑥) = 𝐾𝑈 (0, 1) 𝑢 (1, 𝑥) , (82)

where 𝐾 ∈ 𝐵(𝐿
2

(−1, 1)) and 𝑈(𝑡, 𝑠), 𝑡, 𝑠 ∈ [0, 1], is a solution
of operator equation

𝑈
󸀠

𝑡

(𝑡, 𝑠) + 𝑥𝑃
𝛼

𝑈 (𝑡, 𝑠) = 0, 𝑡, 𝑠 ∈ [0, 1] ,

𝑈 (𝑠, 𝑠) 𝑓 = 𝑓, 𝑓 ∈ 𝐿
2

(−1, 1) ,

(83)

where 𝑃
𝛼

𝑢(𝑡) = 𝑢(𝛼𝑡), 𝑃
𝛼

: 𝐿
2

(0, 1) → 𝐿
2

(0, 1).
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