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We study a class of high dispersive cubic-quintic nonlinear Schrödinger equations, which describes the propagation of femtosecond
light pulses in a medium that exhibits a parabolic nonlinearity law. Applying bifurcation theory of dynamical systems and the Fan
sub-equations method, more types of exact solutions, particularly solitary wave solutions, are obtained for the first time.

1. Introduction

Propagation of short pulses in optical fibers is governed
by the well-known nonlinear Schrödinger equation (NLS)
[1]. In recent years, There have been extensive study and
application of NLS. The main purpose of this paper is to
discuss the traveling wave solutions for a class of high
dispersive cubic-Quintic nonlinear Schrödinger equations
describing the ultrashort light pulse propagation as in the
following:
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where 𝐸(𝑧, 𝑡) is the slowly varying envelope of the electric
field, 𝛽

2
is the parameter of the group velocity dispersion,

𝛽
3
and 𝛽

4
are, respectively, the third-order and fourth-order

dispersions, and 𝛾
1
and 𝛾

2
are the nonlinearity coefficients.

When the higher order terms are ignored, we obtain the
NLS. However, for femtosecond light pulses, whose duration
is shorter than 10 fs, the last three terms are not ignored.
Equation (1) was derived by Palacios and Fernández-Diáz [2].
Azzouzi et al. [3] by using the extended hyperbolic auxiliary
equation method in getting the exact explicit solutions to
(1). He et al. [4] find the exact bright, dark, and gray
analytical nonautonomous soliton solutions of the general-
ized CQNLSE with spatially inhomogeneous group velocity

dispersion (GVD) and amplification or attenuation by the
similarity transformation method under certain parametric
conditions.

We will study (1) by using the improved Fan subequation
method. As a result, more types of exact solutions to (1)
are obtained, which include solitons, kink solutions, and
Jacobian elliptic function solutions with double periods. The
rest of this paper is organized as follows. In Section 2, we
give the mathematical framework of the improved method.
In Section 3, we apply it to the generalized equation (1) for
finding more exact solutions. Finally, some conclusions are
given.

2. The Ansatz Solution and Fan
Subequation Method

The integrability of a nonlinear equation can be studied
by applying the Painleve analysis. It is widely believed that
possession of the Painleve property is a sufficient criterion for
integrability. Moreover, there exists another technique which
basically consists of expressing the solution in terms of an
amplitude and a phase function as an approach to find exact
solutions of nonlinear evolution equations. We will make use
of this formalism looking for exact solution of (1) such as

𝐸 (𝑧, 𝑡) = 𝑒
𝑖(𝑤0𝑧−𝑤𝑡)𝜑 (𝜉) , (2)
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where 𝜑(𝜉) is a real fuction and 𝜉 = V
0
𝑧 − V𝑡. By inserting

the expressions (2) into (1), and separating real and imaginary
parts, we obtain
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Then, (3a) and (3b) become
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We introduce auxiliary equation:
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where 𝜖 = ±1, which is known as Fan subequation method
and proposed by Fan in [5]. This method is proposed to
seek more types of exact solutions of nonlinear partial
differential equations. Obviously, (7) is equivalent to the two-
dimensional systems as follows:
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which has the Hamiltonian function:
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One can easily find that 𝑐
0
corresponds to the Hamilto-

nian constant and (7) is equivalent to theHamiltonian system
(8).Thus, in order to search the exact solutions of (7) we need
only to discuss (8). For a fixed 𝑐

0
, (9) determines a set of orbits

of (8). As 𝑐
0
varies, (9) defines different families of orbits of

(8) which have different dynamical behavior. Below we will

first study the bifurcation of phase portraits of (8) by making
use of bifurcation method of dynamical systems and with
the aid of the computer symbolic system Mathematica. Then
according to the obtained bifurcation and the Hamiltonian
function (9), we will gain many new exact solutions of (7) for
all possible parameters 𝑐

𝑗
[6].
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(−𝛾
2
+ 24𝑙
4
𝑐
2

4
) 𝜑
5

+ 30𝑙
4
𝑐
3
𝑐
4
𝜑
4

+ (2𝑙
2
𝑐
4
+ 𝑙
4
(20𝑐
2
𝑐
4
+
15

2
𝑐
2

3
) + 𝛾
1
)𝜑
3

+ (
3

2
𝑙
2
𝑐
3
+ 𝑙
4
(
15

2
𝑐
2
𝑐
3
+ 1
5
𝑐
1
𝑐
4
))𝜑
2

+ (𝑙
0
+ 𝑙
2
𝑐
2
+ 𝑙
4
(
9

2
𝑐
1
𝑐
3
+ 1
2
𝑐
0
𝑐
4
+ 𝑐
2

2
))𝜑

+
1

2
𝑙
2
𝑐
1
+ 𝑙
4
(3𝑐
0
𝑐
3
+
1

2
𝑐
1
𝑐
2
) = 0.

(10)

Setting all the coefficients of 𝜑𝑖 (𝑖 = 0, 1, . . . , 5) to zero,
and solving the obtained algebraic equations, we find the
following sets of solutions (I)
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where 𝑤
0
, V are any real number and V ̸= 0.

3. Exact Solutions of High Dispersive Cubic-
Quintic Nonlinear Schrödinger Equation

3.1. Case (I) and Case (II). In this case, the Hamiltonian
system (8) becomes
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Thus, we have the following proposition on the distribution
of the equilibrium points of (14).
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The phase portraits of (14) are shown in Figure 1.
For the function defined by (15), we have
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Below, wewill give explicit and exact solutions of (7) (also
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where sn(𝑥, 𝑘) and below cn(𝑥, 𝑘) are Jacobian elliptic func-
tions with modulus 𝑘 [10]. The profiles of periodic solutions
are shown in Figure 2.

Thus, we obtain the following solutions of (1):
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(b) For 𝑐
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The profiles of solutions of (22) are shown in Figure 3.
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Figure 1: The phase portraits of system (14).

Remark 2. By the expression of 𝑐
0
, there always exists a 𝑤

0

such that 𝑐
0
= 0 if (𝑐

2
, 𝑐
4
) ∈ 𝐷4.

Because of the limitation of length, we omit the expres-
sion of 𝐸(𝑧, 𝑡), beginning from here.
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(b) For 𝑐
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there is no bounded solution of system (14).
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Similar to the previous discussion, we have the following
proposition.
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> 0, (27) has two equilibria at𝐸

21
(𝜓
21
, 0)

and 𝐸
22
(𝜓
22
, 0), where

𝜓
21
=

−𝑐
2
− √𝑐
2

2
− 3𝑐
1
𝑐
3

3𝑐
3

, 𝜓
22
=

−𝑐
2
+ √𝑐
2

2
− 3𝑐
1
𝑐
3

3𝑐
3

.

(29)

(2) For 𝑐2
2
− 3𝑐
1
𝑐
3
= 0, (27) has a unique equilibrium at

𝐸
20
(𝜓
20
, 0),where 𝜓

20
= −𝑐
2
/(3𝑐
3
).

(3) For 𝑐2
2
− 3𝑐
1
𝑐
3
< 0, (27) has no equilibrium.

Let ℎ
2𝑖
= 𝐻
1
(𝜓
2𝑖
, 0), 𝑖 = 0, 1, 2, and notice that we need

only to consider the case 𝑐
3
≥ 0 because of the invariance

of (27) under the transformations 𝜙 → −𝜙, 𝑦 → −𝑦, and
𝑐
3
→ −𝑐

3
.

(1) 𝑐2
2
− 3𝑐
1
𝑐
3
> 0 and 𝑐

0
∈ (ℎ
21
, ℎ
22
). In this case,

𝑐
3
𝜑
3

+ 𝑐
2
𝜑
2

+ 𝑐
1
𝜑 + 𝑐
0
= 0 (30)

has three mutually different real roots 𝜑
𝑚
< 𝜑
𝑙
< 𝜑
𝑀
; thus,

𝑐
3
𝜑
3

+ 𝑐
2
𝜑
2

+ 𝑐
1
𝜑 + 𝑐
0
= 𝑐
3
(𝜑 − 𝜑

𝑚
) (𝜑 − 𝜑

𝑙
) (𝜑 − 𝜑

𝑀
) .

(31)

Equation (7) has periodic wave solutions as follows:

𝜑
8
= 𝜑
𝑀
− ((𝜑
𝑀
− 𝜑
𝑙
) (𝜑
𝑀
− 𝜑
𝑚
))

× (𝜑
𝑀
− 𝜑
𝑚
− (𝜑
𝑙
− 𝜑
𝑚
) sn2

× (

√𝑐
3
(𝜑
𝑀
− 𝜑
𝑚
)

2
𝜉, √

𝜑
𝑙
− 𝜑
𝑚

𝜑
𝑀
− 𝜑
𝑚

))

−1

,

𝜑
9
= 𝜑
𝑚
+ (𝜑
𝑙
− 𝜑
𝑚
) sn2(

√𝑐
3
(𝜑
𝑀
− 𝜑
𝑚
)

2
𝜉, √

𝜑
𝑙
− 𝜑
𝑚

𝜑
𝑀
− 𝜑
𝑚

).

(32)

(2) 𝑐2
2
− 3𝑐
1
𝑐
3
> 0 and 𝑐

0
= ℎ
22
. In this case, 𝜑

22
is double

root of (30); suppose that 𝜑
𝑡
is other root of the equation,
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Figure 3: The wave profile of solutions (22), with the parameters values: 𝛾
1
= 𝛾
2
= 𝛽
1
= 𝛽
2
= 𝛽
3
= V = 1, 𝑤

0
= 0.06.

obviously 𝜑
𝑡
< 𝜑
22
, and we have a solitary wave solution of

peak type of (7) as follows:

𝜑
10
= 𝜑
𝑡
+ (𝜑
22
− 𝜑
𝑡
) tanh2 (1

2
√𝑐
3
(𝜑
22
− 𝜑
𝑡
)𝜉) . (33)

4. Conclusions

In this study, we apply bifurcation theory of dynamical
systems and the Fan subequation method to investigate (1),
and many new exact solutions have been obtained; most
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importantly, under more general conditions than [3], to the
best of our knowledge, these solutions have not been reported
in the literature.This method can help us find exact solutions
of other types of nonlinear dispersion partial differential
equations.
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