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An exact series solution for nonhomogeneous parabolic coupled systems of the type 𝑢
𝑡
−𝐴𝑢
𝑥𝑥
= 𝐺 (𝑥, 𝑡) , 𝐴

1
𝑢 (0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) =

0, 𝐴
2
𝑢 (𝑙, 𝑡) + 𝐵

2
𝑢
𝑥
(𝑙, 𝑡) = 0, 0 < 𝑥 < 1, 𝑡 > 0, 𝑢 (𝑥, 0) = 𝑓 (𝑥), where 𝐴

1
, 𝐴
2
, 𝐵
1
, and 𝐵

2
are arbitrary matrices for which the block

matrix ( 𝐴
1
𝐵
1

𝐴
2
𝐵
2

) is nonsingular, and A is a positive stable matrix, is constructed.

1. Introduction

Coupled partial differential systems with coupled boundary-
value conditions are frequent in different areas of science and
technology, as in scattering problems in quantum mechanics
[1–3], in chemical physics [4–6], coupled diffusion problems
[7–9], thermo-elastoplastic modelling [10], and so forth.
The solution of these problems has motivated the study of
vector and matrix Sturm-Liouville problems; see [11–14], for
example.

Recently, see [15, 16], an exact series solution for the
homogeneous initial-value problem

𝑢
𝑡
(𝑥, 𝑡) − 𝐴𝑢

𝑥𝑥
(𝑥, 𝑡) = 0, 0 < 𝑥 < 1, 𝑡 > 0

𝐴
1
𝑢 (0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) = 0, 𝑡 > 0

𝐴
2
𝑢 (1, 𝑡) + 𝐵

2
𝑢
𝑥
(1, 𝑡) = 0, 𝑡 > 0

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1,

(1)

where 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)
𝑇 and 𝑓(𝑥) =

(𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . , 𝑓

𝑚
(𝑥))
𝑇 are 𝑚-dimensional vectors,

was constructed under the following hypotheses and
notations.

(1) Thematrix coefficient𝐴 is a matrix which satisfies the
following condition:

Re (𝑧) > 0, ∀𝑧 ∈ 𝜎 (𝐴) , (2)

where 𝜎(𝐶) denotes the set of all the eigenvalues of a
matrix 𝐶 in C𝑚×𝑚. Thus, 𝐴 is a positive stable matrix
(where Re(𝑧) denotes the real part of 𝑧 ∈ C).

(2) Matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2, are𝑚 ×𝑚 complex matrices,

and we assume that the block matrix

(

𝐴
1
𝐵
1

𝐴
2
𝐵
2

) is regular (3)

and also that the matrix pencil

𝐴
1
+ 𝜌
0
𝐵
1
is regular (4)

that is, condition (4) involves the existence of some
𝜌
0
∈ C, matrix 𝐴

1
+ 𝜌
0
𝐵
1
being invertible; see [17].

Using condition (4), we can introduce the following matrices
𝐴
1
and 𝐵

1
defined by

𝐴
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐴
1
, 𝐵

1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐵
1
, (5)
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which satisfy the condition 𝐴
1
+ 𝜌
0
𝐵
1
= 𝐼, where matrix 𝐼

denotes, as usual, the identity matrix. Under hypothesis (3),
it is easy to show that matrix 𝐵

2
− (𝐴
2
+ 𝜌
0
𝐵
2
)𝐵
1
is regular

(see [18] for details) and we can introduce matrices 𝐴
2
and

𝐵
2
defined by

𝐴
2
= [𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
]

−1

𝐴
2
,

𝐵
2
= [𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
]

−1

𝐵
2
,

(6)

that satisfy the conditions 𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
)𝐵
1
= 𝐼, 𝐵

2
𝐴
1
−

𝐴
2
𝐵
1
= 𝐼. Under the above assumptions, in [15], we have

consider the following essential hypothesis:

exist 𝑏
1
∈ 𝜎 (𝐵

1
) − {0} , 𝑏

2
∈ 𝜎 (𝐵

2
) , V ∈ C

𝑚
− {0} ,

such that (𝐵
1
− 𝑏
1
𝐼) V = (𝐵

2
− 𝑏
2
𝐼) V = 0,

(7)

if the vector valued function 𝑓(𝑥) satisfies hypotheses

𝑓 ∈ C
2
([0, 1])

(1 − 𝜌
0
𝑏
1
) 𝑓 (0) + 𝑏

1
𝑓
󸀠
(0) = 0

−(

1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2

𝑏
1

)𝑓 (1) + 𝑏
2
𝑓
󸀠
(1) = 0,

(8)

under the additional hypothesis

𝑓 (𝑥) ∈ Ker (𝐵
1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼) , 0 ≤ 𝑥 ≤ 1,

Ker (𝐵
1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼)

is an invariant subspace with respect to matrix 𝐴,

(9)

where a subspace 𝐸 of C𝑚 is invariant by the matrix 𝐴 ∈

C𝑚×𝑚, if 𝐴(𝐸) ⊂ 𝐸, in order to construct an exact series
solution 𝑢(𝑥, 𝑡) of homogeneous problem (1).

Moreover, in [16], under the above assumptions and
replacing the condition (7) by the following hypothesis

0 ∈ 𝜎 (𝐵
1
) , 𝑎

2
∈ 𝜎 (𝐴

2
) , and we have 𝑤 ∈ C

𝑚
− {0} ,

so that 𝐵
1
𝑤 = (𝐴

2
− 𝑎
2
𝐼)𝑤 = 0,

(10)

if the vector valued function 𝑓(𝑥) satisfies the new
hypotheses

𝑓 ∈ C
2
([0, 1])

𝑓 (0) = 0

𝑎
2
𝑓 (1) + 𝑓

󸀠
(1) = 0,

(11)

under the additional hypothesis

𝑓 (𝑥) ∈ Ker (𝐵
1
) ∩ Ker (𝐴

2
− 𝑎
2
𝐼) , 0 ≤ 𝑥 ≤ 1,

Ker (𝐵
1
) ∩ Ker (𝐴

2
− 𝑎
2
𝐼)

is an invariant subspace respect to matrix 𝐴,

(12)

then an exact series solution 𝑢(𝑥, 𝑡) of homogeneous problem
(1) is constructed, see [16].

This paper deals with the construction of the exact series
solution of the nonhomogeneous problem

𝑢
𝑡
(𝑥, 𝑡) − 𝐴𝑢

𝑥𝑥
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0 (13)

𝐴
1
𝑢 (0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) = 0, 𝑡 > 0 (14)

𝐴
2
𝑢 (1, 𝑡) + 𝐵

2
𝑢
𝑥
(1, 𝑡) = 0, 𝑡 > 0 (15)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1. (16)

We provide conditions for the vector valued function
𝐺(𝑥, 𝑡) in order to ensure the existence and convergence of
a series solution of the problem (13)–(16).

Throughout this paper, we will assume the results and
nomenclature given in [15, 16]. If 𝐵 is a matrix in C𝑚×𝑚, its
2-norm denoted by ‖𝐵‖ is defined by [19, page 56]

‖𝐵‖ = sup
𝑧 ̸=0

‖𝐵𝑧‖
2

‖𝑧‖
2

, (17)

where, for a vector 𝑦 in C𝑚, ‖𝑧‖
2
is the usual euclidean norm

of 𝑦. Let us introduce the notation 𝛼(𝐶) = max{Re(𝑧); 𝑧 ∈

𝜎(𝐶)}. By [19, page 556], it follows that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑡𝐵󵄩󵄩
󵄩
󵄩
󵄩
≤ 𝑒
𝛼(𝐵)𝑡

𝑚

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
√𝑚𝐵

󵄩
󵄩
󵄩
󵄩

𝑘

𝑡
𝑘

𝑘!

. (18)

If 𝑃
𝑚
(𝑥) is a polynomial of degree 𝑚, then by fórmula

2.323 of [20, page 92], one gets

∫𝑃
𝑚
(𝑥) 𝑒
𝑎𝑥
𝑑𝑥 =

𝑒
𝑎𝑥

𝑎

𝑚

∑

𝑘=0

(−1)
𝑘
𝑃
(𝑘)

𝑚
(𝑥)

𝑎
𝑘

. (19)

We need to recall two well-known inequalities [21]:

(i) The Schwarz inequality: Let 𝑎, 𝑏 ∈ R so that 𝑎 ≤ 𝑏; if
𝑓 and 𝑔 are continuous functions on [𝑎, 𝑏], then

∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 ≤ (∫

𝑏

𝑎

𝑓(𝑥)
2
𝑑𝑥)

1/2

(∫

𝑏

𝑎

𝑔(𝑥)
2
𝑑𝑥)

1/2

.

(20)

(ii) The Hölder inequality: If we consider the convergent
series of positive terms ∑

𝑛≥0
𝑎
𝑛
and ∑

𝑛≥0
𝑏
𝑛
, then

∑

𝑛≥0

𝑎
1/2

𝑛
𝑏
1/2

𝑛
≤ (∑

𝑛≥0

𝑎
𝑛
)

1/2

(∑

𝑛≥0

𝑏
𝑛
)

1/2

. (21)

The paper is organized as follows. In Section 2, the
solution of (13)–(16) is obtained under hypothesis (7)–(9),
and the convergence of the series solution for the problem,
under these hypotheses (7)–(9), is studied. In Section 3, the
solution of (13)–(16) is obtained under hypotheses (10)–(12)
and the convergence of the series solution for the problem,
under these hypotheses (10)–(12), is also studied. In Section 4,
we will introduce an algorithm and give two illustrative
examples. Conclusions are given in Section 5.
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2. A Series Solution for Nonhomogeneous
Problem (13)–(16) under Hypotheses (7)–(9).
Convergence

We suppose that the hypotheses (7)–(9) hold.Wewill find the
solution of nonhomogeneous problem with homogeneous
boundary conditions (13)–(16) where we will suppose that
the vector valued function𝐺(𝑥, 𝑡) satisfies the conditions that
we will indicate to ensure the convergence of the solution
proposal.

We will suppose that the vector valued function 𝐺(𝑥, 𝑡)
satisfies conditions (8) replacing 𝑓(𝑥) by 𝐺(𝑥, 𝑡), and, there-
fore, 𝐺(𝑥, 𝑡) admits a series expansion of Sturm-Liouville
eigenfunctions which are given by

𝐺 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝑇
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑋
𝑛
(𝑥) 𝑇
𝑛
(𝑡) , (22)

where the set of eigenvaluesF are given by equation (27) of
[15], with the positive roots 𝜆

𝑘
∈ (𝑘𝜋, (𝑘 + 1)𝜋), 𝑘 ≥ 1, of

equation (16) of [15], to which is added the eigenvalue 𝜆
0
∈

(0, 𝜋) if (1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
1
)(1 − 𝜌

0
𝑏
1
)/𝑏
1
< 1, and, by equation

(35) of [15], the eigenvalue 0 is also added if 1 ∈ 𝜎(−𝐴
2
𝐴
1
),

and the eigenfunctions are given by

𝑋
0
(𝑥) = 𝛼 ((1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
) , 𝛼 = {

1, 0 ∈ F

0, 0 ∉ F

𝑋
𝑛
(𝑥) = (1 − 𝜌

0
𝑏
1
) sen (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)

(23)

and coefficients

𝑇
𝑛
(𝑡) =

∫

1

0
𝐺 (𝑥, 𝑡) 𝑋

𝑛
(𝑥) 𝑑𝑥

∫

1

0
𝑋
2

𝑛
(𝑥) 𝑑𝑥

,

𝑇
0
(𝑡) =

∫

1

0
𝐺 (𝑥, 𝑡) 𝑋

0
(𝑥) 𝑑𝑥

∫

1

0
𝑋
2

0
(𝑥) 𝑑𝑥

,

(24)

fulfilling the Bessel inequality; see [11, page 223] and [22]:

∑

𝜆
𝑛
∈F

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

= ∑

𝜆
𝑛
∈F

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩

2

∫

1

0

𝑋
2

𝑛
(𝑥) 𝑑𝑥

≤ ∫

1

0

‖𝐺 (𝑥, 𝑡)‖
2
𝑑𝑥.

(25)

We know that the positive roots 𝜆
𝑘
, 𝑘 ≥ 1 fulfill Lemma 1 of

[15]; then,

lim
𝑘→∞

𝜆
𝑘
= ∞, (26)

and taking into account that 𝜆
𝑘
∈ (𝑘𝜋, (𝑘 + 1)𝜋), 𝑘 ≥ 1, then

the numerical series ∑
𝑘≥1

1/𝜆
2

𝑘
is convergent.

Using the eigenfunction method, we will construct a
formal solution of the problem (13)–(15) in the form

𝑢 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝑅
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥) 𝑅
𝑛
(𝑡) , (27)

where

𝐵
𝑛
(𝑡) = ∫

𝑡

0

𝑒
𝐴𝜆
2

𝑛
𝑠
𝑇
𝑛
(𝑠) 𝑑𝑠, 𝐵

0
(𝑡) = ∫

𝑡

0

𝑇
0
(𝑠) 𝑑𝑠, (28)

𝑅
𝑛
(𝑡) = 𝐵

𝑛
(𝑡) + 𝐷

𝑛
, 𝑅

0
(𝑡) = 𝐵

0
(𝑡) + 𝐷

0
. (29)

Taking into account that 𝑢(𝑥, 𝑡) have to satisfy the initial
condition (16), one gets that

𝑢 (𝑥, 0) = 𝑓 (𝑥) = 𝑋
0
(𝑥) 𝑅
0
(0) + ∑

𝜆
𝑛
∈F

𝑋
𝑛
(𝑥) 𝑅
𝑛
(0) ; (30)

thus, as 𝑓(𝑥) satisfies (8), then it also admits a series
expansion of Sturm-Liouville eigenfunctions:

𝑅
𝑛
(0) = 𝐷

𝑛
=

∫

1

0
𝑓 (𝑥)𝑋

𝑛
(𝑥) 𝑑𝑥

∫

1

0
𝑋
2

𝑛
(𝑥) 𝑑𝑥

,

𝑅
0
(0) = 𝐷

0
=

∫

1

0
𝑓 (𝑥)𝑋

0
(𝑥) 𝑑𝑥

∫

1

0
𝑋
2

0
(𝑥) 𝑑𝑥

.

(31)

Note that we can write

𝑢 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝑅
0
(𝑡)

+ ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥) 𝑅
𝑛
(𝑡)

= 𝑋
0
(𝑥)𝐷
0
+ ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥)𝐷
𝑛

+ 𝑋
0
(𝑥) 𝐵
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥) 𝐵
𝑛
(𝑡)

= V (𝑥, 𝑡) + 𝑤 (𝑥, 𝑡) ,

(32)

where

V (𝑥, 𝑡) = 𝑋
0
(𝑥)𝐷
0
+ ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥)𝐷
𝑛 (33)

is a solution of the homogeneous problemwith homogeneous
boundary conditions:

V
𝑡
(𝑥, 𝑡) − 𝐴V

𝑥𝑥
(𝑥, 𝑡) = 0, 0 < 𝑥 < 1, 𝑡 > 0

𝐴
1
V (0, 𝑡) + 𝐵

1
V
𝑥
(0, 𝑡) = 0, 𝑡 > 0

𝐴
2
V (1, 𝑡) + 𝐵

2
V
𝑥
(1, 𝑡) = 0, 𝑡 > 0

V (𝑥, 0) = 𝑓 (𝑥) , 𝑡 > 0,

(34)

the convergence of V(𝑥, 𝑡) has been studied previously in [15],
and

𝑤 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝐵
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥) 𝐵
𝑛
(𝑡) (35)
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is a solution of the nonhomogeneous problem with homoge-
neous boundary conditions:

𝑤
𝑡
(𝑥, 𝑡) − 𝐴𝑤

𝑥𝑥
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0

𝐴
1
𝑤 (0, 𝑡) + 𝐵

1
𝑤
𝑥
(0, 𝑡) = 0, 𝑡 > 0

𝐴
2
𝑤 (1, 𝑡) + 𝐵

2
𝑤
𝑥
(1, 𝑡) = 0, 𝑡 > 0

𝑤 (𝑥, 0) = 0, 𝑡 > 0.

(36)

Now, we will study the convergence of the formal solution
obtained in (27). Previously, we need to find a bound to the
integral

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠. (37)

Using (18), one gets that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑒
−2𝛼(𝐴)𝜆

2

𝑛
(𝑡−𝑠)

(

𝑚−1

∑

𝑘=0

󵄩
󵄩
󵄩
󵄩
√𝑚𝐴

󵄩
󵄩
󵄩
󵄩

𝑘

(𝜆
2

𝑛
(𝑡 − 𝑠))

𝑘

𝑘!

)

2

= 𝑒
−2𝛼(𝐴)𝜆

2

𝑛
(𝑡−𝑠)

𝑃
2𝑚−2

(𝜆
2

𝑛
(𝑡 − 𝑠)) ,

(38)

where𝑃
2𝑚−2

(𝑥) is a polynomial of degree 2𝑚−2with positive
coefficients. Thus,

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 ≤ ∫

𝑡

0

𝑒
−2𝛼(𝐴)𝜆

2

𝑛
(𝑡−𝑠)

𝑃
2𝑚−2

(𝜆
2

𝑛
(𝑡 − 𝑠)) 𝑑𝑠.

(39)

Performing the change of variable V = 𝜆2
𝑛
(𝑡 − 𝑠) and thaking

into account (19), we can write expression (39) in the form

∫

𝑡

0

𝑒
−2𝛼(𝐴)𝜆

2

𝑛
(𝑡−𝑠)

𝑃
2𝑚−2

(𝜆
2

𝑛
(𝑡 − 𝑠)) 𝑑𝑠

=

𝑒
−2𝛼(𝐴)

2𝜆
2

𝑛
𝛼 (𝐴)

(𝐿 −

2𝑚−2

∑

𝑘=0

𝑃
(𝑘)

2𝑚−2
(𝜆
2

𝑛
𝑡)

(2𝛼 (𝐴))
𝑘
) ,

(40)

where

𝐿 =

2𝑚−2

∑

𝑘=0

𝑃
(𝑘)

2𝑚−2
(0)

(2𝛼 (𝐴))
𝑘
, (41)

and taking into account that the coefficients of 𝑃(𝑘)
2𝑚−2

(𝑥) and
𝑃
(𝑘)

2𝑚−2
(0) are positive, one gets from (39) and (40) that

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 ≤

𝐿

2𝜆
2

𝑛
𝛼 (𝐴)

, 𝑡 ≥ 0. (42)

Now, one gets that

𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) + 𝑤 (𝑥, 𝑡) , (43)

where V(𝑥, 𝑡) is a solution of problem (34), whose conver-
gence has been studied in [15]; we will study the convergence

of 𝑤(𝑥, 𝑡), solution of problem (36), defined by (35), where
𝐵
𝑛
(𝑡) are defined by (28). Taking norm and using (20), one

gets that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥)𝐵
𝑛
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∑

𝜆
𝑛
∈F

∫

𝑡

0

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

𝑇
𝑛
(𝑠)𝑋
𝑛
(𝑥)𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ( ∑

𝜆
𝑛
∈F

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

𝑇
𝑛
(𝑠)𝑋
𝑛
(𝑥)𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

)

2

≤ ( ∑

𝜆
𝑛
∈F

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

𝑇
𝑛
(𝑠)𝑋
𝑛
(𝑥)𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

)

2

≤ ( ∑

𝜆
𝑛
∈F

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩
𝑑𝑠)

2

≤ ( ∑

𝜆
𝑛
∈F

(∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

1/2

× (∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠)

1/2

)

2

.

(44)

We define 𝑎
𝑛
= ∫

𝑡

0
‖𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

‖

2

𝑑𝑠, using inequality (42); it
follows that

𝑎
𝑛
= ∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 ≤

𝐿

2𝜆
2

𝑛
𝛼 (𝐴)

(45)

and as series∑
𝜆
𝑛
∈F(1/𝜆

2

𝑛
) is convergent, then series∑

𝜆
𝑛
∈F 𝑎
𝑛

is also convergent. We define 𝑏
𝑛
= ∫

𝑡

0
‖𝑇
𝑛
(𝑠)‖
2
|𝑋
𝑛
(𝑥)|
2
𝑑𝑠; it

follows that

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

=
󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2
; (46)

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

=

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

∫

1

0
𝑋
2

𝑛
(𝑥) 𝑑𝑥

≤ (𝜆
2

𝑛
𝑏
2

1
+
󵄨
󵄨
󵄨
󵄨
1 − 𝜌
0
𝑏
1

󵄨
󵄨
󵄨
󵄨

2

+ 2
󵄨
󵄨
󵄨
󵄨
𝑏
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
1 − 𝜌
0
𝑏
1

󵄨
󵄨
󵄨
󵄨
𝜆
𝑛
)
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× (

𝜆
2

𝑛
𝑏
2

1

2

−

𝑏
1
(1 − 𝜌

0
𝑏
1
)

2

+

(1 − 𝜌
0
𝑏
1
)
2

2

+

𝜆
2

𝑛
𝑏
2

1
− (1 − 𝜌

0
𝑏
1
)
2

4𝜆
𝑛

sin (2𝜆
𝑛
)

+

𝑏
1
(1 − 𝜌

0
𝑏
1
)

2

cos(2𝜆
𝑛
))

−1

= 𝐴 (𝜆
𝑛
) ,

(47)

using (26) one gets that

lim
𝑛→∞

𝐴 (𝜆
𝑛
) = 2, (48)

then there exists a positive integer 𝑛
0
∈ N so that, for all index

𝑛 so that 𝜆
𝑛
∈ F and 𝑛 > 𝑛

0
, one gets that

󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2
< 3, (49)

and replacing in (46),

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝑋
2

𝑛
(𝑥) ≤ 3

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

,

𝑛 ∈ {𝑚 ∈ N : 𝜆
𝑚
∈ F, 𝑚 > 𝑛

0
} .

(50)

Applying Bessel’s inequality (25), it follows that

∑

𝜆
𝑛
∈F

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

≤ 3 ∑

𝜆
𝑛
∈F

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

≤ 3∫

1

0

‖𝐺 (𝑥, 𝑠)‖
2
𝑑𝑥.

(51)

This ensures that the series ∑
𝜆
𝑛
∈F ‖𝑇
𝑛
(𝑠)‖
2
|𝑋
𝑛
(𝑥)|
2 is uni-

formly convergent and integrating in the interval [0, 𝑡], 𝑡 ≥ 0;
therefore,

∑

𝜆
𝑛
∈F

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2󵄨
󵄨
󵄨
󵄨
𝑋
𝑛
(𝑥)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 ≤ 3∫

𝑡

0

∫

1

0

‖𝐺 (𝑥, 𝑠)‖
2
𝑑𝑥 𝑑𝑠, (52)

where, for a fixed value of 𝑡 ∈ [𝑐, 𝑑], the positive terms series
𝑏
𝑛
has the partial sum bounded if we suppose that vector

valued function 𝐺(𝑥, 𝑡) satisfies the following condition:

sup
𝑡>0

∫

1

0

‖𝐺 (𝑥, 𝑡)‖
2
𝑑𝑥 = 𝑀 < ∞. (53)

If condition (53) holds, series∑
𝑛/𝜆
𝑛
∈F 𝑏
𝑛
is convergent. Using

(21), (42), and (52) in (44), it follows that
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥) 𝐵
𝑛
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ( ∑

𝜆
𝑛
∈F

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
−𝐴𝜆
2

𝑛
(𝑡−𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

× ( ∑

𝜆
𝑛
∈F

∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
𝑇
𝑛
(𝑠)
󵄩
󵄩
󵄩
󵄩

2

𝑋
2

𝑛
(𝑥) 𝑑𝑠)

≤

3𝐿

2𝛼 (𝐴)

(∫

𝑡

0

∫

1

0

‖𝐺 (𝑥, 𝑠)‖
2
𝑑𝑥 𝑑𝑠) ∑

𝜆
𝑛
∈F

1

𝜆
2

𝑛

,

(54)

and taking into account that ∑
𝜆
𝑛
∈F(1/𝜆

2

𝑛
) is convergent,

series ∑
𝜆
𝑛
∈F 𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥)𝐵
𝑛
(𝑡) is uniformly convergent on

any domain [0, 1] × [𝑐, 𝑑].
To check that solution 𝑤(𝑥, 𝑡) given in (35) is a solution

of problem (13)–(16), it is sufficient to show that the series

∑

𝜆
𝑛
∈F

𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥) 𝐵
𝑛
(𝑡) (55)

is uniformly convergent. To prove this, note that 𝐺(𝑥, 𝑡)
satisfies the boundary condition (14) and (15); then,

∫

1

0

𝜕
2

𝜕𝑥
2
(𝐺 (𝑥, 𝑡))𝑋

𝑛
(𝑥) 𝑑𝑥 = −𝜆

2

𝑛
∫

1

0

𝐺 (𝑥, 𝑡) 𝑋
𝑛
(𝑥) 𝑑𝑥,

(56)

And, by (24), one gets that

𝜆
2

𝑛
𝑇
𝑛
(𝑡)
󵄩
󵄩
󵄩
󵄩
𝑋
𝑛
(𝑥)

󵄩
󵄩
󵄩
󵄩

2

= −∫

1

0

𝐺
𝑥𝑥
(𝑥, 𝑡) 𝑋

𝑛
(𝑥) 𝑑𝑥; (57)

Then, if the following condition

sup
𝑡>0

∫

1

0

󵄩
󵄩
󵄩
󵄩
𝐺
𝑥𝑥
(𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑥 = 𝑁 < ∞ (58)

holds, the convergence of the series (55) can be derived
in the same way as the convergence of the series
∑
𝜆
𝑛
∈F 𝑒
−𝜆
2

𝑛
𝐴𝑡
𝑋
𝑛
(𝑥)𝐵
𝑛
(𝑡) has been deduced, and, thus, series

(55) is uniformly convergent on any domain [0, 1] × [𝑐, 𝑑].
Summarizing, the following result has been established.

Theorem 1. Consider a be nonhomogeneous problem with
homogeneous boundary values conditions (13)–(15) which sat-
isfies conditions (7)–(9). Suppose that hypotheses of Theorem
2 of [15] hold, then we can construct a solution V(𝑥, 𝑡) of
homogeneous problem with homogeneous boundary values
conditions (34). Suppose that 𝐺(𝑥, 𝑡) satisfies conditions (8)
replacing𝑓(𝑥) by𝐺(𝑥, 𝑡) and satisfies conditions (53) and (58).
Then,𝑤(𝑥, 𝑡), defined by (35), is a solution of nonhomogeneous
problem with homogeneous boundary values conditions (36),
and the solution of problem (13)–(15) is given by 𝑢(𝑥, 𝑡) =

V(𝑥, 𝑡) + 𝑤(𝑥, 𝑡).
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3. A Series Solution for Nonhomogeneous
Problem (13)–(16) under Hypotheses
(10)–(12). Convergence

We will suppose that the vector valued function 𝐺(𝑥, 𝑡)

satisfies conditions (10) replacing 𝑓(𝑥) by 𝐺(𝑥, 𝑡), and, there-
fore, 𝐺(𝑥, 𝑡) admits a series expansion of Sturm-Liouville
eigenfunctions which is given by

𝐺 (𝑥, 𝑡) = 𝑋
0
(𝑥)

̃
𝑇
0
(𝑡) + ∑

𝜆
𝑛
∈F

sin (𝜆
𝑛
𝑥)
̃
𝑇
𝑛
(𝑡) , (59)

where

̃
𝑇
𝑛
(𝑡) =

∫

1

0
𝐺 (𝑥, 𝑡) sin (𝜆

𝑛
𝑥) 𝑑𝑥

∫

1

0
sin2 (𝜆

𝑛
𝑥) 𝑑𝑥

,

̃
𝑇
0
(𝑡) =

∫

1

0
𝐺 (𝑥, 𝑡) 𝑥 𝑑𝑥

∫

1

0
𝑥
2
𝑑𝑥

.

(60)

Using again the eigenfunction method, we will construct a
formal solution of the problem (13)–(15) in the form

𝑢 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝑅̃
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑒
−𝐴𝜆
2

𝑛
𝑡 sin (𝜆

𝑛
𝑥) 𝑅̃
𝑛
(𝑡) , (61)

where

𝐵
𝑛
(𝑡) = ∫

𝑡

0

𝑒
𝐴𝜆
2

𝑛
𝑠
̃
𝑇
𝑛
(𝑠) 𝑑𝑠, 𝐵

0
(𝑡) = ∫

𝑡

0

̃
𝑇
0
(𝑠) 𝑑𝑠, (62)

𝑅̃
𝑛
(𝑡) = 𝐵

𝑛
(𝑡) + 𝐷

𝑛
, 𝑅̃

0
(𝑡) = 𝐵

0
(𝑡) (𝑡) + 𝐷

0
, (63)

and as 𝑓(𝑥) satisfies (10), one gets

𝐷
𝑛
=

∫

1

0
𝑓 (𝑥) sin (𝜆

𝑛
𝑥) 𝑑𝑥

∫

1

0
sin2 (𝜆

𝑛
𝑥) 𝑑𝑥

, 𝐷
0
=

∫

1

0
𝑓 (𝑥) 𝑥 𝑑𝑥

∫

1

0
𝑥
2
𝑑𝑥

. (64)

Nothe that, as in Section 2, from (61) it follows that

𝑢 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝑅̃
0
(𝑡)

+ ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡 sin (𝜆

𝑛
𝑥) 𝑅̃
𝑛
(𝑡)

= 𝑋
0
(𝑥)𝐷
0
+ ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡 sin (𝜆

𝑛
𝑥)𝐷
𝑛

+ 𝑋
0
(𝑥) 𝐵
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡 sin (𝜆

𝑛
𝑥) 𝐵
𝑛
(𝑡)

= V (𝑥, 𝑡) + 𝑤 (𝑥, 𝑡) ,

(65)

where V(𝑥, 𝑡) is a solution of homogeneous problem with
homogeneous boundary values conditions (34), whose con-
vergence has been studied in [16]; we will study the conver-
gence of 𝑤(𝑥, 𝑡) solution of problem (36), defined by

𝑤 (𝑥, 𝑡) = 𝑋
0
(𝑥) 𝐵
0
(𝑡) + ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡 sin (𝜆

𝑛
𝑥) 𝐵
𝑛
(𝑡) , (66)

but this can be considered a special case of the one studied in
Section 2 taking 𝑏

1
= 0.Thus, we have the followingTheorem.

Theorem 2. Consider a be nonhomogeneous problem with
homogeneous boundary values conditions (13)–(15) which sat-
isfies conditions (10)–(12). Suppose that hypotheses of Theorem
3.1 of [16] hold; then, we can construct a solution V(𝑥, 𝑡) of
homogeneous problem with homogeneous boundary values
conditions (34). Suppose that vector valued function 𝐺(𝑥, 𝑡)

satisfies conditions (10) replacing 𝑓(𝑥) by 𝐺(𝑥, 𝑡) and satisfies
conditions (53) and (58). Then, 𝑤(𝑥, 𝑡), defined by (35), is
a solution of nonhomogeneous problem with homogeneous
boundary values conditions (36), and the solution of problem
(13)–(15) is given by 𝑢(𝑥, 𝑡) = V(𝑥, 𝑡) + 𝑤(𝑥, 𝑡).

4. Algorithm and Examples

We can summarize the process to calculate the solution of the
problem (13)–(15) fromTheorems 1 and 2 in Algorithm 1.

Example 3. We consider problem (13)–(15) where matrix𝐴 ∈

C4×4 is given by

𝐴 = (

2 0 0 −1

1 2 1 −2

−1 0 2 1

0 0 0 1

) , (67)

and the matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2} are

𝐴
1
= (

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

) , 𝐴
2
= (

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

)

𝐵
1
= (

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

) , 𝐵
2
= (

1 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

) ;

(68)

the vectorial valued function 𝑓(𝑥) will be defined as

𝑓 (𝑥) = (

0

𝑥
2
− 1

0

0

) , (69)

and the vectorial valued function 𝐺(𝑥, 𝑡) is given by

𝐺 (𝑥, 𝑡) = (

0

(𝑥 − 1)
2
𝑥
3
𝑒
−𝑡

0

0

) . (70)

We will follow Algorithm 1 step by step.

(1) If we consider the associated problem (34), it is easy
to check that conditions (7)–(9) hold. In fact, this
problem was solved in Example 3.1 of [15]. Using
Algorithm 1 of [15], we can obtain the solution V(𝑥, 𝑡)
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𝑢
𝑡
(𝑥, 𝑡) − 𝐴𝑢

𝑥𝑥
(𝑥, 𝑡) = 𝐺(𝑥, 𝑡), 0 < 𝑥 < 1 , 𝑡 > 0

𝐴
1
𝑢(0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) = 0 , 𝑡 > 0

𝐴
2
𝑢(1, 𝑡) + 𝐵

2
𝑢
𝑥
(1, 𝑡) = 0, 𝑡 > 0

𝑢(𝑥, 0) = 𝑓(𝑥), 0 ≤ 𝑥 ≤ 1

(1) Consider the associated problem (34) and check the following options:
Case 1. Conditions (7)–(9) holds. Continue using Algorithm 1 of [15] to obtain a solution
V(𝑥, 𝑡) of problem (34). Once obtained, continue with Algorithm 2.

Case 2. Conditions (10)–(12) holds. Continue using Algorithm 1 of [16] to obtain a solution
V(𝑥, 𝑡) of problem (34). Once obtained, continue with Algorithm 3.

Case 3. If these conditions are not satisfied, algorithm stop because we can not obtain the solution
of problem (13)–(15) with the given data.

Algorithm 1: Solution of problem (13)–(15).

of problem (34) with the values 𝜌
0
= 1, 𝑏
1
= 1, 𝑏
2
= 0.

The solution of problem (34) is given by

V (𝑥, 𝑡)

= (∑

𝑛≥0

−

32(−1)
𝑛
𝑒
−(1/2)(𝜋+2𝑛𝜋)

2

𝑡 cos ((1/2) (𝜋 + 2𝑛𝜋) 𝑥)
𝜋
3
(2𝑛 + 1)

3
)

×(

0

1

0

0

) ,

(71)

with the eigenvalues setF = {𝜆
𝑘
= 𝜋/2 + 𝑘𝜋 : 𝑘 ≥ 0}

and eigenfunctions

𝑋
𝑘
(𝑥) = − (

𝜋

2

+ 𝑘𝜋) cos((𝜋
2

+ 𝑘𝜋)𝑥) , 𝑘 ≥ 0. (72)

After obtaining the solution of the homogeneous
problem with homogeneous conditions (34), we con-
tinue with Algorithm 2.

We will follow Algorithm 2 step by step.

(1) It is trivial to check that, for fixed 𝑡,

𝐺 (𝑥, 𝑡) ∈ C
2
([0, 1]) . (73)

Therefore,

(1 − 𝜌
0
𝑏
1
) 𝐺 (0, 𝑡) + 𝑏

1
𝐺
𝑥
(0, 𝑡) = (

0

0

0

0

) ,

−(

1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2

𝑏
1

)𝐺 (1, 𝑡) + 𝑏
2
𝐺
𝑥
(1, 𝑡) = (

0

0

0

0

) ;

(74)

then, the vector valued function 𝐺(𝑥, 𝑡) satisfies con-
dition (8) replacing 𝑓(𝑥) by 𝐺(𝑥, 𝑡). By other hand,
one gets that

∫

1

0

‖𝐺(𝑥, 𝑡)‖
2
𝑑𝑥 = ∫

1

0

(𝑒
−2𝑡
(−1 + 𝑥)

4
𝑥
6
) 𝑑𝑥

=

𝑒
−2𝑡

2310

,

(75)

and, thereby, sup
𝑡>0
∫

1

0
‖𝐺(𝑥, 𝑡)‖

2
𝑑𝑥 ≤ 1/2310 = 𝑀

and condition (53) holds. Similarly,

∫

1

0

󵄩
󵄩
󵄩
󵄩
𝐺
𝑥𝑥
(𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑥

= ∫

1

0

((6𝑒
−𝑡
(−1 + 𝑥)

2
𝑥 + 12𝑒

−𝑡
(−1 + 𝑥)𝑥

2
+ 2𝑒
−𝑡
𝑥
3
)

2

) 𝑑𝑥

=

12𝑒
−2𝑡

35

,

(76)

and, thereby, sup
𝑡>0
∫

1

0
‖𝐺
𝑥𝑥
(𝑥, 𝑡)‖

2
𝑑𝑥 ≤ 12/35 = 𝑁

and condition (58) holds.

(2) For 𝑛 ≥ 0, coefficients 𝑇
𝑛
(𝑡) defined by (24) are given

by

𝑇
𝑛
(𝑡)

= ((64𝑒
−𝑡
((−1)
𝑛
(2𝑛 + 1) 𝜋 ((2𝑛 + 1)

2
𝜋
2
− 144)

− 6 ((2𝑛 + 1)
2
𝜋
2
− 80)))

× ((2𝑛 + 1)
7
𝜋
7
)

−1

)

×(

0

1

0

0

) .

(77)
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(1) Check that vector valued function 𝐺(𝑥, 𝑡) satisfies conditions (53), (58) and (8) replacing 𝑓(𝑥) by
𝐺(𝑥, 𝑡). If these conditions are not satisfied algorithm stop because we can not obtain the solution of
problem (13)–(15) with the given data.

(2) Determine coefficients 𝑇
𝑛
(𝑡), 𝑛 ≥ 0 defined by (24).

(3) Determine coefficients 𝐵
𝑛
(𝑡), 𝑛 ≥ 0 defined by (28), where𝐷

𝑛
, 𝑛 ≥ 0 are defined by (31).

(4) Determine 𝑤(𝑥, 𝑡) defined by (35), solution of problem (36).
(5) The solution of problem (13)–(15) is given by 𝑢(𝑥, 𝑡) = V(𝑥, 𝑡) + 𝑤(𝑥, 𝑡).

Algorithm 2: Algorithm to compute the solution of problem (13)–(15) when conditions (7)–(9) holds.

(3) For 𝑛 ≥ 0, coefficients 𝐵
𝑛
(𝑡) defined by (28) are given

by

𝐵
𝑛
(𝑡)

= ( (128 (𝑒
(−2+(2𝑛+1)

2

𝜋
2

)𝑡/2
− 1)

× ((−1)
𝑛
(2𝑛 + 1) 𝜋 ((2𝑛 + 1)

2
𝜋
2
− 144)

− 6 ((2𝑛 + 1)
2
𝜋
2
− 80)))

× ((2𝑛 + 1)
7
𝜋
7
(−2 + (2𝑛 + 1)

2
𝜋
2
))

−1

)

×(

0

1

0

0

) .

(78)

(4) The solution 𝑤(𝑥, 𝑡) of problem (36) defined by (35)
is given by

𝑤 (𝑥, 𝑡)

= ∑

𝑛≥0

− ((64𝑒
−(2𝑛+1)

2

𝜋
2

𝑡/2
(𝑒
(−2+(2𝑛+1)

2

𝜋
2

)𝑡/2
− 1)

× A (𝑛) cos((2𝑛 + 1) 𝜋𝑥
2

))

× ((2𝑛 + 1)
6
𝜋
6
(−2 + (2𝑛 + 1)

2
𝜋
2
))

−1

)

×(

0

1

0

0

) ,

(79)

where

A (𝑛)

= (480 + (2𝑛 + 1) 𝜋 (−144(−1)
𝑛

+ (2𝑛 + 1) 𝜋 ((−1)
𝑛
(2𝑛 + 1) 𝜋 − 6))) .

(80)

(5) The solution of problem (13)–(15) is given by 𝑢(𝑥, 𝑡) =
V(𝑥, 𝑡) + 𝑤(𝑥, 𝑡).

Example 4. We consider problem (13)–(15) where matrix𝐴 ∈

C4×4 is given by

𝐴 = (

2 0 0 1

1 2 0 −2

−1 0 2 1

0 0 0 1

) , (81)

and the matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2} are given by (68). The

vectorial valued function 𝑓(𝑥) is defined by

𝑓 (𝑥) = (

0

0

𝑥
2
− 2𝑥

0

) , (82)

and the vectorial valued function 𝐺(𝑥, 𝑡) is given by

𝐺 (𝑥, 𝑡) = (

0

0

𝑥(𝑥 − 1)
2
𝑒
−𝑡

0

) . (83)

We will follow Algorithm 1 step by step.

(1) If we consider the associated problem (34), it is easy
to check that conditions (10)–(12) hold. In fact, this
problem was solved in Example 4.1 of [16]. Using
Algorithm 1 of [16] we can obtain the solution V(𝑥, 𝑡)
of problem (34) with the values 𝜌

0
= 1, 𝑎

2
= 0. The

solution of problem (34) is given by

V (𝑥, 𝑡)

= ∑

𝑛≥0

−

32𝑒
−(1/2)(𝜋+2𝑛𝜋)

2

𝑡 sin ((1/2) (1 + 2𝑘) 𝜋𝑥)
𝜋
3
(2𝑘 + 1)

3

×(

0

0

1

0

) ,

(84)

with the eigenvalues setF = {𝜆
𝑘
= 𝜋/2 + 𝑘𝜋 : 𝑘 ≥ 0}

and eigenfunctions

𝑋
𝑘
(𝑥) = sin((𝜋

2

+ 𝑘𝜋)𝑥) , 𝑘 ≥ 0. (85)



Abstract and Applied Analysis 9

(1) Check that vector valued function 𝐺(𝑥, 𝑡) satisfies conditions (53), (58) and (10) replacing 𝑓(𝑥) by
𝐺(𝑥, 𝑡). If these conditions are not satisfied algorithm stop because we can not obtain the solution of
problem (13)–(15) with the given data.

(2) Determine coefficients ̃𝑇
𝑛
(𝑡), 𝑛 ≥ 0 defined by (60).

(3) Determine coefficients 𝐵
𝑛
(𝑡), 𝑛 ≥ 0 defined by (62), where𝐷

𝑛
, 𝑛 ≥ 0 are defined by (64).

(4) Determine 𝑤(𝑥, 𝑡) defined by (66), solution of problem (36).
(5) The solution of problem (13)–(15) is given by 𝑢(𝑥, 𝑡) = V(𝑥, 𝑡) + 𝑤(𝑥, 𝑡).

Algorithm 3: Algorithm to compute the solution of problem (13)–(15) when conditions (10)–(12) holds.

After obtaining the solution of the homogeneous
problem with homogeneous conditions (34), we con-
tinue with Algorithm 3.

We will follow Algorithm 3 step by step.

(1) We will check that the vector valued function 𝐺(𝑥, 𝑡)
satisfies conditions (10) replacing 𝑓(𝑥) by 𝐺(𝑥, 𝑡).
It is trivial to check that, for fixed 𝑡,

𝐺 (𝑥, 𝑡) ∈ C
2
([0, 1]) . (86)

Therefore,

𝐺 (0, 𝑡) = (

0

0

0

0

) ,

𝑎
2
𝐺 (1, 𝑡) + 𝐺

𝑥
(1, 𝑡) = (

0

0

0

0

) .

(87)

Then, conditions (10) hold. Furthermore, one gets that

∫

1

0

‖𝐺(𝑥, 𝑡)‖
2
𝑑𝑥 = ∫

1

0

(𝑒
−2𝑡
𝑥
2
(𝑥
2
− 1)

4

) 𝑑𝑥

=

128𝑒
−2𝑡

3465

;

(88)

thus, sup
𝑡>0
∫

1

0
‖𝐺(𝑥, 𝑡)‖

2
𝑑𝑥 ≤ 128/3465 = 𝑀 < ∞

and condition (53) holds.
Similarly,

∫

1

0

󵄩
󵄩
󵄩
󵄩
𝐺
𝑥𝑥
(𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑥

= ∫

1

0

((8𝑒
−𝑡
𝑥 (𝑥
2
− 1) + 𝑒

−𝑡
𝑥 (8𝑥
2
+ 4 (𝑥

2
− 1)))

2

) 𝑑𝑥

=

64𝑒
−2𝑡

7

;

(89)

thus, sup
𝑡>0
∫

1

0
‖𝐺
𝑥𝑥
(𝑥, 𝑡)‖

2
𝑑𝑥 ≤ 64/7 = 𝑁 < ∞ and

condition (58) holds.

(2) For 𝑛 ≥ 0, coefficients ̃𝑇
𝑛
(𝑡) defined by (60) are given

by

̃
𝑇
𝑛
(𝑡) = −

1536(−1)
𝑛
𝑒
−𝑡
(−10 + (2𝑛 + 1)

2
𝜋
2
)

(2𝑛 + 1)
6
𝜋
6

(

0

0

1

0

) . (90)

(3) For 𝑛 ≥ 0, coefficients 𝐵
𝑛
(𝑡) defined by (62) are given

by

𝐵
𝑛
(𝑡)

= −

3072(−1)
𝑛
(𝑒
(1/2)(−2+(2𝑛+1)

2

𝜋
2

)𝑡
− 1) ((2𝑛 + 1)

2
𝜋
2
− 10)

(2𝑛 + 1)
6
𝜋
6
(−2 + (2𝑛 + 1)

2
𝜋
2
)

×(

0

0

1

0

) .

(91)

(4) The solution𝑤(𝑥, 𝑡) of problem (36), defined by (66),
is given by

𝑤 (𝑥, 𝑡)

= ∑

𝑛≥0

− ((3072(−1)
𝑛
𝑒
−(2𝑛+1)

2

𝜋
2

𝑡/2
(𝑒
(−2+(2𝑛+1)

2

𝜋
2

)𝑡/2
− 1)

× ((2𝑛 + 1)
2
𝜋
2
− 10) sin((2𝑛 + 1) 𝜋𝑥

2

))

× ((2𝑛 + 1)
6
𝜋
6
(−2 + (2𝑛 + 1)

2
𝜋
2
))

−1

)

×(

0

0

1

0

) .

(92)

(5) The solution of problem (13)–(15) is given by 𝑢(𝑥, 𝑡) =
V(𝑥, 𝑡) + 𝑤(𝑥, 𝑡).
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5. Conclusions

In this paper, the construction of the exact series solution of
the nonhomogeneous problem (13)–(16) has been presented.
Conditions for the vector valued function 𝐺(𝑥, 𝑡) in order
to ensure the existence and convergence of a series solution
of the proposed problem have been presented. An algorithm
with two illustrative examples was given.
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