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This paper investigates the robust delay-dependent stability problem for neutral system with mixed delays and nonlinear
perturbations. A delay decomposition approach is used in this paper in which the information of the delayed plant states can be
taken into full consideration. Then, based on a special Lyapunov functional approach, the novel delay-dependent stability criteria
are obtained in terms of linear matrix inequalities (LMIs). A numerical example illustrates the effectiveness of the derived method
and the improvement over some existing methods.

1. Introduction

A neutral system that involves time delay in both state and
derivatives of state simultaneously is encountered in various
areas, including population ecology, heat exchange, and
steam processes. Due to its wider application, the problem
of the stability of neutral system has received considerable
attention bymany scholars in recent years [1–12]. Since delay-
dependent criteria are generally less conservative than delay-
independent ones [13], delay-dependent stability analysis for
neutral systems has obtained wide attention.

In practice, the systems often contain some uncertainties
since it is very difficult to obtain an exactmathematicalmodel
due to uncertain, environmental noise or slowly varying
parameters, and so forth. Therefore, the robust stability of
time-delay systems with nonlinearities has received consid-
erable attention [1–3, 7–11, 14–16]. Various methods aiming
at reducing the conservatism of these stability criteria have
been proposed. Fixed model transformation was the main
method employed in [1–3, 14], but these model transforma-
tions often introduce additional dynamics which leads to
relatively conservative results. The inequality methods were
used to estimate the upper bound of cross product terms
in the derivative of the Lyapunov functional in [15, 16].
In order to further improve the performance of stability

criteria, free-weighting matrix method was proposed in He
et al. [4, 17, 18], in which neither system transformation
nor bounding technique on some cross terms was involved.
However, this method introduced some slack variables apart
from matrix variables appearing in Lyapunov-Krasovskii
functionals. In addition, the utilization of augmented-type
Lyapunov-Krasovskii functionals proposed in [5, 6] has
provided significant improvements in the stability results for
neutral systems, while the above presented method needs
to decide more possible variables which will increase the
complexity of the computation. When the upper bound of
delay derivative may be larger than or equal to 1, the authors
in [19] used a delay decomposition approach and derived
new stability results. Motivated by the above discussions, we
will consider the stability results of neutral systems for time-
varying delays ℎ(𝑡) satisfying ℎ(𝑡) ∈ [0, 𝛿ℎ] (𝛿 < 1) and
ℎ(𝑡) ∈ (𝛿ℎ, ℎ], respectively. Compared with some existing
literatures, the delay decomposition method is useful for
reducing conservatism of the analysis result.

In this paper, our purpose is to present some new robust
delay-dependent stability criteria for neutral systems with
mixed delays and nonlinear perturbations. By constructing
appropriate Lyapunov-Krasovskii functional based on the
delay decomposition approach, some novel delay-dependent
stability conditions are derived without resorting to any
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model transformation and free weighting matrix technique.
All the stability criteria are expressed in terms of LMIs,
which can be solved efficiently by using standard convex
optimization algorithms. Finally, a numerical example is
given to illustrate the effectiveness and less conservatism of
the proposed method.

Notation.Throughout this paper,𝑇 stands formatrix transpo-
sition. R𝑛 is the 𝑛-dimensional Euclidean space. R𝑛×𝑚 is the
set of all 𝑛 × 𝑚-dimensional matrices. 𝐼 denotes the identity
matrix of appropriate dimensions. 𝑃 > 0 means that 𝑃 is
positive definite. 𝑃 ≥ 0 means that 𝑃 is positive semidefinite.
∗ represents the elements below the main diagonal of a
symmetric matrix.

2. Problem Statement

Consider the following neutral system with mixed delays and
nonlinear perturbations:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ (𝑡)) + 𝐶�̇� (𝑡 − 𝑑)

+ 𝑓
1
(𝑥 (𝑡) , 𝑡) + 𝑓

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡)

+ 𝑓
3
(�̇� (𝑡 − 𝑑) , 𝑡) ,

𝑥 (𝜃) = 𝜙 (𝜃) , �̇� (𝜃) = 𝜑 (𝜃) ,

∀𝜃 ∈ [−max {𝑑, ℎ} , 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and 𝐴, 𝐵, 𝐶 ∈ R𝑛×𝑛 are
constantmatriceswith appropriate dimensions. ℎ(𝑡) is a time-
varying discrete delay, and it is assumed to satisfy

0 ≤ ℎ (𝑡) ≤ ℎ, 0 ≤ ℎ̇ (𝑡) ≤ ℎ
𝑑
, (2)

where ℎ, ℎ
𝑑
are constants. 𝜙(𝜃), 𝜑(𝜃) are the initial con-

dition functions that are continuously differentiable on
[−max{𝑑, ℎ}, 0]. 𝑓

1
(𝑥(𝑡), 𝑡), 𝑓

2
(𝑥(𝑡 − ℎ(𝑡)), 𝑡), and 𝑓

3
(�̇�(𝑡 −

𝑑), 𝑡) are unknown nonlinear perturbations.They satisfy that
𝑓
1
(0, 𝑡) = 0, 𝑓

2
(0, 𝑡) = 0, 𝑓

3
(0, 𝑡) = 0, and

𝑓
𝑇

1
(𝑥 (𝑡) , 𝑡) 𝑓

1
(𝑥 (𝑡) , 𝑡) ≤ 𝛼

2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) ,

𝑓
𝑇

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡) 𝑓

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡)

≤ 𝛽
2

𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡)) ,

𝑓
𝑇

3
(�̇� (𝑡 − 𝑑) , 𝑡) 𝑓

3
(�̇� (𝑡 − 𝑑) , 𝑡)

≤ 𝛾
2

�̇�
𝑇

(𝑡 − 𝑑) �̇� (𝑡 − 𝑑) ,

(3)

where 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛾 ≥ 0 are given constants and,
for simplicity, 𝑓

1
:= 𝑓
1
(𝑥(𝑡), 𝑡), 𝑓

2
:= 𝑓
2
(𝑥(𝑡 − ℎ(𝑡)), 𝑡), and

𝑓
3
= 𝑓
3
(�̇�(𝑡 − 𝑑), 𝑡).

In this paper, we define the following scalar with respect
to the variation range of time delay which is

ℎ = 𝛿ℎ (0 < 𝛿 < 1) . (4)

It is easy to see that for all 𝑡 ∈ R+, we have ℎ(𝑡) ∈ [0, ℎ] or
ℎ(𝑡) ∈ (ℎ, ℎ]. Consequently, in the proof of our main results,

we will derive the delay-dependent stability criterion for two
sets, respectively.

Before proceeding further, we will state the following
well-known lemmas and definition.

Lemma 1 (see [12]). For any positive semidefinite matrices,

𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
23

) ≥ 0, (5)

the following integral inequality holds:

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠)𝑋
33
�̇� (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡−ℎ(𝑡)

(𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − ℎ (𝑡)) , �̇�
𝑇

(𝑠))

× (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
0

)(

𝑥 (𝑡)

𝑥 (𝑡 − ℎ (𝑡))

�̇� (𝑠)

)𝑑𝑠.

(6)

Lemma 2 (Schur complement). Given one positive definite
matrix 𝑆

2
> 0 and constant matrices 𝑆

1
, 𝑆
3
, where 𝑆

1
= 𝑆
𝑇

1
,

then 𝑆
1
+ 𝑆
𝑇

3
𝑆
−1

2
𝑆
3
< 0 if and only if

(
𝑆
1

𝑆
𝑇

3

𝑆
3

−𝑆
2

) < 0 𝑜𝑟 (
−𝑆
2

𝑆
3

𝑆
𝑇

3
𝑆
1

) < 0. (7)

The operator D : C([−𝑑, 0],R𝑛) → R𝑛 is defined to be
D(𝑡) = 𝑥(𝑡) − 𝐶𝑥(𝑡 − 𝑑). Its stability is defined as follows.

Definition 3 (see [21]). The operator D is said to be stable
if the zero solution of the homogeneous difference equation
D(𝑡) = 0, 𝑡 ≥ 0, 𝑥

0
= 𝜓 ∈ {𝜙 ∈ C([−𝑑, 0] : D𝜙 = 0)} is

uniformly asymptotically stable.

3. Stability Analysis

In this section, we first present a delay-dependent robust
criterion for the system (1) with uncertainty (3), with a delay
decomposition approach.

Theorem 4. If 0 < ℎ(𝑡) ≤ ℎ, for given scalars 𝛼, 𝛽, and 𝛾,
system (1) with uncertainty (3) is robustly stable if D is stable
and there exist positive semidefinite matrices,

𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
23

) ≥ 0,
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𝑌 = (

𝑌
11

𝑌
12

𝑌
13

𝑌
𝑇

12
𝑌
22

𝑌
23

𝑌
𝑇

13
𝑌
𝑇

23
𝑌
23

) ≥ 0,

𝑍 = (

𝑍
11

𝑍
12

𝑍
13

𝑍
𝑇

12
𝑍
22

𝑍
23

𝑍
𝑇

13
𝑍
𝑇

23
𝑍
23

) ≥ 0,

(8)

and positive definite matrices 𝑃 > 0, 𝑅 > 0, 𝑊 > 0, 𝑄
𝑖
> 0,

and𝑅
𝑖
> 0 (𝑖 = 1, 2, 3) such that the following symmetric linear

matrix inequalities hold:

Θ = (
Θ
1

Γ
𝑇

Λ

Λ
𝑇

Γ −Λ
) < 0, (9)

𝑅
1
− 𝑋
33

≥ 0, 𝑅
2
− 𝑌
33

≥ 0, 𝑅
1
+ 𝑅
3
− 𝑍
33

≥ 0,

(10)

where

Γ = (𝐴, 𝐵, 0, 0, 0, 𝐶, 𝐼, 𝐼, 𝐼) ,

Λ = 𝑊 + 𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ ℎ𝑅
3
,

Θ
1
=

(
(
(
(
(
(
(

(

Θ
11

Θ
12

−𝐴
𝑇

𝑃𝐶 0 0 0 𝑃 𝑃 𝑃

∗ Θ
22

−𝐵
𝑇

𝑃𝐶 0 Θ
25

0 0 0 0

∗ ∗ −𝑅 0 0 0 −𝐶
𝑇

𝑃 −𝐶
𝑇

𝑃 −𝐶
𝑇

𝑃

∗ ∗ ∗ −𝑊 + 𝜀
3
𝛾
2

𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ Θ
55

Θ
56

0 0 0

∗ ∗ ∗ ∗ ∗ Θ
66

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

)
)
)
)
)
)
)

)

,

(11)

with

Θ
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑅 + 𝑄
1
+ 𝑄
3
+ 𝛿ℎ𝑍

11

+ 𝑍
13

+ 𝑍
𝑇

13
+ 𝜀
1
𝛼
2

𝐼,

Θ
12

= 𝑃𝐵 + 𝛿ℎ𝑍
12

− 𝑍
13

+ 𝑍
𝑇

23
,

Θ
22

= − (1 − ℎ
𝑑
) 𝑄
3
+ 𝛿ℎ𝑋

11
+ 𝑋
13

+ 𝑋
𝑇

13

+ 𝛿ℎ𝑍
22

− 𝑍
23

− 𝑍
𝑇

23
+ 𝜀
2
𝛽
2

𝐼,

Θ
25

= 𝛿ℎ𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
,

Θ
55

= 𝑄
2
− 𝑄
1
+ 𝛿ℎ𝑋

22
− 𝑋
23

− 𝑋
𝑇

23

+ (1 − 𝛿) ℎ𝑌
11

+ 𝑌
13

+ 𝑌
𝑇

13
,

Θ
56

= (1 − 𝛿) ℎ𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
,

Θ
66

= − 𝑄
2
+ (1 − 𝛿) ℎ𝑌

22
− 𝑌
23

− 𝑌
𝑇

23
.

(12)

Proof. Choose a Lyapunov functional candidate for the sys-
tem (1) to be

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) , (13)

where

𝑉
1
(𝑡) = D

𝑇

(𝑥
𝑡
) 𝑃D (𝑥

𝑡
) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝑑

�̇�
𝑇

(𝑠)𝑊�̇� (𝑠) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝛿ℎ

𝑥
𝑇

(𝑠) 𝑄
1
𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡−𝛿ℎ

𝑡−ℎ

𝑥
𝑇

(𝑠) 𝑄
2
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

(𝑠) 𝑄
3
𝑥 (𝑠) 𝑑𝑠,

𝑉
4
(𝑡) = ∫

0

−𝛿ℎ

∫

𝑡

𝑡+𝜃

𝑑�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝛿ℎ

−ℎ

∫

𝑡

𝑡+𝜃

𝑑�̇�
𝑇

(𝑠) 𝑅
2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑑�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

(14)

where 𝑃 = 𝑃
𝑇

> 0, 𝑅 = 𝑅
𝑇

> 0, 𝑊 = 𝑊
𝑇

> 0, 𝑅
𝑖
= 𝑅
𝑇

𝑖
> 0,

and 𝑄
𝑖
= 𝑄
𝑇

𝑖
> 0 (𝑖 = 1, 2, 3) are to be determined.
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Next, from (3), we can obtain for any scalars 𝜀
1
> 0, 𝜀
2
> 0,

and 𝜀
3
> 0,

𝜀
1
(𝛼
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

1
(𝑥 (𝑡) , 𝑡) 𝑓

1
(𝑥 (𝑡) , 𝑡)) ≥ 0,

𝜀
2
(𝛽
2

𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡))

−𝑓
𝑇

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡) 𝑓

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡)) ≥ 0,

𝜀
3
(𝛾
2

�̇�
𝑇

(𝑡 − 𝑑) �̇� (𝑡 − 𝑑)

−𝑓
𝑇

3
(�̇� (𝑡 − 𝑑) , 𝑡) 𝑓

3
(�̇� (𝑡 − 𝑑) , 𝑡)) ≥ 0.

(15)

Now calculate the derivative of 𝑉(𝑡) along the trajectory
of the system (1); we derive

�̇�
1
(𝑡) = 2D

𝑇

(𝑥
𝑡
) 𝑃Ḋ (𝑥

𝑡
)

= 2 (𝑥
𝑇

(𝑡) − 𝑥
𝑇

(𝑡 − 𝑑) 𝐶
𝑇

)

× 𝑃 (𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ (𝑡)) + 𝑓
1
+ 𝑓
2
+ 𝑓
3
)

= 𝑥
𝑇

(𝑡) (𝑃𝐴 + 𝐴
𝑇

𝑃) 𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝐵𝑥 (𝑡 − ℎ (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃𝑓
1
+ 2𝑥
𝑇

(𝑡) 𝑃𝑓
2

+ 2𝑥
𝑇

(𝑡) 𝑃𝑓
3
− 2𝑥
𝑇

(𝑡 − 𝑑) 𝐶
𝑇

𝑃𝐴𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡 − 𝑑) 𝐶
𝑇

𝑃𝐵𝑥 (𝑡 − ℎ (𝑡))

− 2𝑥
𝑇

(𝑡 − 𝑑) 𝐶
𝑇

𝑃𝑓
1
− 2𝑥
𝑇

(𝑡 − 𝑑) 𝐶
𝑇

𝑃𝑓
2

− 2𝑥
𝑇

(𝑡 − 𝑑) 𝐶
𝑇

𝑃𝑓
3
,

(16)

�̇�
2
(𝑡) = 𝑥

𝑇

(𝑡) 𝑅𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝑑) 𝑅𝑥 (𝑡 − 𝑑)

+ �̇�
𝑇

(𝑡)𝑊�̇� (𝑡) − �̇�
𝑇

(𝑡 − 𝑑)𝑊�̇� (𝑡 − 𝑑) ,

(17)

�̇�
3
(𝑡) ≤ 𝑥

𝑇

(𝑡) (𝑄
1
+ 𝑄
3
) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝛿ℎ) (𝑄
2
− 𝑄
1
) 𝑥 (𝑡 − 𝛿ℎ)

− 𝑥
𝑇

(𝑡 − ℎ)𝑄
2
𝑥 (𝑡 − ℎ)

− (1 − ℎ
𝑑
) 𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑄
3
𝑥 (𝑡 − ℎ (𝑡)) ,

(18)

�̇�
4
(𝑡) = �̇�

𝑇

(𝑡) (𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ ℎ𝑅
3
) �̇� (𝑡)

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠

≤ �̇�
𝑇

(𝑡) (𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ ℎ𝑅
3
) �̇� (𝑡)

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠.

(19)

Now, we estimate the upper bound of the last three terms
in inequality (19) as

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠

= −∫

𝑡−ℎ(𝑡)

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
) �̇� (𝑠) 𝑑𝑠

= −∫

𝑡−ℎ(𝑡)

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) (𝑅
1
− 𝑋
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) (𝑅
2
− 𝑌
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
− 𝑍
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠)𝑋
33
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑍
33
�̇� (𝑠) 𝑑𝑠.

(20)

By virtue of Lemma 1, if 0 < ℎ(𝑡) ≤ ℎ, we get

− ∫

𝑡−ℎ(𝑡)

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠)𝑋
33
�̇� (𝑠) 𝑑𝑠

≤ ∫

𝑡−ℎ(𝑡)

𝑡−𝛿ℎ

(𝑥
𝑇

(𝑡 − ℎ (𝑡)) , 𝑥
𝑇

(𝑡 − 𝛿ℎ) , �̇�
𝑇

(𝑠))

× (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
0

)(

𝑥 (𝑡 − ℎ (𝑡))

𝑥 (𝑡 − 𝛿ℎ)

�̇� (𝑠)

)𝑑𝑠

≤ 𝑥
𝑇

(𝑡 − ℎ (𝑡)) (𝛿ℎ𝑋
11

+ 𝑋
𝑇

13
+ 𝑋
13
) 𝑥 (𝑡 − ℎ (𝑡))

+ 2𝑥
𝑇

(𝑡 − ℎ (𝑡)) (𝛿ℎ𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
) 𝑥 (𝑡 − 𝛿ℎ)

+ 𝑥
𝑇

(𝑡 − 𝛿ℎ) (𝛿ℎ𝑋
22

− 𝑋
23

− 𝑋
𝑇

23
) 𝑥 (𝑡 − 𝛿ℎ) .

(21)
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Then, similarly, we obtain

− ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡 − 𝛿ℎ) ((1 − 𝛿ℎ) 𝑌
11

+ 𝑌
𝑇

13
+ 𝑌
13
) 𝑥 (𝑡 − 𝛿ℎ)

+ 2𝑥
𝑇

(𝑡 − 𝛿ℎ) ((1 − 𝛿) ℎ𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
) 𝑥 (𝑡 − ℎ)

+ 𝑥
𝑇

(𝑡 − ℎ) ((1 − 𝛿) ℎ𝑌
22

− 𝑌
23

− 𝑌
𝑇

23
) 𝑥 (𝑡 − ℎ) ,

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑍
33
�̇� (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) (𝛿ℎ𝑍
11

+ 𝑍
𝑇

13
+ 𝑍
13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝛿ℎ𝑍
12

− 𝑍
13

+ 𝑍
𝑇

23
) 𝑥 (𝑡 − ℎ (𝑡))

+ 𝑥
𝑇

(𝑡 − ℎ (𝑡)) (𝛿ℎ𝑍
22

− 𝑍
23

− 𝑍
𝑇

23
) 𝑥 (𝑡 − ℎ (𝑡)) .

(22)

Then combining (15)–(22) yields

�̇� (𝑡) ≤ �̇�
1
(𝑡) + �̇�

2
(𝑡) + �̇�

3
(𝑡) + �̇�

4
(𝑡)

+ 𝜀
1
(𝛼
2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝑓
𝑇

1
(𝑥 (𝑡) , 𝑡) 𝑓

1
(𝑥 (𝑡) , 𝑡))

+ 𝜀
2
(𝛽
2

𝑥
𝑇

(𝑡 − ℎ (𝑡)) 𝑥 (𝑡 − ℎ (𝑡))

−𝑓
𝑇

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡) 𝑓

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡))

+ 𝜀
3
(𝛾
2

�̇�
𝑇

(𝑡 − 𝑑) �̇� (𝑡 − 𝑑)

−𝑓
𝑇

3
(�̇� (𝑡 − 𝑑) , 𝑡) 𝑓

3
(�̇� (𝑡 − 𝑑) , 𝑡))

= 𝑥
𝑇

(𝑡) (𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑅 + 𝑄
1
+ 𝑄
3
+ 𝛿ℎ𝑍

11

+𝑍
13

+ 𝑍
𝑇

13
+ 𝜀
1
𝛼
2

𝐼) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑃𝐵 + 𝛿ℎ𝑍
12

− 𝑍
13

+ 𝑍
𝑇

23
) 𝑥 (𝑡 − ℎ (𝑡))

+ 2𝑥
𝑇

(𝑡) (−𝐴
𝑇

𝑃𝐶) 𝑥 (𝑡 − 𝑑) + 2𝑥
𝑇

(𝑡) 𝑃𝑓
1

+ 2𝑥
𝑇

(𝑡) 𝑃𝑓
2
+ 2𝑥
𝑇

(𝑡) 𝑃𝑓
3
+ 𝑥
𝑇

(𝑡 − ℎ (𝑡))

× (− (1 − ℎ
𝑑
) 𝑄
3
+ 𝛿ℎ𝑋

11
+ 𝑋
13

+ 𝑋
𝑇

13
+ 𝛿ℎ𝑍

22

−𝑍
23

− 𝑍
𝑇

23
+ 𝜀
2
𝛽
2

𝐼) 𝑥 (𝑡 − ℎ (𝑡))

+ 2𝑥
𝑇

(𝑡 − ℎ (𝑡)) (−𝐵
𝑇

𝑃𝐶) 𝑥 (𝑡 − 𝑑)

+ 2𝑥
𝑇

(𝑡 − ℎ (𝑡)) (𝛿ℎ𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
) 𝑥 (𝑡 − 𝛿ℎ)

+ 𝑥
𝑇

(𝑡 − 𝑑) (−𝑅) 𝑥 (𝑡 − 𝑑) + 2𝑥
𝑇

(𝑡 − 𝑑) (−𝐶
𝑇

𝑃)𝑓
1

+ 2𝑥
𝑇

(𝑡 − 𝑑) (−𝐶
𝑇

𝑃)𝑓
2
+ 2𝑥
𝑇

(𝑡 − 𝑑) (−𝐶
𝑇

𝑃)𝑓
3

+ �̇�
𝑇

(𝑡 − 𝑑) (−𝑊 + 𝜀
3
𝛾
2

𝐼) �̇� (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡 − 𝛿ℎ) (𝑄
2
− 𝑄
1
+ 𝛿ℎ𝑋

22
− 𝑋
23

− 𝑋
𝑇

23

+ (1 − 𝛿) ℎ𝑌
11

+ 𝑌
13

+ 𝑌
𝑇

13
) 𝑥 (𝑡 − 𝛿ℎ)

+ 2𝑥
𝑇

(𝑡 − 𝛿ℎ) ((1 − 𝛿) ℎ𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
) 𝑥 (𝑡 − ℎ)

+ �̇�
𝑇

(𝑡) (𝑊 + 𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ 𝛿ℎ𝑅

3
) �̇� (𝑡)

− 𝜀
1
𝑓
𝑇

1
𝑓
1
− 𝜀
2
𝑓
𝑇

2
𝑓
2
− 𝜀
3
𝑓
𝑇

3
𝑓
3

≤ 𝜉
𝑇

(𝑡) (Θ
1
+ Γ
𝑇

ΛΓ) 𝜉 (𝑡)

− ∫

𝑡−ℎ(𝑡)

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) (𝑅
1
− 𝑋
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) (𝑅
2
− 𝑌
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
− 𝑍
33
) �̇� (𝑠) 𝑑𝑠,

(23)

where

𝜉 (𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − ℎ (𝑡)) , 𝑥
𝑇

(𝑡 − 𝑑) ,

�̇�
𝑇

(𝑡 − 𝑑), 𝑓
𝑇

1
, 𝑓
𝑇

2
, 𝑓
𝑇

3
]
𝑇

.

(24)

If 𝑅
1
− 𝑋
33

≥ 0, 𝑅
2
− 𝑌
33

≥ 0, 𝑅
1
+ 𝑅
3
− 𝑍
33

≥ 0, and
0 ≤ ℎ(𝑡) ≤ 𝛿ℎ, we can derive

Θ
1
+ Γ
𝑇

ΛΓ < 0 (25)

from (9) and the Schur complement. Obviously, from (25), we
can get �̇�(𝑡) < 0. Therefore, according to [21], if there exist
symmetric positive definite matrices 𝑃 > 0, 𝑅 > 0, 𝑊 > 0,
𝑄
𝑖
> 0, and 𝑅

𝑖
> 0 (𝑖 = 1, 2, 3) such that the LMIs (9) and (10)

are satisfied, then system (1) is robustly stable.This completes
the proof.

Theorem 5. If ℎ < ℎ(𝑡) ≤ ℎ, for given scalars 𝛼, 𝛽, and 𝛾,
system (1) with uncertainty (3) is robustly stable if D is stable
and there exist positive semidefinite matrices,

𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
23

) ≥ 0,
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𝑌 = (

𝑌
11

𝑌
12

𝑌
13

𝑌
𝑇

12
𝑌
22

𝑌
23

𝑌
𝑇

13
𝑌
𝑇

23
𝑌
23

) ≥ 0,

𝑍 = (

𝑍
11

𝑍
12

𝑍
13

𝑍
𝑇

12
𝑍
22

𝑍
23

𝑍
𝑇

13
𝑍
𝑇

23
𝑍
23

) ≥ 0,

(26)

and positive definite matrices 𝑃 > 0, 𝑅 > 0, 𝑊 > 0, 𝑄
𝑖
> 0,

and𝑅
𝑖
> 0 (𝑖 = 1, 2, 3) such that the following symmetric linear

matrix inequalities hold:

Θ̂ = (
Θ̂
1

Γ
𝑇

Λ

Λ
𝑇

Γ −Λ
) < 0,

𝑅
1
+ 𝑅
3
− 𝑋
33

≥ 0,

𝑅
2
+ 𝑅
3
− 𝑌
33

≥ 0,

𝑅
2
− 𝑍
33

≥ 0,

(27)

where

Γ = (𝐴, 𝐵, 0, 0, 0, 𝐶, 𝐼, 𝐼, 𝐼) ,

Λ = 𝑊 + 𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ ℎ𝑅
3
,

Θ̂ =

(
(
(
(
(
(
(
(
(
(
(
(

(

Θ̂
11

𝑃𝐵 −𝐴
𝑇

𝑃𝐶 0 Θ̂
15

0 𝑃 𝑃 𝑃

∗ Θ̂
22

−𝐵
𝑇

𝑃𝐶 0 Θ̂
25

Θ̂
26

0 0 0

∗ ∗ −𝑅 0 0 0 −𝐶
𝑇

𝑃 −𝐶
𝑇

𝑃 −𝐶
𝑇

𝑃

∗ ∗ ∗ −𝑊 + 𝜀
3
𝛾
2

𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ Θ̂
55

0 0 0 0

∗ ∗ ∗ ∗ ∗ Θ̂
66

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

)
)
)
)
)
)
)
)
)
)
)
)

)

,

(28)

with

Θ̂
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑅 + 𝑄
1
+ 𝑄
3
+ 𝛿ℎ𝑋

11

+ 𝑋
13

+ 𝑋
𝑇

13
+ 𝜀
1
𝛼
2

𝐼,

Θ̂
15

= 𝛿𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
,

Θ̂
22

= − (1 − ℎ
𝑑
) 𝑄
3
+ (1 − 𝛿) ℎ𝑌

22
− 𝑌
23

− 𝑌
𝑇

23
+ (1 − 𝛿) ℎ𝑍

11
+ 𝑍
13

+ 𝑍
𝑇

13
+ 𝜀
2
𝛽
2

𝐼,

Θ̂
25

= (1 − 𝛿) ℎ𝑌
𝑇

12
− 𝑌
𝑇

13
+ 𝑌
23
,

Θ̂
26

= (1 − 𝛿) ℎ𝑍
12

− 𝑍
13

+ 𝑌
𝑇

23
,

Θ̂
55

= 𝑄
2
− 𝑄
1
+ 𝛿ℎ𝑋

22
− 𝑋
23

− 𝑋
𝑇

23

+ (1 − 𝛿) ℎ𝑌
11

+ 𝑌
13

+ 𝑌
𝑇

13
,

Θ̂
66

= − 𝑄
2
+ (1 − 𝛿) ℎ𝑍

22
− 𝑍
23

− 𝑍
𝑇

23
.

(29)

Proof. If ℎ < ℎ(𝑡) ≤ ℎ, we get

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) 𝑅
1
�̇� (𝑠) 𝑑𝑠 − ∫

𝑡−𝛿ℎ

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑅
2
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑅
3
�̇� (𝑠) 𝑑𝑠

= −∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
− 𝑋
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝛿ℎ

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) (𝑅
2
+ 𝑅
3
− 𝑌
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇

(𝑠) (𝑅
2
− 𝑍
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠)𝑋
33
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝛿ℎ

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑍
33
�̇� (𝑠) 𝑑𝑠.

(30)
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By virtue of Lemma 1, notice that 𝑅
1
+𝑅
3
−𝑋
33

≥ 0, 𝑅
2
+

𝑅
3
− 𝑌
33

≥ 0, and 𝑅
2
− 𝑍
33

≥ 0; it yields

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠)𝑋
33
�̇� (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) (𝛿ℎ𝑋
11

+ 𝑋
𝑇

13
+ 𝑋
13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝛿ℎ𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
) 𝑥 (𝑡 − 𝛿ℎ)

+ 𝑥
𝑇

(𝑡 − 𝛿ℎ) (𝛿ℎ𝑋
22

− 𝑋
23

− 𝑋
𝑇

23
) 𝑥 (𝑡 − 𝛿ℎ) ,

(31)

− ∫

𝑡−𝛿ℎ

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡 − 𝛿ℎ) ((1 − 𝛿ℎ) 𝑌
11

+ 𝑌
𝑇

13
+ 𝑌
13
) 𝑥 (𝑡 − 𝛿ℎ)

+ 2𝑥
𝑇

(𝑡 − 𝛿ℎ) ((1 − 𝛿) ℎ𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
) 𝑥 (𝑡 − ℎ (𝑡))

+ 𝑥
𝑇

(𝑡 − ℎ (𝑡)) ((1 − 𝛿) ℎ𝑌
22

− 𝑌
23

− 𝑌
𝑇

23
) 𝑥 (𝑡 − ℎ (𝑡)) ,

(32)

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇

(𝑠) 𝑍
33
�̇� (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡 − ℎ (𝑡)) ((1 − 𝛿) ℎ𝑍
11

+ 𝑍
𝑇

13
+ 𝑍
13
) 𝑥 (𝑡 − ℎ (𝑡))

+ 2𝑥
𝑇

(𝑡 − ℎ (𝑡)) ((1 − 𝛿) ℎ𝑍
12

− 𝑍
13

+ 𝑍
𝑇

23
) 𝑥 (𝑡 − ℎ)

+ 𝑥
𝑇

(𝑡 − ℎ (𝑡)) ((1 − 𝛿) ℎ𝑍
22

− 𝑍
23

− 𝑍
𝑇

23
) 𝑥 (𝑡 − ℎ) .

(33)

Then combining (15)–(19) and (31)–(33) yields

�̇� (𝑡) ≤ 𝜉
𝑇

(𝑡) (Θ̂
1
+ Γ
𝑇

ΛΓ) 𝜉 (𝑡)

− ∫

𝑡

𝑡−𝛿ℎ

�̇�
𝑇

(𝑠) (𝑅
1
+ 𝑅
3
− 𝑋
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝛿ℎ

𝑡−ℎ(𝑡)

�̇�
𝑇

(𝑠) (𝑅
2
+ 𝑅
3
− 𝑌
33
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ(𝑡)

𝑡−ℎ

�̇�
𝑇

(𝑠) (𝑅
2
− 𝑍
33
) �̇� (𝑠) 𝑑𝑠.

(34)

Next, similar to Theorem 4, we can get the result of
Theorem 5. This completes the proof.

Remark 6. Theorems 4 and 5 give the delay-dependent and
rate-dependent robust stability criteria for system (1) with
uncertainty (3) by employing delay decomposition approach
as in [12].Theproposed criteria use as few as possible decision
variables while showing less conservativeness in comparison
to those in [7–11].

Remark 7. When 𝐶 = 0 and 𝑓
3
(�̇�(𝑡 − 𝑑), 𝑡) ≡ 0, the system (1)

can be reduced to the following system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − ℎ (𝑡))

+ 𝑓
1
(𝑥 (𝑡) , 𝑡) + 𝑓

2
(𝑥 (𝑡 − ℎ (𝑡)) , 𝑡) ,

𝑥 (𝜃) = 𝜙 (𝜃) , �̇� (𝜃) = 𝜑 (𝜃) , ∀𝜃 ∈ [−ℎ, 0] .

(35)

Wewill show the obtained stability criteria for this case in
Corollaries 8 and 9.

Corollary 8. If 0 < ℎ(𝑡) ≤ ℎ, for given scalars 𝛼 and 𝛽, system
(35)with uncertainty (3) is robustly stable if there exist positive
semidefinite matrices,

𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
23

) ≥ 0,

𝑌 = (

𝑌
11

𝑌
12

𝑌
13

𝑌
𝑇

12
𝑌
22

𝑌
23

𝑌
𝑇

13
𝑌
𝑇

23
𝑌
23

) ≥ 0,

𝑍 = (

𝑍
11

𝑍
12

𝑍
13

𝑍
𝑇

12
𝑍
22

𝑍
23

𝑍
𝑇

13
𝑍
𝑇

23
𝑍
23

) ≥ 0,

(36)

and positive definite matrices 𝑃 > 0, 𝑅 > 0, 𝑊 > 0, 𝑄
𝑖
> 0,

and𝑅
𝑖
> 0 (𝑖 = 1, 2, 3) such that the following symmetric linear

matrix inequalities hold:

Π = (
Π
1

Γ
𝑇

Λ̂

Λ̂
𝑇

Γ̂ −Λ̂
) < 0,

𝑅
1
− 𝑋
33

≥ 0, 𝑅
2
− 𝑌
33

≥ 0,

(37)

where

Γ̂ = (𝐴, 𝐵, 0, 0, 𝐼, 𝐼, 𝐼) ,

Λ̂ = 𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ ℎ𝑅
3
,

Π
1
=

(
(
(

(

Π
11

Π
12

0 0 𝑃 𝑃 𝑃

∗ Π
22

Π
23

0 0 0 0

∗ ∗ Π
33

Π
34

0 0 0

∗ ∗ ∗ Π
44

0 0 0

∗ ∗ ∗ ∗ −𝜀
1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

)
)
)

)

,

(38)
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with

Π
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄
1
+ 𝑄
3
+ 𝛿ℎ𝑍

11
+ 𝑍
13

+ 𝑍
𝑇

13
+ 𝜀
1
𝛼
2

𝐼,

Π
12

= 𝑃𝐵 + 𝛿ℎ𝑍
12

− 𝑍
13

+ 𝑍
𝑇

23
,

Π
22

= − (1 − ℎ
𝑑
) 𝑄
3
+ 𝛿ℎ𝑋

11
+ 𝑋
13

+ 𝑋
𝑇

13
+ 𝛿ℎ𝑍

22

− 𝑍
23

− 𝑍
𝑇

23
+ 𝜀
2
𝛽
2

𝐼,

Π
23

= 𝛿ℎ𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
,

Π
33

= 𝑄
2
− 𝑄
1
+ 𝛿ℎ𝑋

22
− 𝑋
23

− 𝑋
𝑇

23

+ (1 − 𝛿) ℎ𝑌
11

+ 𝑌
13

+ 𝑌
𝑇

13
,

Π
34

= (1 − 𝛿) ℎ𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
,

Π
44

= −𝑄
2
+ (1 − 𝛿) ℎ𝑌

22
− 𝑌
23

− 𝑌
𝑇

23
.

(39)

Corollary 9. If ℎ < ℎ(𝑡) ≤ ℎ, for given scalars 𝛼 and 𝛽, system
(35)with uncertainty (3) is robustly stable if there exist positive
semidefinite matrices

𝑋 = (

𝑋
11

𝑋
12

𝑋
13

𝑋
𝑇

12
𝑋
22

𝑋
23

𝑋
𝑇

13
𝑋
𝑇

23
𝑋
23

) ≥ 0,

𝑌 = (

𝑌
11

𝑌
12

𝑌
13

𝑌
𝑇

12
𝑌
22

𝑌
23

𝑌
𝑇

13
𝑌
𝑇

23
𝑌
23

) ≥ 0,

𝑍 = (

𝑍
11

𝑍
12

𝑍
13

𝑍
𝑇

12
𝑍
22

𝑍
23

𝑍
𝑇

13
𝑍
𝑇

23
𝑍
23

) ≥ 0,

(40)

and positive definite matrices 𝑃 > 0, 𝑅 > 0, 𝑊 > 0, 𝑄
𝑖
> 0,

and𝑅
𝑖
> 0 (𝑖 = 1, 2, 3) such that the following symmetric linear

matrix inequalities hold:

Π̂ = (
Π̂
1

Γ̂
𝑇

Λ̂

Λ̂
𝑇

Γ̂ −Λ̂
) < 0,

𝑅
1
+ 𝑅
3
− 𝑍
33

≥ 0, 𝑅
2
− 𝑍
33

≥ 0,

(41)

where
Γ̂ = (𝐴, 𝐵, 0, 0, 𝐼, 𝐼, 𝐼) ,

Λ̂ = 𝛿ℎ𝑅
1
+ (1 − 𝛿) ℎ𝑅

2
+ ℎ𝑅
3
,

Π̂
1
=

(
(
(

(

Π̂
11

𝑃𝐵 Π̂
13

0 𝑃 𝑃 𝑃

∗ Π̂
22

Π̂
23

0 0 0 0

∗ ∗ Π
33

0 0 0 0

∗ ∗ ∗ Π
44

0 0 0

∗ ∗ ∗ ∗ −𝜀
1
𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀
2
𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀
3
𝐼

)
)
)

)

,

(42)

with
Π̂
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄
1
+ 𝑄
3
+ 𝛿ℎ𝑋

11

+ 𝑋
13

+ 𝑋
𝑇

13
+ 𝜀
1
𝛼
2

𝐼,

Π̂
13

= 𝛿𝑋
12

− 𝑋
13

+ 𝑋
𝑇

23
,

Π̂
22

= − (1 − ℎ
𝑑
) 𝑄
3
+ (1 − 𝛿) ℎ𝑌

22
− 𝑌
23

− 𝑌
𝑇

23
+ (1 − 𝛿) ℎ𝑍

11
+ 𝑍
13

+ 𝑍
𝑇

13
+ 𝜀
2
𝛽
2

𝐼,

Π̂
23

= (1 − 𝛿) ℎ𝑌
𝑇

12
− 𝑌
𝑇

13
+ 𝑌
23
,

Π̂
24

= (1 − 𝛿) ℎ𝑍
12

− 𝑍
13

+ 𝑌
𝑇

23
,

Π̂
44

= − 𝑄
2
+ (1 − 𝛿) ℎ𝑍

22
− 𝑍
23

− 𝑍
𝑇

23
.

(43)

Remark 10. The norm-bounded uncertainties can be treated
as a special case of nonlinear perturbations.Then, the criteria
obtained in Theorems 4 and 5 and Corollaries 8 and 9
can also be applicable to the system with norm-bounded
uncertainties.

Remark 11. Note that the interval [𝑡 − ℎ, 𝑡] is divided into
subintervals [𝑡 − ℎ, 𝑡 − 𝛿ℎ] and [𝑡 − 𝛿ℎ, 𝑡] in the proof of
Theorems 4 and 5 and Corollaries 8 and 9, and then the
information of delayed state 𝑥(𝑡 − 𝛿ℎ) can be taken into
account. It is clear that the Lyapunov functional defined in
our results is more general than the ones in [2, 3, 7–11, 14, 20]
which can be seen from the following example.

4. Illustrative Example

In this section, an example is presented to illustrate the
effectiveness of the stability method proposed in this paper.

Example 1. Consider the following system as in [1] with

𝐴 = (
−1.2 0.1

−0.1 −1
) ,

𝐵 = (
−0.6 0.7

−1 −0.8
) ,

𝐶 = (
𝑐 0

0 𝑐
) ,
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Table 1: Maximum upper bound of ℎ with ℎ
𝑑
= 0.5 and different values of 𝛾.

𝛾 𝛼 = 0 𝛼 = 0.1

0 0.1 0.2 0.3 0 0.1 0.2 0.3
Rakkiyappan et al. [9] 1.4886 1.2437 0.9921 0.7367 1.3244 1.0901 0.8475 0.6300
Qiu et al. [8] 1.5998 1.3998 1.1998 0.9998 1.5998 1.3998 1.1998 0.9998
Lakshmanan et al. [10] 1.6325 1.3386 1.0816 0.8563 1.4440 1.1950 0.9734 0.7760
Cheng et al. [11] 1.6865 1.3721 1.0923 0.8613 1.4721 1.2466 0.9996 0.7804
Theorem 4 (𝛿 = 0.4) 2.2937 1.8505 1.4565 1.1105 2.0417 1.6541 1.3062 0.9982

Table 2: Maximum upper bound of 𝑑 = ℎ with different values of 𝛾.

𝑐 0.1 0.2 0.3 0.4 0.5 0.6
Zhang and Yu [3] 0.4911 0.4125 0.3382 0.2671 0.1975 0.1294
Qiu et al. [7] 1.8567 1.6242 1.3917 1.1592 0.9270 0.6945
Theorem 4 2.1916 (𝛿 = 0.25) 1.6632 (𝛿 = 0.25) 1.4743 (𝛿 = 0.2) 1.2396 (𝛿 = 0.15) 0.9288 (𝛿 = 0.1) 0.7446 (𝛿 = 0.02)

𝑓
𝑇

1
(𝑥 (𝑡) , 𝑡) 𝑓

1
(𝑥 (𝑡) , 𝑡) ≤ 𝛼

2

𝑥
𝑇

(𝑡) 𝑥 (𝑡) ,

𝑓
𝑇

2
(𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑡) 𝑓

2
(𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑡)

≤ 𝛽
2

𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑓
𝑇

3
(�̇� (𝑡 − 𝑑) , 𝑡) 𝑓

3
(�̇� (𝑡 − 𝑑) , 𝑡)

≤ 𝛾
2

�̇�
𝑇

(𝑡 − 𝑑) �̇� (𝑡 − 𝑑) ,

(44)

where 0 ≤ |𝑐| < 1, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛾 ≥ 0.

Case I. For 𝑐 = 0.1, 𝛽 = 0.1, 𝑑 = 1, and ℎ
𝑑

= 0.5

and different values of 𝛾, we consider the maximal allowable
value ℎ that guarantees the robust stability of the system by
applying criteria in [8–11] and in this work. Table 1 illustrates
the numerical results for different 𝛾, 𝛼 = 0 and 𝛼 = 0.1,
respectively. From Table 1, one can see that the maximum
allowable delay ℎ decreases as 𝛾 increases. In addition, it is
easy to see that our proposed stability criterion gives a much
less conservative result than those in [8–11]. For example,
when 𝛼 = 0.1, 𝛾 = 0.1, and ℎ

𝑑
= 0.5, by solving LMI (13)

of Theorem 4, we obtain the maximum bound ℎ = 1.6541

with the following solutions:

𝑃 = (
6.4750 0.3339

0.3339 4.8054
) ,

𝑅 = (
1.2019 0.0620

0.0620 0.8920
) ,

𝑄
1
= (

1.6922 0.1468

0.1468 1.2747
) ,

𝑄
2
= (

0.7128 × 10
−4

0.0178 × 10
−4

0.0178 × 10
−4

0.4708 × 10
−4

) ,

𝑄
3
= (

5.2627 0.5743

0.5743 3.1830
) ,

𝑊 = (
0.5738 0.0172

0.0172 0.5248
) ,

𝑅
1
= (

2.7028 0.2344

0.2344 2.0361
) ,

𝑅
2
= (

0.2278 × 10
−4

0.0059 × 10
−4

0.0059 × 10
−4

0.1477 × 10
−4

) ,

𝑅
3
= (

0.5931 × 10
−5

0.0145 × 10
−4

0.0145 × 10
−4

0.3964 × 10
−4

) .

(45)

Case II. For 𝛼 = 0.1, 𝛽 = 0.2, 𝛾 = 0.1, and ℎ
𝑑

= 1

and different values of 𝑐, the maximum upper bounds on the
allowable delay of ℎ = 𝑑 obtained fromTheorem 4 are listed
in Table 2. As 𝑐 increases, ℎ decreases. It can be seen from
Table 2 that the proposed method in this work provides a
considerably less conservative delay bound in comparison to
the ones in [3, 7]. For example, when 𝑐 = 0.2, by solving LMI
(13) of Theorem 4, we obtain the maximum bound ℎ = 𝑑 =

1.6632 with the following solutions:

𝑃 = (
3.6366 0.1165

0.1165 2.6811
) ,

𝑅 = (
1.7371 0.0556

0.0556 1.2806
) ,

𝑄
1
= (

2.0254 0.1910

0.1910 1.5301
) ,

𝑄
2
= (

0.1438 × 10
−3

0.0030 × 10
−3

0.0030 × 10
−3

0.1027 × 10
−3

) ,

𝑄
3
= (

0.4922 × 10
−4

0.0104 × 10
−4

0.0104 × 10
−4

0.3515 × 10
−4

) ,

𝑊 = (
0.3276 0.0152

0.0152 0.2882
) ,
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Table 3: Maximum upper bound of ℎ with 𝛽 = 0.1.

𝛼 = 0 𝛼 = 0.1

ℎ
𝑑
= 0 ℎ

𝑑
= 0.5 ℎ

𝑑
≥ 1 ℎ

𝑑
= 0 ℎ

𝑑
= 0.5 ℎ

𝑑
≥ 1

Zou and Wang [14] 2.7422 1.1424 — 1.8753 1.0097 —
Chen et al. [2] 2.7423 1.1425 0.7355 1.8753 1.0097 0.7147
Qiu et al. [7] 2.7757 1.1849 0.9284 1.8959 1.0512 0.8865
Zhang et al. [20] — 1.442 1.280 — 1.284 1.209
Corollary 8 (𝛿 = 0.72) 3.8066 1.6402 1.2869 2.6039 1.4534 1.228
Corollary 9 (𝛿 = 0.79) 2.8261 1.5213 1.5212 1.9233 1.3095 1.3095

𝑅
1
= (

1.5492 0.1461

0.1461 1.1704
) ,

𝑅
2
= (

0.1373 × 10
−4

0.0032 × 10
−4

0.0032 × 10
−4

0.0944 × 10
−4

) ,

𝑅
3
= (

0.4269 × 10
−5

0.0088 × 10
−5

0.0088 × 10
−5

0.3079 × 10
−5

) .

(46)

Case III. For 𝐶 = 0 and 𝑓
3
(�̇�(𝑡 − 𝑑), 𝑡) = 0, the maximum

value ℎ obtained fromCorollaries 8 and 9 is listed inTable 3. It
is clear that the obtained results in our paper are significantly
better than those in [2, 7, 14, 20].

5. Conclusion

This paper has discussed robust stability problem for neutral
systems with mixed delays and nonlinear perturbations.
Based on the Lyapunov method and linear matrix inequality
technology, delay-dependent stability conditions are derived
by using a delay decomposition approach. The proposed
criterion is both delay-dependent and rate-dependent. A
numerical example has shown the less conservatism of the
proposed method.
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