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This paper researches global asymptotic stability of impulsive cellular neural networks with proportional delays and partially
Lipschitz activation functions. Firstly, by means of the transformation V

𝑖
(𝑡) = 𝑢

𝑖
(𝑒𝑡), the impulsive cellular neural networks with

proportional delays are transformed into impulsive cellular neural networks with the variable coefficients and constant delays.
Secondly, we provide novel criteria for the uniqueness and exponential stability of the equilibrium point of the latter by relative
nonlinear measure and prove that the exponential stability of equilibrium point of the latter implies the asymptotic stability of one
of the former. We furthermore obtain a sufficient condition to the uniqueness and global asymptotic stability of the equilibrium
point of the former. Our method does not require conventional assumptions on global Lipschitz continuity, boundedness, and
monotonicity of activation functions. Our results are generalizations and improvements of some existing ones. Finally, an example
and its simulations are provided to illustrate the correctness of our analysis.

1. Introduction

Cellular neural networks (CNNs) introduced by Chua and
Yang [1, 2] have found many important applications in
biology, the solving of optimization problem, image pro-
cessing, and pattern recognition [3]. In fact, CNNs can be
characterized by an array of identical nonlinear dynamical
systems (called cells) locally interconnected in the paper [4]
which presented a set of sufficient conditions ensuring the
existence of at least one stable equilibrium point in terms of
the template elements. As we know, time delays are inevitable
in electronic implementation of CNNs [5]. However, time
delays may destroy stability of the networks and even lead
to the oscillation behaviors. Hence, it is necessary to study
the stability of CNNs with different types of delays. Time
delays may be proportional delays; that is to say, the delay
function 𝜏(𝑡) = (1−𝑞)𝑡 is amonotonically increasing function
with respect to 𝑡 > 0, where 𝑞 is a constant and satisfies
0 < 𝑞 < 1. The type of proportional delays is usually required
in Web quality of service routing decision and one may be

convenient to control the network’s running time accord-
ing to the network allowed delays. Moreover, one can refer
to the paper [6] about more information on the proportional
delay engineering. Proportional delays [7–10] are unbounded
time-varying ones different from constant delays [11],
bounded time-varying delays [12–18], and unbounded dis-
tributed delay [19–23]. It is relatively difficult to deal with
this class of the unbounded time-varying delays because none
of any other assumptions are imposed on it compared with
other unbounded time-varying delays, such as, unbounded
distributed delays often require that the delay kernel func-
tions 𝑘

𝑖𝑗
: R+ → R+ satisfy ∫

∞

0
𝑘
𝑖𝑗
(𝑠)𝑑𝑠 = 1, ∫

∞

0
𝑠𝑘
𝑖𝑗
(𝑠)𝑑𝑠

< ∞, or there exists a positive number 𝜇 such that
∫
∞

0
𝑘
𝑖𝑗
(𝑠)𝑒𝜇𝑠𝑑𝑠 < ∞ [20–23]. Several stability criteria of

CNNs with proportional delays have been obtained [7].
Moreover, the abrupt changes in the voltages produced by
faulty circuit elements are exemplary of impulse phenomena
which can affect the transient behavior of the network [24].
Hence, it is significant to discuss the stability of the CNNs
with impulses and proportional delays. However, to the best
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of the authors’ knowledge, few authors have handled the
stability of CNNs with impulses and proportional delays.

Among the existing research results about neural net-
works, some activation functions are assumed to be globally
Lipschitz continuous [25–30], bounded and monotonic [31],
and bounded [24, 32]. However, these assumptions make
these existing results unapplicable to some important engi-
neering problems. For example, when the neural networks are
used to solve optimization problemswith the presence of con-
straints (linear, quadratic, or more general programming
problems), unbounded (or nonmonotonic, non-globally Lip-
spchitz continuous) activations modeled by diode-like expo-
nential-type functions are needed such that constraints are
satisfied [33]. Motivated by this, we attempt to abandon these
assumptions and only require activation functions to be par-
tially Lipschitz continuous. Moreover, the relative nonlinear
measure is more efficient than the nonlinear measure for
exponential stability analysis of different classes of neural
networks without delays where the equilibrium points are
given [20, 34].

According to the foregoing analysis, this paper is devoted
to analyzing stability of impulsive CNNs with proportional
delays and Lipschitz continuous activation functions by
relative nonlinear measure. The remainder of this paper is
arranged as follows. Section 2 describes the model of propor-
tion-delayed impulsive CNNs with partial Lipschitz contin-
uous activation functions and provides its equivalent form
by some transformation. Being preliminaries, Section 3 is
devoted to uniqueness and exponential stability of equilib-
rium point of a nonlinear impulsive functional differential
equation with variable coefficients and constant delays by
means of relative nonlinearmeasure. In Section 4, a sufficient
condition is obtained for global asymptotic stability of equi-
librium point of impulsive proportion-delayed CNNs with
partially Lipschitz continuous activation functions by results
derived in Section 3. Furthermore, an example and its simu-
lations are presented to illustrate that ourmethod is valid and
that our derived results are new and correct. Conclusions are
given in Section 5.

2. Model Description and Its Equivalent Form

We consider the following CNNs with impulses and multi-
proportional delays:

𝑢̇
𝑖 (𝑡) = −𝑑

𝑖
𝑢
𝑖 (𝑡)

+

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (𝑡)) + 𝑏

𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑝

𝑗
𝑡))

+𝑐
𝑖𝑗
ℎ
𝑗
(𝑢
𝑗
(𝑞
𝑗
𝑡))] + 𝐼

𝑖
, 𝑡 ≥ 1, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑢
𝑖
(𝑡
𝑘
) = I

𝑖,𝑘
(𝑢
𝑖
(𝑡
𝑘
)) , 𝑘 ∈ N,

𝑢
𝑖 (𝑠) = 𝜙

𝑖 (𝑠) , 𝑟 ≤ 𝑠 ≤ 1,

(1)

for 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 ≥ 2 is the number of cells in the
networks; 𝑢

𝑖
(𝑡) denotes the potential of the 𝑖th cell at time

𝑡; 𝑑
𝑖

> 0 represents the rate with which the 𝑖th cell resets

its potential to the resting state when isolated from other
cells and inputs at time 𝑡; 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
, and 𝑐

𝑖𝑗
denote the strengths

of connectivity between the 𝑗th and the 𝑖th cells at time 𝑡,
𝑝
𝑗
𝑡, and 𝑞

𝑗
𝑡, respectively; 𝑝

𝑗
and 𝑞

𝑗
are proportional delay

factors and satisfy 0 < 𝑝
𝑗
, 𝑞

𝑗
< 1, 𝑟 = min

1≤𝑗≤𝑛
{𝑝
𝑗
, 𝑞
𝑗
}

and 𝑝
𝑗
𝑡 = 𝑡 − (1 − 𝑝

𝑗
)𝑡, 𝑞

𝑗
𝑡 = 𝑡 − (1 − 𝑞

𝑗
)𝑡, in which

(1 − 𝑝
𝑗
)𝑡, (1 − 𝑞

𝑗
)𝑡 correspond to the time delays required in

processing and transmitting a signal from the 𝑗th cell to the
𝑖th cell, and (1 −𝑝

𝑗
)𝑡 → +∞, (1 − 𝑞

𝑗
)𝑡 → +∞ as 𝑡 → +∞;

Δ𝑢
𝑖
(𝑡
𝑘
) = 𝑢

𝑖
(𝑡+
𝑘
) − 𝑢

𝑖
(𝑡−
𝑘
) is the impulse at moments 𝑡

𝑘
and

1 = 𝑡
1
< 𝑡

2
< ⋅ ⋅ ⋅ is a strictly increasing sequences such that

lim
𝑘→+∞

𝑡
𝑘
= +∞; 𝑓

𝑗
, 𝑔
𝑗
, and ℎ

𝑗
are the nonlinear activation

functions; 𝐼
𝑖
> 0 denotes the 𝑖th component of an external

input source introduced from outside the network to the 𝑖th
cell at time 𝑡.

To discuss stability of the networks (1), we only assume
the following.

(H) Activation functions 𝑓
𝑗
, 𝑔

𝑗
, and ℎ

𝑗
are partially

Lipschitz continuous on R for 𝑗 = 1, 2, . . . , 𝑛.

In what follows, we plan to transform model (1) into a
model what we can directly deal with.Motivated by this paper
[7], we define the transformation by

V
𝑖 (𝑡) = 𝑢

𝑖
(𝑒
𝑡
) , 𝑖 = 1, 2, . . . , 𝑛. (2)

(I) When 𝑒𝑡 ≥ 1 and 𝑒𝑡 ̸= 𝑡
𝑘
, then 𝑡 ≥ 0, 𝑡 ̸= ln 𝑡

𝑘
and

V̇
𝑖
(𝑡) = 𝑢̇

𝑖
(𝑒𝑡)𝑒𝑡; that is,

𝑢̇ (𝑒
𝑡
) = V̇ (𝑡) 𝑒

−𝑡
. (3)

Taking ℎ = 𝑒𝑡 and then ℎ ≥ 1, then the transformation (2) is
written as

𝑢̇
𝑖 (ℎ) = ℎ

−1V̇
𝑖 (𝑡) . (4)

From (1) and (4), we derive

V̇
𝑖 (𝑡) ℎ

−1
= −𝑑

𝑖
𝑢
𝑖 (ℎ)

+

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (ℎ)) + 𝑏

𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑝

𝑗
ℎ))

+𝑐
𝑖𝑗
ℎ
𝑗
(𝑢
𝑗
(𝑞
𝑗
ℎ))] + 𝐼

𝑖
;

(5)

that is,

𝑢̇
𝑖
(𝑒
𝑡
) = −𝑑

𝑖
𝑢
𝑖
(𝑒
𝑡
)

+

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑒
𝑡
)) + 𝑏

𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑝

𝑗
𝑒
𝑡
))

+𝑐
𝑖𝑗
ℎ
𝑗
(𝑢
𝑗
(𝑞
𝑗
𝑒
𝑡
))] + 𝐼

𝑖
.

(6)

From transformation (2), we obtain

𝑢
𝑗
(𝑝

𝑗
𝑒
𝑡
) = 𝑢

𝑗
(𝑒
𝑡+ln𝑝𝑗) = V

𝑗
(𝑡 + ln𝑝

𝑗
) = V

𝑗
(𝑡 − 𝜏

𝑗
) ,

𝑢
𝑗
(𝑞
𝑗
𝑒
𝑡
) = 𝑢

𝑗
(𝑒
𝑡+ln 𝑞𝑗) = V

𝑗
(𝑡 + ln 𝑞

𝑗
) = V

𝑗
(𝑡 − 𝜍

𝑗
) ,

(7)

where 𝜏
𝑗
= − ln𝑝

𝑗
, 𝜍
𝑗
= − ln 𝑞

𝑗
.
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By (2), (6), and (7), we enjoy

V̇
𝑖 (𝑡) = 𝑒

𝑡
{

{

{

− 𝑑
𝑖
V
𝑖 (𝑡)

+

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑓
𝑗
(V
𝑗 (𝑡)) + 𝑏

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏

𝑗
))

+𝑐
𝑖𝑗
ℎ
𝑗
(V
𝑗
(𝑡 − 𝜍

𝑗
))] + 𝐼

𝑖

}

}

}

.

(8)

(II) When 𝑒𝑡 ≥ 1 and 𝑒𝑡 = 𝑡
𝑘
, then 𝑡 ≥ 0 and 𝑡 = ln 𝑡

𝑘
. By

transformation (2), we have

ΔV
𝑖 (𝑡) = V

𝑖
(𝑡
+
) − V

𝑖 (𝑡) = 𝑢
𝑖
(𝑒
𝑡+

) − 𝑢
𝑖
(𝑒
𝑡
)

= 𝑢
𝑖
(𝑡
+

𝑘
) − 𝑢

𝑖
(𝑡
𝑘
) = I

𝑖,𝑘
(𝑢
𝑖
(𝑡
𝑘
))

= I
𝑖,𝑘

(V
𝑖 (𝑡)) .

(9)

(III) When 𝑒𝑡 ∈ [𝑟, 1], from (1) we have

𝑢
𝑖
(𝑒
𝑡
) = 𝜙

𝑖
(𝑒
𝑡
) , 𝑡 ∈ [−𝜏, 0] , (10)

where 𝜏 = max
1≤𝑗≤𝑛

{𝜏
𝑗
, 𝜍
𝑗
}. Hence, the initial functions asso-

ciated with (8) are given by

V
𝑖 (𝑠) = 𝜓

𝑖 (𝑠) = 𝜙
𝑖
(𝑒
𝑠
) , −𝜏 ≤ 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑛. (11)

Conversely, let 𝜏
𝑗
= − ln𝑝

𝑗
, 𝜍
𝑗
= − ln 𝑞

𝑗
in (8); by trans-

formation (2), then (8) can be written as (1) for 𝑡 ≥ 1 and
𝑡 ̸= 𝑡

𝑘
, Δ(𝑢

𝑖
(𝑡)) = 𝑢

𝑖
(𝑡+) − 𝑢

𝑖
(𝑡) = V

𝑖
(ln 𝑡+) − V

𝑖
(ln 𝑡) for 𝑡 ≥ 1

and 𝑡 = 𝑡
𝑘
, and for 𝑡 ∈ [𝑟, 1], from (10) and (11), the initial

function associatedwith (1) is given by 𝑢
𝑖
(𝑠) = 𝜙

𝑖
(𝑠), 𝑠 ∈ [𝑟, 1].

In conclusion, in the sense of solutions, the CNNs with
impulses andmultiproportional delays (1) is equivalent to the
followingCNNswith constant delays and variable coefficients

V̇
𝑖 (𝑡) = 𝑒

𝑡
{

{

{

− 𝑑
𝑖
V
𝑖 (𝑡)

+

𝑛

∑
𝑗=1

[𝑎
𝑖𝑗
𝑓
𝑗
(V
𝑗 (𝑡)) + 𝑏

𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏

𝑗
))

+𝑐
𝑖𝑗
ℎ
𝑗
(V
𝑗
(𝑡 − 𝜍

𝑗
))] + 𝐼

𝑖

}

}

}

, 𝑡 ̸= ln 𝑡
𝑘
,

ΔV
𝑖 (𝑡) = I

𝑖,𝑘
(V
𝑖 (𝑡)) , 𝑡 = ln 𝑡

𝑘
, 𝑘 ∈ N,

V
𝑖 (𝑠) = 𝜓

𝑖 (𝑠) , 𝑠 ∈ [−𝜏, 0] ,

(12)

for 𝑡 ≥ 0, where 𝜏 = max
1≤𝑗≤𝑛

{𝜏
𝑗
, 𝜍
𝑗
}, 𝜏

𝑗
= − ln𝑝

𝑗
> 0,

𝜍
𝑗

= − ln 𝑞
𝑗

> 0, 𝜓
𝑖
∈ 𝐶([−𝜏, 0],R) denoting the space of

all continuous functions from [−𝜏, 0] to R for 𝑖 = 1, 2, . . . , 𝑛

and 𝜓 = (𝜓
1
, 𝜓

2
, . . . , 𝜓

𝑛
)
𝑇.

3. Preliminaries

Let 𝑛-dimensional real vector space R𝑛 be endowed with 1-
norm ‖ ⋅ ‖

1
defined by

‖𝑥‖1 =

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 for every 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ R
𝑛
, (13)

where the superscript 𝑇 denotes the transpose. Let ⟨⋅, ⋅⟩

denote the inner product in R𝑛 and sign(𝑥) = (sign(𝑥
1
),

sign(𝑥
2
), . . . , sign(𝑥

𝑛
))
𝑇 the sign vector of 𝑥 ∈ R𝑛, where

sign(𝑟) represents the sign function of 𝑟 ∈ R. Obviously, the
relations

‖𝑥‖1 = ⟨𝑥, sign (𝑥)⟩ , ‖𝑥‖1 ≥ ⟨𝑥, sign (𝑦)⟩ (14)

hold for all 𝑥, 𝑦 ∈ R𝑛.
In order to discuss the stability of the neural networks

(1), we firstly consider exponential stability of the following
differential equation with variable coefficients, delays, and
impulses

𝑑𝑧 (𝑡)

𝑑𝑡
= 𝑒

𝑡
[𝐹 (𝑧 (𝑡)) + 𝐺 (𝑧

𝑡 (𝑠))] , 𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑧 (𝑡
𝑘
) = 𝑧 (𝑡

+

𝑘
) − 𝑧 (𝑡

−

𝑘
) = I

𝑘
(𝑧 (𝑡

𝑘
)) , 𝑘 ∈ N,

𝑧
0
= 𝜙 ∈ C ([−𝜏, 0] , Ω) ,

(15)

where 𝜏 > 0, C([−𝜏, 0], Ω) denotes the space of all continu-
ous functions from [−𝜏, 0] into the open subsetΩ ofR𝑛; 𝑧

𝑡
∈

C([−𝜏, 0], Ω) is defined by 𝑧
𝑡
(𝑠) = 𝑧(𝑡 + 𝑠) for all 𝑠 ∈ [−𝜏, 0]

and ‖𝑧
𝑡
‖C = sup

−𝜏≤𝑠≤0
‖𝑧(𝑡 + 𝑠)‖

1
; 𝐹 and 𝐺 : Ω → R𝑛 are

nonlinear operators; 0 = 𝑡
0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ is a strictly
increasing sequence such that lim

𝑘→+∞
𝑡
𝑘

= +∞; 𝑧
𝑡
(𝑠) is

defined as follows:

𝑧
𝑡 (𝑠) = (𝑧

1 (𝑡 − 𝑠) , 𝑧2 (𝑡 − 𝑠) , . . . , 𝑧𝑛 (𝑡 − 𝑠))
𝑇
. (16)

The nonlinear operators 𝐹 and 𝐺 are defined, respectively, by

𝐹 (𝑢) = (𝐹
1 (𝑢) , 𝐹2 (𝑢) , . . . , 𝐹𝑛 (𝑢))

𝑇
,

𝐺 (𝑢) = (𝐺
1 (𝑢) , 𝐺2 (𝑢) , . . . , 𝐺𝑛 (𝑢))

𝑇
.

(17)

Definition 1 (see [20]). (1) A nonlinear operator 𝑇 : Ω →

R𝑛 is called be Lipschitz continuous on Ω if there exists a
nonnegative constant 𝑀 such that

󵄩󵄩󵄩󵄩𝑇 (𝑥) − 𝑇 (𝑦)
󵄩󵄩󵄩󵄩1 ≤ 𝑀

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩1 ∀𝑥, 𝑦 ∈ Ω, (18)

where 𝑀 is called the Lipschitz constant of 𝑇 on Ω. The
constant

𝐿
Ω (𝑇) = sup

𝑥,𝑦∈Ω,𝑦 ̸=𝑥

󵄩󵄩󵄩󵄩𝑇 (𝑦) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩1

(19)

is called the minimal Lipschitz constant (MLC) of 𝑇 on Ω.
Furthermore, the operator 𝑇 is called globally Lipschitz con-
tinuous if Ω = R𝑛.
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(2) A nonlinear operator 𝑇 : Ω → R𝑛 is said to be
partially Lipschitz continuous on Ω if, for any 𝑥 ∈ Ω, there
exists a constant 𝐿

𝑥
> 0 such that

󵄩󵄩󵄩󵄩𝑇 (𝑦) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩1 ≤ 𝐿

𝑥

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩1, ∀𝑦 ∈ Ω. (20)

The constant

𝐿
𝑝

Ω
(𝑇, 𝑥) = sup

𝑥,𝑦∈Ω,𝑦 ̸=𝑥

󵄩󵄩󵄩󵄩𝑇 (𝑦) − 𝑇 (𝑥)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩1

(21)

is called minimal partial Lipschitz constant (MPLC) of 𝑇 on
Ω with respect to 𝑥. Furthermore, the operator 𝑇 is called
partially Lipschitz continuous if Ω = R𝑛.

From the paper [20] we conclude that every Lipschitz
continuous operator on Ω is partially Lipschitz continuous
on Ω and 𝐿

𝑝

Ω
(𝑇, 𝑥) ≤ 𝐿

Ω
(𝑇) for any Lipschitz continuous

operator 𝑇 and 𝑥 ∈ Ω.

Definition 2 (see [34]). Assume that Ω is an open subset of
R𝑛, 𝐹 is a nonlinear operator from Ω into R𝑛, and 𝑥0 ∈ Ω is
any vector. The constant

𝑚
Ω
(𝐹, 𝑥

0
) = sup

𝑥∈Ω,𝑥 ̸=𝑥
0

⟨𝐹 (𝑥) − 𝐹 (𝑥0) , sign (𝑥 − 𝑥0)⟩
󵄩󵄩󵄩󵄩𝑥 − 𝑥0

󵄩󵄩󵄩󵄩1
(22)

is called relative nonlinear measure of 𝐹 at 𝑥0.

Definition 3. 𝑧∗ is said to be an equilibrium point of (15) if
(𝐹 + 𝐺)𝑧∗ = 0 andI

𝑘
(𝑧∗) = 0 for all 𝑘 ∈ N.

Definition 4. Let 𝑧∗ be an equilibrium point of (15) andΩ an
open neighborhood of 𝑧∗. 𝑧∗ is exponentially stable on Ω if
there exist two positive constants 𝜎 and 𝑀 such that

󵄩󵄩󵄩󵄩𝑧 (𝑡) − 𝑧
∗󵄩󵄩󵄩󵄩1 ≤ 𝑀𝑒

−𝜎𝑡 max
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜙 (𝑠) − 𝑧
∗󵄩󵄩󵄩󵄩1 (23)

holds for 𝑡 ≥ 0, where 𝑧(𝑡) is the unique solution of (15)
initiated from the function 𝜙 ∈ C([−𝜏, 0], Ω).

Particularly, if Ω = R𝑛 holds, then 𝑧∗ is the unique
equilibrium point and (15) is said to be globally exponentially
stable.

Lemma 5 (see [35]). If 𝑎 > 𝑐 ≥ 0, for every nonnegative real
number 𝑏, the equation

0 = 𝜆 − 𝑎 + 𝑐𝑒
𝜆𝑏 (24)

has a unique positive solution.

Lemma 6 (see [36]). Let V(𝑡) > 0 for 𝑡 ∈ R and 𝑡
0
∈ R. Sup-

pose that

V󸀠 (𝑡) ≤ −𝑎V (𝑡) + 𝑏 [ sup
−∞<𝑠≤𝑡

V (𝑠)] 𝑓𝑜𝑟 𝑡 ≥ 𝑡
0
. (25)

If 𝑎 > 𝑏 > 0, there exist constants 𝛾 > 0 and 𝑘 > 0 such that

V (𝑡) ≤ 𝑘𝑒
−𝛾(𝑡−𝑡0) sup

−∞<𝑠≤𝑡0

V (𝑠) (26)

holds for 𝑡 ≥ 𝑡
0
.

Theorem7. LetΩ be an open neighborhood of the equilibrium
point 𝑧∗ of (15). Equation (15) has no other equilibrium point
in Ω different from 𝑧∗ if 𝑚

Ω
(𝐹 + 𝐺, 𝑧∗) < 0.

Proof. Assume that 𝑧̃ ∈ Ω is any equilibrium point of (15)
different from 𝑧∗; that is,

𝐹 (𝑧
∗
) + 𝐺 (𝑧

∗
) = 𝐹 (𝑧̃) + 𝐺 (𝑧̃) = 0,

I
𝑘
(𝑧
∗
) = I

𝑘 (𝑧̃) = 0.
(27)

Then, we derive

𝑚
Ω
(𝐹 + 𝐺, 𝑧

∗
)

= sup
𝑥∈Ω,𝑥 ̸=𝑧

∗

( (⟨𝐹 (𝑥) + 𝐺 (𝑥) − (𝐹 (𝑧
∗
) − 𝐺 (𝑧

∗
)) ,

sign (𝑥 − 𝑧
∗
) ⟩) × (

󵄩󵄩󵄩󵄩𝑥 − 𝑧
∗󵄩󵄩󵄩󵄩1)

−1
)

≥
⟨𝐹 (𝑧̃) + 𝐺 (𝑧̃) − (𝐹 (𝑧∗) + 𝐺 (𝑧∗)) , sign (𝑧̃ − 𝑧∗)⟩

‖𝑧̃ − 𝑧∗‖1

= 0,

(28)

which contradicts 𝑚
Ω
(𝐹 + 𝐺, 𝑧

∗
) < 0.

Theorem 8. Let Ω be a neighborhood of the equilibrium 𝑧
∗ of

(15). Assume 𝐹 and𝐺 to be partially Lipschitz continuous onΩ

with respect to 𝑧
∗ and

I
𝑘
(𝑧 (𝑡

𝑘
)) = −𝛾

𝑘
(𝑧 (𝑡

𝑘
) − 𝑧

∗
) , 0 ≤ 𝛾

𝑘
≤ 2, 𝑘 ∈ N. (29)

If there exists some diagonal matrix 𝐴 = diag(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
)

with 𝑎
𝑖
> 0 such that the inequality

𝑚
𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
) + 𝐿

𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
) < 0 (30)

holds, then 𝑧∗ is exponentially stable on Ω. Particularly, the
solution 𝑧(𝑡) of (15) initiated from 𝜙 ∈ C([−𝜏, 0], Ω) decays by

󵄩󵄩󵄩󵄩𝑧 (𝑡) − 𝑧
∗󵄩󵄩󵄩󵄩1 ≤ 𝑒

−𝜎𝑡
⋅ sup
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜙 (𝑠) − 𝑧
∗󵄩󵄩󵄩󵄩1 ∀𝑡 ≥ 0, (31)

where 𝜎 is the unique positive solution of the equation

0 = 𝜎 ⋅ min
1≤𝑖≤𝑛

𝑎
𝑖
+ 𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
) + 𝐿

𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
) ⋅ 𝑒

𝜎
.

(32)

Proof. Let 𝑥(𝑡) = 𝑧(𝑡) − 𝑧∗ for all 𝑡 ≥ 0. From the relations
(14) we derive that

‖𝑥 (𝑡)‖1 − ‖𝑥 (𝑡 − 𝑠)‖1

𝑠
≤

1

𝑠
⟨𝑥 (𝑡) − 𝑥 (𝑡 − 𝑠) , sign (𝑥 (𝑡))⟩

(33)

holds for all 𝑠 > 0. Consequently, the function 𝑡 󳨃→

‖𝑥(𝑡)‖
1
is absolutely continuous in (0, +∞), which implies

that derivatives of ‖𝑥(𝑡)‖
1
exist almost everywhere in (0, +∞).
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Furthermore, from (15) we conclude that derivatives of
‖𝑥(𝑡)‖

1
satisfy

𝑑‖𝑥 (𝑡)‖1

𝑑𝑡
≤ ⟨

𝑑𝑥 (𝑡)

𝑑𝑡
, sign (𝑥 (𝑡))⟩

= ⟨𝑒
𝑡
[𝐹 (𝑧 (𝑡)) + 𝐺 (𝑧

𝑡 (𝑠))] , sign (𝑥 (𝑡))⟩

= ⟨[𝑒
𝑡
(𝐹 (𝑧 (𝑡)) + 𝐺 (𝑧

𝑡 (𝑠)))

− (𝐹 (𝑧
∗
) + 𝐺 (𝑧

∗
)) ] , sign (𝑥 (𝑡))⟩

= 𝑒
𝑡
[⟨𝐹 (𝑧 (𝑡)) − 𝐹 (𝑧

∗
) , sign (𝑥 (𝑡))⟩

+ ⟨𝐺 (𝑧
𝑡 (𝑠)) − 𝐺 (𝑧

∗
) , sign (𝑥 (𝑡))⟩]

≤ 𝑒
𝑡
[ ⟨𝐹 (𝑧 (𝑡)) − 𝐹 (𝑧

∗
) , sign (𝐴

−1
𝑥 (𝑡))⟩

+
󵄩󵄩󵄩󵄩𝐺 (𝑧

𝑡 (𝑠)) − 𝐺 (𝑧
∗
)
󵄩󵄩󵄩󵄩1]

≤ 𝑒
𝑡
[ ⟨𝐹 (𝑧 (𝑡)) − 𝐹 (𝑧

∗
) , sign (𝐴

−1
𝑥 (𝑡))⟩

+𝐿
𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
)
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝑧
𝑡 (𝑠) − 𝐴

−1
𝑧
∗󵄩󵄩󵄩󵄩󵄩1

]

≤𝑒
𝑡
[𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
)
󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝑥 (𝑡)
󵄩󵄩󵄩󵄩󵄩1

+𝐿
𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
)

× sup
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

(𝑧 (𝑡 + 𝑠) − 𝑦 (𝑡 + 𝑠))
󵄩󵄩󵄩󵄩󵄩1

]

≤ 𝑒
𝑡
[𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
) ‖𝑥 (𝑡)‖1 + 𝐿

𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
)

× sup
−𝜏≤𝑠≤𝑡

‖𝑥 (𝑠)‖1] (min
1≤𝑖≤𝑛

𝑎
𝑖
)
−1

≤ 𝑒
𝑡𝑘 [𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
) ‖𝑥 (𝑡)‖1 + 𝐿

𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
)

× sup
−𝜏≤𝑠≤𝑡

‖𝑥 (𝑠)‖1](min
1≤𝑖≤𝑛

𝑎
𝑖
)
−1

, 𝑡∈(𝑡
𝑘−1

,𝑡
𝑘
) .

(34)

The combination of condition (30) and Lemmas 6 and 5
implies that

‖𝑥 (𝑡)‖1 ≤ 𝑒
−𝜎𝑡𝑘

𝑡 sup
−𝜏≤𝑠≤0

‖𝑥 (𝑠)‖1 (35)

holds for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
), where 𝜎

𝑡𝑘
is the unique positive

solution of the equation

0 = 𝑒
−𝑡𝑘 ⋅ 𝜎 ⋅ min

1≤𝑖≤𝑛

𝑎
𝑖
+ 𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
)

+ 𝐿
𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
) ⋅ 𝑒

𝜎
.

(36)

It needs to point out that the positive solution 𝜎
𝑡𝑘
of (36) is

strictly monotonically increasing with respect to 𝑡
𝑘
. In fact,

let 𝜎
𝑡𝑘+1

be the positive solution of the equation

0 = 𝑒
−𝑡𝑘+1 ⋅ 𝜎 ⋅ min

1≤𝑖≤𝑛

𝑎
𝑖
+ 𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
)

+ 𝐿
𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
) ⋅ 𝑒

𝜎
.

(37)

By subtracting (37) from (36), we derive

(𝑒
−𝑡𝑘𝜎

𝑡𝑘
− 𝑒

−𝑡𝑘+1𝜎
𝑡𝑘+1

) min
1≤𝑖≤𝑛

𝑎
𝑖

+ 𝐿
𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
) (𝑒

𝜎𝑡𝑘 − 𝑒
𝜎𝑡𝑘+1 ) = 0.

(38)

Furthermore, we have

𝑒
𝜎𝑡𝑘+1 − 𝑒

𝜎𝑡𝑘 =
min

1≤𝑖≤𝑛
𝑎
𝑖

𝐿
𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧∗)
(𝑒
−𝑡𝑘𝜎

𝑡𝑘
− 𝑒

−𝑡𝑘+1𝜎
𝑡𝑘+1

) . (39)

Since both of min
1≤𝑖≤𝑛

𝑎
𝑖
and 𝐿

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧∗) are positive, we
have

(𝑒
𝜎𝑡𝑘+1 − 𝑒

𝜎𝑡𝑘 ) (𝑒
−𝑡𝑘𝜎

𝑡𝑘
− 𝑒

−𝑡𝑘+1𝜎
𝑡𝑘+1

) > 0. (40)

It is obvious that 𝜎
𝑡𝑘
is not equal to 𝜎

𝑡𝑘+1
, that is, 𝜎

𝑡𝑘+1
< 𝜎

𝑡𝑘

or 𝜎
𝑡𝑘+1

> 𝜎
𝑡𝑘
. If 𝜎

𝑡𝑘+1
< 𝜎

𝑡𝑘
, then 𝑒

𝜎𝑡𝑘+1 < 𝑒
𝜎𝑡𝑘 and 𝑒−𝑡𝑘𝜎

𝑡𝑘
−

𝑒−𝑡𝑘+1𝜎
𝑡𝑘+1

< 0 from inequality (40), that is,

𝜎
𝑡𝑘+1

𝜎
𝑡𝑘

> 𝑒
(𝑡𝑘+1−𝑡𝑘). (41)

Since 𝑡
𝑘+1

> 𝑡
𝑘
, 𝜎

𝑡𝑘+1
/𝜎
𝑡𝑘

> 𝑒(𝑡𝑘+1−𝑡𝑘) > 1 contradict the
assumption 𝜎

𝑡𝑘+1
< 𝜎

𝑡𝑘
. This means that 𝜎

𝑡𝑘+1
> 𝜎

𝑡𝑘
holds

for 𝑡
𝑘+1

> 𝑡
𝑘
; that is, the positive solution 𝜎

𝑡𝑘
of (36) is

strictly monotonically increasing with respect to 𝑡
𝑘
. Hence,

𝜎 = 𝜎
𝑡0

< 𝜎
𝑡1

< 𝜎
𝑡2

< ⋅ ⋅ ⋅ , where 𝜎
𝑡0
is the unique positive

solution of (37) at 𝑡
0
= 0; that is,

0 = 𝜎 ⋅ min
1≤𝑖≤𝑛

𝑎
𝑖
+ 𝑚

𝐴
−1
(Ω)

(𝐹𝐴, 𝑧
∗
) + 𝐿

𝑝

𝐴
−1
(Ω)

(𝐺𝐴, 𝑧
∗
) ⋅ 𝑒

𝜎
.

(42)

Since 𝑒
−𝜎𝑡𝑘

𝑡
< 𝑒−𝜎𝑡0 𝑡 = 𝑒−𝜎𝑡 for all 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 ∈ N,

inequality (35) means that

‖𝑥 (𝑡)‖1 ≤ 𝑒
−𝜎𝑡 sup

−𝜏≤𝑠≤0

‖𝑥 (𝑠)‖1 (43)

holds for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ N, where 𝜎 is the

unique positive solution of (32). Inequality (43) is accordingly
changed into the following form:

󵄩󵄩󵄩󵄩𝑧 (𝑡) − 𝑧
∗󵄩󵄩󵄩󵄩1 ≤ 𝑒

−𝜎𝑡 sup
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜙 (𝑠) − 𝑧
∗󵄩󵄩󵄩󵄩1 (44)

which holds for all 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
), 𝑘 ∈ N. According to

condition (29), we enjoy

𝑥 (𝑡
+

𝑘
) = 𝑧 (𝑡

+

𝑘
) − 𝑧

∗
= 𝑧 (𝑡

𝑘
) + I

𝑘
(𝑧 (𝑡

𝑘
)) − 𝑧

∗

= (1 − 𝛾
𝑘
) 𝑥 (𝑡

𝑘
) , 𝑘 ∈ N.

(45)
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This implies

󵄩󵄩󵄩󵄩𝑥 (𝑡
+

𝑘
)
󵄩󵄩󵄩󵄩1 =

󵄩󵄩󵄩󵄩(1 − 𝛾
𝑘
) 𝑥 (𝑡

𝑘
)
󵄩󵄩󵄩󵄩1 ≤

󵄩󵄩󵄩󵄩𝑥 (𝑡
𝑘
)
󵄩󵄩󵄩󵄩1, 𝑘 ∈ N. (46)

From (35) and (46) we derive

󵄩󵄩󵄩󵄩𝑧 (𝑡
+

𝑘
) − 𝑧

∗󵄩󵄩󵄩󵄩1 =
󵄩󵄩󵄩󵄩𝑥 (𝑡

+

𝑘
)
󵄩󵄩󵄩󵄩1 ≤

󵄩󵄩󵄩󵄩𝑥 (𝑡
𝑘
)
󵄩󵄩󵄩󵄩1 =

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩1

≤ 𝑒
−𝜎𝑡 sup

−𝜏≤𝑠≤0

‖𝑥 (𝑠)‖1

= 𝑒
−𝜎𝑡 sup

−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜙 (𝑠) − 𝑧
∗󵄩󵄩󵄩󵄩1, 𝑘 ∈ N.

(47)

In conclusion, we obtain inequality (31).

Remark 9. Our proof idea mainly comes from Theorem 2
of [20] investigating the exponential stability of the special
case of (15) (i.e., (15) with constant coefficients). However,
they are essentially different becauseTheorem 8 in this paper
has to deal with time-varying coefficients. Consequently,
Theorem 8 in this paper is a generalization of Theorem 2 in
[20]. Moreover, it needs to point out that the exponential
stability criterion (30) and exponential decay index 𝜎 in (31)
are independent of time 𝑡 although the abstract equation
(15) enjoys time-varying coefficients, which means that our
method is essential to qualitatively and quantitatively char-
acterize exponential stability of (15). Moreover, Theorem 8
is not only generalization and improvement of Theorem 1
in [35] because there indeed exists a nonlinear Lipschitz
continuous map 𝑇 on Ω such that 𝐿

𝑝

Ω
(𝑇, 𝑥) is strictly less

than 𝐿
Ω
(𝑇) for any 𝑥 ∈ Ω and (15) enjoys time-varying

coefficients.
It is obvious that the CNNs model (12) can be changed

into the form of (15). By Theorem 8, we can obtain the
exponential stable criterion of equilibrium point of the CNNs
model (12). Since themodel (1) is equivalent to themodel (12)
in the sense of solution, models (12) and (1) enjoy the same
equilibrium point V∗ = 𝑢∗, where V∗ = (V∗

1
, V∗
2
, . . . , V∗

𝑛
)
𝑇 and

𝑢∗ = (𝑢∗
1
, 𝑢∗
2
, . . . , 𝑢∗

𝑛
)
𝑇 are the equilibrium point of models

(12) and (1), respectively. What qualitative property of the
model (1) can be derived from the global exponential stability
of themodel (12)?The next theorem can answer this problem.

Theorem 10. Suppose that the equilibrium point 𝑢
∗ of the

model (12) is globally exponentially stable, that is, that exist two
positive constants 𝑀 and 𝜎 such that

󵄩󵄩󵄩󵄩V (𝑡) − 𝑢
∗󵄩󵄩󵄩󵄩1 ≤ 𝑀𝑒

𝜎𝑡 max
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜓 (𝑠) − 𝑢
∗󵄩󵄩󵄩󵄩1 (48)

holds for 𝑡 ≥ 0, where V(𝑡) is the unique solution of the model
(12) initiated from 𝜓 ∈ C([−𝜏, 0],R𝑛). Then 𝑢∗ of the model
(1) is globally asymptotic stable. Particularly, the inequality

󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢
∗󵄩󵄩󵄩󵄩1 ≤ 𝑀𝑡

−𝜎max
𝑟≤𝑠≤1

󵄩󵄩󵄩󵄩𝜙 (𝑠) − 𝑢
∗󵄩󵄩󵄩󵄩1 (49)

holds for 𝑡 ≥ 1, where 𝑢(𝑡) is the unique solution of the model
(1) initiated from 𝜙 ∈ C([𝑟, 1],R𝑛), 𝑟 = min

1≤𝑗≤𝑛
{𝑝
𝑗
, 𝑞
𝑗
}.

Proof. By the transformation (2) and the inequality (48), we
derive

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑒

𝑡
) − 𝑢

∗󵄩󵄩󵄩󵄩󵄩1
=

󵄩󵄩󵄩󵄩V (𝑡) − 𝑢
∗󵄩󵄩󵄩󵄩1

≤ 𝑀𝑒
−𝜎𝑡 max

−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜓 (𝑠) − 𝑢
∗󵄩󵄩󵄩󵄩1

= 𝑀𝑒
−𝜎𝑡 max

−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜙 (𝑒
𝑠
) − 𝑢

∗󵄩󵄩󵄩󵄩1,

𝑒
𝑡
≥ 1.

(50)

Let 𝑒𝑡 = ℎ, then ℎ ≥ 1 and 𝑡 = ln ℎ ≥ 0. Let 𝑒𝑠 = 𝜉, then
𝜉 ∈ [𝑟, 1]. The inequality (50) implies

󵄩󵄩󵄩󵄩𝑢 (ℎ) − 𝑢
∗󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒

−𝜎 ln ℎmax
𝑟≤𝜉≤1

󵄩󵄩󵄩󵄩𝜙 (𝜉) − 𝑢
∗󵄩󵄩󵄩󵄩1

= 𝑀ℎ
−𝜎max
𝑟≤𝜉≤1

󵄩󵄩󵄩󵄩𝜙 (𝜉) − 𝑢
∗󵄩󵄩󵄩󵄩1, ℎ ≥ 1.

(51)

Taking 𝑡 = ℎ, we furthermore derive
󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢

∗󵄩󵄩󵄩󵄩 ≤ 𝑀𝑡
−𝜎max
𝑟≤𝜉≤1

󵄩󵄩󵄩󵄩𝜙 (𝜉) − 𝑢
∗󵄩󵄩󵄩󵄩1, 𝑡 ≥ 1. (52)

This implies that the equilibrium point 𝑢∗ of the model (1) is
globally asymptotic stable.

Remark 11. It need point out that the paper [7] has obtained
not exponential stability, but asymptotic stable criteria of
CNNs with multi-proportional delays because it mistakes
asymptotic stability as exponential stability, which can be
easily seen from the Remark 3.2 in [7] andTheorem 10 in this
paper.

4. Uniqueness and Global Asymptotic Stability
of Equilibrium Point of Model (1)

In this subsection, we firstly prove thatmodel (1) has a unique
equilibrium point inR𝑛. It is enough to prove that model (12)
has a unique equilibriumpoint inR𝑛 becausemodels (12) and
(1) enjoy the same equilibrium point. For this, we define that
𝐹 = (𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑛
)
𝑇 and 𝐺 = (𝐺

1
, 𝐺

2
, . . . , 𝐺

𝑛
)
𝑇

: R𝑛 → R𝑛

are defined, respectively, by

𝐹
𝑖 (V) = −𝑑

𝑖
V
𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(V
𝑗
) ,

𝐺
𝑖 (V) =

𝑛

∑
𝑗=1

[𝑏
𝑖𝑗
𝑔
𝑗
(V
𝑗
) + 𝑐

𝑖𝑗
ℎ
𝑗
(V
𝑗
)] + 𝐼

𝑖
.

(53)

Theorem 12. Suppose that the assumption (𝐻) holds and 𝑢∗ is
an equilibrium point of the model (1). For each set of external
inputs, 𝐼

𝑖
, model (1) has no other equilibrium point inR𝑛 differ-

ent from 𝑢∗ if there exist positive real numbers 𝑎
𝑖
(𝑖 = 1, 2,

. . . , 𝑛) such that

max
1≤𝑗≤𝑛

1

𝑑
𝑗

𝑛

∑
𝑖=1

[𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
)
𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝐿

𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)
𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

+𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)
𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
] < 1

(54)



Abstract and Applied Analysis 7

holds, where 𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢∗
𝑗
), 𝐿𝑝R𝑗(𝑔𝑗, 𝑢

∗

𝑗
), and 𝐿

𝑝

R𝑗
(ℎ
𝑗
, 𝑢∗
𝑗
) denote

MPLC of 𝑓
𝑗
, 𝑔

𝑗
, and ℎ

𝑗
on R

𝑗
with respect to 𝑢∗

𝑗
, respectively.

Proof. Obviously, it is enough to prove that model (12) has
no other equilibrium point in R𝑛 different from 𝑢∗ if the
inequality (54) holds. Define 𝐴 = diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) and we

need only prove 𝑚
𝐴
−1
(R𝑛)(𝐴

−1(𝐹 + 𝐺)𝐴, 𝑢∗) < 0 according to
Theorem 7. In detail, for V ∈ 𝐴−1(R𝑛), we enjoy

⟨𝐴
−1

(𝐹 + 𝐺) (𝐴V) − 𝐴
−1

(𝐹 + 𝐺) (𝐴𝑢
∗
) , sign (V − 𝑢

∗
)⟩

=

𝑛

∑
𝑖=1

sign (V
𝑖
− 𝑢

∗

𝑖
)

×
{

{

{

− 𝑎
−1

𝑖
[𝑑
𝑖
(𝑎
𝑖
V
𝑖
) − 𝑑

𝑖
(𝑎
𝑖
𝑢
∗

𝑖
)]

+

𝑛

∑
𝑗=1

[𝑎
−1

𝑖
𝑎
𝑖𝑗
(𝑓
𝑗
(𝑎
𝑗
V
𝑗
) − 𝑓

𝑗
(𝑎
𝑗
𝑢
∗

𝑗
))

+ 𝑎
−1

𝑖
𝑏
𝑖𝑗
(𝑔
𝑗
(𝑎
𝑗
V
𝑗
) − 𝑔

𝑗
(𝑎
𝑗
𝑢
∗

𝑗
))

+𝑎
−1

𝑖
𝑐
𝑖𝑗
(ℎ
𝑗
(𝑎
𝑗
V
𝑗
) − ℎ

𝑗
(𝑎
𝑗
𝑢
∗

𝑗
))]

}

}

}

≤

𝑛

∑
𝑖=1

𝑎
−1

𝑖

{

{

{

−
󵄨󵄨󵄨󵄨𝑑𝑖 (𝑎𝑖V𝑖) − 𝑑

𝑖
(𝑎
𝑖
𝑢
∗

𝑖
)
󵄨󵄨󵄨󵄨

+

𝑛

∑
𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑎
𝑗
V
𝑗
) − 𝑓

𝑗
(𝑎
𝑗
𝑢
∗

𝑗
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑎
𝑗
V
𝑗
) − 𝑔

𝑗
(𝑎
𝑗
𝑢
∗

𝑗
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗
(𝑎
𝑗
V
𝑗
) − ℎ

𝑗
(𝑎
𝑗
𝑢
∗

𝑗
)
󵄨󵄨󵄨󵄨󵄨
]
}

}

}

≤ −

𝑛

∑
𝑖=1

𝑑
𝑖

󵄨󵄨󵄨󵄨V𝑖 − 𝑢
∗

𝑖

󵄨󵄨󵄨󵄨

+

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
) +

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)]

󵄨󵄨󵄨󵄨󵄨
V
𝑗
− 𝑢

∗

𝑗

󵄨󵄨󵄨󵄨󵄨

= −

𝑛

∑
𝑗=1

{𝑑
𝑗
−

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
) +

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)]}

󵄨󵄨󵄨󵄨󵄨
V
𝑗
− 𝑢

∗

𝑗

󵄨󵄨󵄨󵄨󵄨
.

(55)

The combination of (55) and (54) implies that
𝑚
𝐴
−1
(R𝑛)(𝐴

−1(𝐹 + 𝐺)𝐴, 𝑢∗) < 0, which implies that model

(12) enjoys no other equilibrium point in R𝑛 different from
𝑢∗. That is to say, 𝑢∗ is the unique equilibrium point inR𝑛 of
model (1).

Secondly, we prove that condition (54) also guarantees
global asymptotic stability of equilibrium point of model (1)
by Theorems 8 and 10.

Theorem 13. Assume that assumption (𝐻) holds, 𝑢∗ is the
equilibrium point of the model (1), and I

𝑖,𝑘
(𝑢
𝑖
(𝑡
𝑘
)) =

−𝛾
𝑖,𝑘
(𝑢
𝑖
(𝑡
𝑘
) − 𝑢∗

𝑖
), 0 ≤ 𝛾

𝑖,𝑘
≤ 2, for 𝑘 ∈ N and 𝑖 = 1, 2, . . . , 𝑛. If

there exist a set of positive real numbers 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑛) such

that condition (54) holds, then for each set of external input,
𝐼
𝑖
, model (1) is globally asymptotic stable. Particularly, if 𝑢(𝑡) is

the solution of the model (1) initiated from 𝜙 ∈ C([𝑟, 1],R𝑛),
then the inequality

󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢
∗󵄩󵄩󵄩󵄩1 ≤ 𝑡

−𝜎
⋅
max

1≤𝑖≤𝑛
𝑎
𝑖

min
1≤𝑖≤𝑛

𝑎
𝑖

⋅ sup
𝑟≤𝑠≤1

󵄩󵄩󵄩󵄩𝜙 (𝑠) − 𝑢
∗󵄩󵄩󵄩󵄩1, (56)

holds for 𝑡 ≥ 1, where 𝜎 is the unique positive solution of the
equation

𝜎 ⋅ min
1≤𝑗≤𝑛

𝑐
−1

𝑗
− 1 + 𝑘𝑒

𝜎
= 0 (57)

with

𝑐
𝑗
= 𝑑

𝑗
− 𝐿

𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
)

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

𝑘 = max
1≤𝑗≤𝑛

{𝑐
−1

𝑗

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
) +

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)]} .

(58)

Proof. Obviously, 𝑢∗ is also the equilibrium point of model
(12) because model (1) is equivalent to the model (12) in
the sense of solution. Firstly, we prove that model (12)
is globally exponentially stable by Theorem 8. For this, let
𝐴 = diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
) and 𝐶 = diag(𝑐−1

1
, 𝑐−1
2

, . . . , 𝑐−1
𝑛

). It
immediately follows from the condition (54) that

𝑐
𝑗
= 𝑑

𝑗
− 𝐿

𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
)

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
> 0, for 𝑗 = 1, 2, . . . , 𝑛.

(59)

For all V ∈ 𝐶−1𝐴−1(R𝑛),

⟨𝐴
−1

𝐹 (𝐴𝐶V) − 𝐴
−1

𝐹 (𝐴𝐶𝑢
∗
) , sign (V − 𝑢

∗
)⟩

≤

𝑛

∑
𝑖=1

𝑎
−1

𝑖

{

{

{

−
󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖
(𝑎
𝑖
𝑐
−1

𝑖
V
𝑖
) − 𝑑

𝑖
(𝑎
𝑖
𝑐
−1

𝑖
𝑢
∗

𝑖
)
󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑎
𝑗
𝑐
−1

𝑗
V
𝑗
) − 𝑓

𝑗
(𝑎
𝑗
𝑐
−1

𝑗
𝑢
∗

𝑗
)
󵄨󵄨󵄨󵄨󵄨

}

}

}
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≤

𝑛

∑
𝑖=1

𝑎
−1

𝑖

{

{

{

− 𝑎
𝑖
𝑐
−1

𝑖
𝑑
𝑖

󵄨󵄨󵄨󵄨V𝑖 − 𝑢
∗

𝑖

󵄨󵄨󵄨󵄨

+

𝑛

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
) 𝑎

𝑗
𝑐
−1

𝑗

󵄨󵄨󵄨󵄨󵄨
V
𝑗
− 𝑢

∗

𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

= −

𝑛

∑
𝑗=1

𝑐
−1

𝑗
(𝑑

𝑗
− 𝐿

𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
)

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
)

󵄨󵄨󵄨󵄨󵄨
V
𝑗
− 𝑢

∗

𝑗

󵄨󵄨󵄨󵄨󵄨

= −
󵄩󵄩󵄩󵄩V − 𝑢

∗󵄩󵄩󵄩󵄩1,

(60)

which implies that𝑚
𝐶
−1
𝐴
−1
(R𝑛)(𝐴

−1𝐹𝐴𝐶, 𝑢∗) ≤ −1. For all V ∈

𝐶−1𝐴−1(R𝑛), we have

󵄩󵄩󵄩󵄩󵄩
𝐴
−1

𝐺𝐴𝐶V − 𝐴
−1

𝐺𝐴𝐶𝑢
∗󵄩󵄩󵄩󵄩󵄩1

=

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
−1

𝑖

𝑛

∑
𝑗=1

{𝑏
𝑖𝑗
[𝑔
𝑗
(𝑎
𝑗
𝑐
−1

𝑗
V
𝑗
) − 𝑔

𝑗
(𝑎
𝑗
𝑐
−1

𝑗
𝑢
∗

𝑗
)]

+𝑐
𝑖𝑗
[ℎ
𝑗
(𝑎
𝑗
𝑐
−1

𝑗
V
𝑗
) − ℎ

𝑗
(𝑎
𝑗
𝑐
−1

𝑗
𝑢
∗

𝑗
)]}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑
𝑗=1

{𝑐
−1

𝑗

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)]}

󵄨󵄨󵄨󵄨󵄨
V
𝑗
− 𝑢

∗

𝑗

󵄨󵄨󵄨󵄨󵄨
;

(61)

thus,

𝐿
𝑝

𝐶
−1
𝐴
−1
(R𝑛)

(𝐴
−1

𝐺𝐴𝐶, 𝑢
∗
)

≤ max
1≤𝑗≤𝑛

{𝑐
−1

𝑗

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)+

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)]}

= 𝑘.

(62)

Consequently, from (54) we conclude that

𝑚
𝐶
−1
𝐴
−1
(R𝑛) (𝐴

−1
𝐹𝐴𝐶, 𝑢

∗
) + 𝐿

𝑝

𝐶
−1
𝐴
−1
(R𝑛)

(𝐴
−1

𝐺𝐴𝐶, 𝑢
∗
)

≤ −1 + max
1≤𝑗≤𝑛

{𝑐
−1

𝑗

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)

+
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)]}

= max
1≤𝑗≤𝑛

{

{

{

(−𝑑
𝑗
+

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
)

+

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑔
𝑗
, 𝑢
∗

𝑗
)+

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(ℎ
𝑗
, 𝑢
∗

𝑗
)])

×(𝑑
𝑗
−

𝑛

∑
𝑖=1

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐿
𝑝

R𝑗
(𝑓
𝑗
, 𝑢
∗

𝑗
))

−1

}

}

}

< 0.

(63)

ByTheorem 8, the solution 𝑦(𝑡) of the functional differential
equation

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑒

𝑡
[𝐴

−1
𝐹𝐴𝐶 (𝑦 (𝑡)) + 𝐴

−1
𝐺𝐴𝐶 (𝑦

𝑡 (𝑠))] ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝑦 (𝑡

+

𝑘
) − 𝑦 (𝑡

−

𝑘
) = I

𝑘
(𝑦 (𝑡

𝑘
)) , 𝑘 ∈ N,

𝑦
0
= 𝜙 ∈ C ([−𝜏, 0] , 𝐶

−1
𝐴
−1

(R
𝑛
)) ,

(64)

satisfies

󵄩󵄩󵄩󵄩󵄩
𝑦 (𝑡) − 𝐶

−1
𝐴
−1

𝑢
∗󵄩󵄩󵄩󵄩󵄩

≤ 𝑒
−𝜎𝑡

⋅ sup
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑠) − 𝐶

−1
𝐴
−1

𝑢
∗󵄩󵄩󵄩󵄩󵄩1

∀𝑡 ≥ 0,

(65)

where 𝜎 is the unique positive solution of (57). It is obvious
that 𝑦(𝑡) = 𝐶−1𝐴−1V(𝑡) is the solution of (64) if V(𝑡) is a
solution of model (12). Consequently, the equilibrium point
𝑢
∗ of model (12) is globally exponentially stable; that is,

󵄩󵄩󵄩󵄩V (𝑡) − 𝑢
∗󵄩󵄩󵄩󵄩1 ≤ 𝑒

𝜎𝑡
⋅
max

1≤𝑖≤𝑛
𝑎
𝑖

min
1≤𝑖≤𝑛

𝑎
𝑖

⋅ max
−𝜏≤𝑠≤0

󵄩󵄩󵄩󵄩𝜓 (𝑠) − 𝑢
∗󵄩󵄩󵄩󵄩1 (66)

holds for 𝑡 ≥ 0, where 𝜎 is unique positive solution of (57),
𝜏 = max

1≤𝑗≤𝑛
{𝜏
𝑗
, 𝜍
𝑗
}, 𝜏

𝑗
= − ln𝑝

𝑗
> 0, 𝜍

𝑗
= − ln 𝑞

𝑗
> 0,

and 𝜓
𝑖

∈ 𝐶([−𝜏, 0],R). By Theorem 10, we derive that the
solution 𝑢(𝑡) of model (1) initiated from 𝜙 ∈ C([𝑟, 1],R𝑛)

satisfies inequality (56) for 𝑡 ≥ 1. That is to say, the solution
of model (1) is globally asymptotically stable.

Remark 14. Theorems 12 and 13 provide a sufficient condi-
tion (54) to the uniqueness and global asymptotic stabil-
ity of the equilibrium point of impulsive CNNs (1) with
multiproportional delays and partially Lipschitz continuous
activation functions. On the one hand, the proportional
delay is time varying, unbounded, and monotonic and the
model (1) does not require the proportional delays to meet
any other condition. Hence, compared with the results in
papers [11–23] with the constant, bounded time varying, or
unbounded distributed delays, our results are new.Moreover,
the stability of CNNs with general unbounded time varying
delays in [37, 38] and proportional delays in [7–10] has
been investigated. Compared with these results, our results
are their generalizations because model (1) has impulsive
perturbations. On the other hand, model (1) only requires
activation functions to be partially Lipschitz continuous. In
fact, partial Lipschitz continuity is less conservative; that is, it
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does not meet conventional assumptions, such as, bounded-
ness, global Lipschitz continuity, or monotonicity. Compared
with these excellent results on neural networks with globally
Lipschitz continuous [25–30], bounded and monotonic [31],
or bounded [24, 32] activation functions, our results are new.
Furthermore, our results are also generalizations of the papers
[24, 29, 35] and even improvement of the paper [35] with
globally Lipschitz continuous activation functions and there
indeed exists a nonlinear globally Lipschitz continuous map
𝑇 on Ω such that 𝐿𝑝

Ω
(𝑇, 𝑥) is strictly less than 𝐿

Ω
(𝑇) for any

𝑥 ∈ Ω.

5. Illustrative Example

In this section, we present an illustrative example to verify
effectiveness of our method.

Example 1. Consider impulsive CNNs with proportional
delays and partially Lipschitz continuous activation functions

𝑢̇ (𝑡) = −𝐷𝑢 (𝑡) + 𝐴𝑓 (𝑢 (𝑡)) + 𝐵𝑔 (𝑢 (𝑝𝑡))

+ 𝐶ℎ (𝑢 (𝑞𝑡)) + 𝐼, 𝑡 ≥ 1, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑢 (𝑡
𝑘
) = I

𝑘
(𝑢 (𝑡

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N,

𝑢 (𝑠) = 𝜙 (𝑠) , 𝑟 ≤ 𝑠 ≤ 1,

(67)

where

𝐷 = (

5 0 0

0 8 0

0 0 10

) , 𝐴 = (

−0.8 0.2 0.5

−0.7 −1.3 0.6

1.5 −0.4 2.1

) ,

𝐵 = (

−0.3 0.5 −0.9

1.4 −0.8 1.2

0.2 −0.1 −0.5

) ,

𝐶 = (

−1 0.6 1.3

0.4 −1.6 −0.7

−1.7 −0.3 0.6

) ,

𝐼 = (

0

0

0

) , I
𝑘
= (

−𝛾
1𝑘

−𝛾
2𝑘

−𝛾
3𝑘

) ,

𝑝 = (

0.7

0.5

0.3

) , 𝑞 = (

0.2

0.9

0.5

) ,

(68)

𝑓
𝑗
(𝑥) = 𝑔

𝑗
(𝑥) = ℎ

𝑗
(𝑥) = 𝑓(𝑥) = 0.5𝑥(sin2𝑥 + cos𝑥) for

𝑥 ∈ R and 𝑗 = 1, 2, 3, Δ𝑢
1
(𝑡
𝑘
) = −𝛾

1𝑘
𝑢
1
(𝑡
𝑘
), Δ𝑢

2
(𝑡
𝑘
) =

−𝛾
2𝑘
𝑢
2
(𝑡
𝑘
), and Δ𝑢

3
(𝑡
𝑘
) = −𝛾

3𝑘
𝑢
3
(𝑡
𝑘
), 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ , is a

strictly increasing sequence such that lim
𝑘→+∞

𝑡
𝑘
= +∞ and

𝛾
1𝑘

= 1 + 0.9sin2(2𝑘2 + 𝑘), 𝛾
2𝑘

= 1.8 + 0.2 sin(1 + 𝑘2), and
𝛾
3𝑘

= 1.4 + 0.5cos2(2 + 3𝑘2), 𝑟 = min
1≤𝑗≤3

{𝑝
𝑗
, 𝑞
𝑗
} = 0.2.

𝜙
1
(𝑠) = 5+𝑠2, 𝜙

2
(𝑠) = −2+𝑠3 and 𝜙

3
(𝑠) = −4+𝑠 for 𝑟 ≤ 𝑠 ≤ 1.

From the definition of 𝑓(𝑥) we can conclude

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝑦 (sin2𝑦 + cos𝑦) − 𝑥 (sin2𝑥 + cos𝑥)󵄨󵄨󵄨󵄨󵄨

≤ 0.5 (2 + 3 |𝑥|)
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨 ,

(69)

holds for 𝑥, 𝑦 ∈ R, which means that 𝑓 is partially Lipschitz
continuous onR. It is easily verified that 𝑢∗ = (0, 0, 0)

𝑇 is the
equilibrium point of the model (67) and 𝐿

𝑝

R(𝑓, 0) = 0.625;
that is, 𝐿𝑝R𝑗(𝑓𝑗, 0) = 𝐿

𝑝

R𝑗
(𝑔
𝑗
, 0) = 𝐿

𝑝

R𝑗
(ℎ
𝑗
, 0) = 0.625 for 𝑗 =

1, 2, 3. Consequently, the criteria of the papers [24, 29] are not
applied to this the model (67) because they require activation
functions to be globally Lipschitz continuous. Moreover,
none of the stability criteria in [11–23] is applied tomodel (67)
since the delay factors (1 − 𝑝

𝑗
)𝑡 and (1 − 𝑞

𝑗
)𝑡 are unbounded

andmonotonic and not required tomeet any other additional
conditions. Although the papers [7–10] have investigated the
stability of CNNswith proportional delays, thesemethods are
not able to apply to model (67) because model (67) enjoys the
impulsive perturbations.

However, taking 𝑎
1
= 3, 𝑎

2
= 6 and 𝑎

3
= 5, we obtain

max
1≤𝑗≤3

1

𝑑
𝑗

3

∑
𝑖=1

{𝐿
𝑝

R𝑗
(𝑓
𝑗
, 0)

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝐿

𝑝

R𝑗
(𝑔
𝑗
, 0)

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

+𝐿
𝑝

R𝑗
(ℎ
𝑗
, 0)

𝑎
𝑗

𝑎
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

= max {0.6738, 0.5672, 0.6115} = 0.6738 < 1,

(70)

that is, the condition (54) holds for 𝑎
1
= 3, 𝑎

2
= 6, and 𝑎

3
= 5.

Moreover, 0 ≤ 𝛾
𝑖𝑘

≤ 2 for 𝑖 = 1, 2, 3. According to Theorems
10 and 12, we conclude that the equilibrium point 𝑢∗ =

(0, 0, 0)
𝑇 of the model (67) is globally asymptotically stable

and the solution satisfies the following inequality (Figure 1):

‖𝑢 (𝑡)‖1 =
󵄨󵄨󵄨󵄨𝑢1 (𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢2 (𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢3 (𝑡)

󵄨󵄨󵄨󵄨

≤ 2𝑡
−𝜎 sup
0.2≤𝑠≤1

󵄩󵄩󵄩󵄩𝜙 (𝑠)
󵄩󵄩󵄩󵄩1, 𝑡 ≥ 1,

(71)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡), 𝑢

3
(𝑡))

𝑇 is the solution of (67)
initiated from 𝜙 ∈ C([0.2, 1],R3) and 𝜎 is the unique positive
solution of the equation 0.1273𝜎 − 1 + 0.5613𝑒𝜎 = 0.

Remark 2. It needs to be pointed out that the impulsive
instants are only selected as 2, 4, 6, . . . in the simulation of
this example to simplify the simulation, which is obviously
not enough to illustrate the impulsive effect. In order to
accurately characterize wider of impulses, the papers [39, 40]
proposed the concepts of average dwell time and average
impulsive interval. Moreover, the papers [41, 42] presented
single impulsive controller and pinning impulsive stabiliza-
tion criterion, respectively. Consequently, their methods are
recommended to simulations with more general impulses.
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Figure 1:The simulation for the solution to the neural networks (67)
at the impulsive moments 2, 4, 6, . . ..

6. Conclusions and Further Work

By means of relative nonlinear measure and transformation,
this paper has discussed global asymptotic stability of impul-
sive cellular neural networks with proportional delays and
partially Lipschitz activation functions. We have obtained
the novel criterion of uniqueness and global asymptotic
stability of the equilibrium point of this CNNs model.
Our method does not require conventional assumptions on
global Lipschitz continuity, boundedness, and monotonicity
of activation functions and proportional delays to meet other
requirements, which demonstrates that our criteria derived
are less restrictive than some existing ones and that they
are generalizations and improvements of some existing ones.
Finally, the example with three cells has illustrated that our
method is effective and that our results are correction.

Our method only requires the activation functions of
the cellular networks to be partially Lipschitz continuous.
The relative weak assumption makes our results applicable to
more general engineering problems. In the future, we attempt
to design a cellular neural networks model to solve optimiza-
tion problems with some constraints, where unbounded (or
nonmonotonic, nonglobally Lipspchitz continuous) activa-
tions are required such that these constraints are satisfied.
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