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We apply the Krasnoselskii fixed-point theorem to investigate the existence of multiple positive periodic solutions for a class of
impulsive functional differential equations with a parameter; some verifiable sufficient results are established easily. In particular,
our results extend and improve some previous results.

1. Introduction

It is well known that impulsive differential equations arise
naturally from a wide variety of applications such as aircraft
control, the inspection processes in operations research, drug
administration, and threshold theory in biology. Therefore,
the impulsive differential equations represent a more natural
framework for the mathematical model of many real world
phenomena than differential equations (see [1–7]). In recent
years, many researchers have obtained some properties of
impulsive differential equations, such as oscillation, asymp-
totic behavior, stability and existence of solutions (see [8–16]).
However, there are a little work discussing the existence of
multiple positive periodic solutions for the high-dimensional
functional differential equations with impulse and parame-
ters. Motivated by this, in this paper, we mainly consider the
following impulsive functional differential equations with a
parameter:

𝑥


(𝑡) = 𝐴 (𝑡, 𝑥 (𝑡)) 𝑥 (𝑡) + 𝜆𝐵 (𝑡, 𝑥 (𝑡)) 𝑓 (𝑡, 𝑥
𝑡
) ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) , 𝑘 ∈ 𝑍

+
,

(1)

where 𝜆 > 0 is a parameter, 𝐴(𝑡, 𝑥(𝑡)) = diag[𝑎
1
(𝑡, 𝑥(𝑡)),

𝑎
2
(𝑡, 𝑥(𝑡)), . . . , 𝑎

𝑛
(𝑡, 𝑥(𝑡))], 𝐵(𝑡, 𝑥(𝑡)) = diag[𝑏

1
(𝑡, 𝑥(𝑡)),

𝑏
2
(𝑡, 𝑥(𝑡)), . . . , 𝑏

𝑛
(𝑡, 𝑥(𝑡))], 𝑎

𝑗
, 𝑏
𝑗
∈ 𝐶(𝑅×𝑅

+
, 𝑅
+
) (𝑗 = 1, . . . , 𝑛)

are 𝜔-periodic. 𝑓 = (𝑓
1
, . . . , 𝑓

𝑛
)
𝑇, 𝑓(𝑡, 𝑥

𝑡
) is an operator on

𝑅 × 𝐵𝐶(𝑅, 𝑅
𝑛
) (here 𝐵𝐶(𝑅, 𝑅𝑛) denoting the Banach space

of bounded continuous operator 𝜑 : 𝑅 → 𝑅
𝑛 with the

norm ‖𝜑‖ = ∑𝑛
𝑖+1

sup
𝜃∈𝑅
|𝜑(𝜃)|, where 𝜑 = (𝜑

1
, . . . , 𝜑

𝑛
)
𝑇
));

𝑓
𝑖
(𝑡 +𝜔, 𝑥

𝑡
) = 𝑓
𝑖
(𝑡, 𝑥
𝑡
). If 𝑥 ∈ 𝐵𝐶(𝑅, 𝑅𝑛), then 𝑥

𝑡
∈ 𝐵𝐶(𝑅, 𝑅

𝑛
)

for any 𝑡 ∈ 𝑅, where 𝑥
𝑡
is defined by 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for

𝜃 ∈ 𝑅 and Δ𝑥(𝑡
𝑘
) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

𝑘
) (here 𝑥(𝑡+

𝑘
) representing

the right limit of 𝑥(𝑡) at the point 𝑡
𝑘
). Consider that 𝐼

𝑘
=

(𝐼
1

𝑘
, 𝐼
2

𝑘
, . . . , 𝐼

𝑛

𝑘
) ∈ 𝐶(𝑅

𝑛

+
, 𝑅
𝑛

−
); that is, 𝑥 changes decreasingly

suddenly at times 𝑡
𝑘
. 𝜔 > 0 is a constant, 𝑍

+
= {1, 2, 3, . . .},

𝑅 = (−∞, +∞),𝑅
+
= [0, +∞), and𝑅

−
= (−∞, 0].We assume

that there exists an integer 𝑞 > 0 such that 𝑡
𝑘+𝑞

= 𝑡
𝑘
+ 𝜔,

𝐼
𝑘+𝑞
= 𝐼
𝑘
, where 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑞
< 𝜔.

It is well known that the functional differential system (1)
includes many mathematical ecological models for example:

in the case (a), 𝐵(𝑡, 𝑥(𝑡)) ≡ 1, 𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)) ≡ 0 in [17],

Zeng et al. studied the existence of multiple positive
periodic solutions of (1) by applying the Krasnoselskii
fixed-point theorem.
in the case (b), 𝐴(𝑡, 𝑥(𝑡)) = 𝐴(𝑡), 𝜆𝐵(𝑡, 𝑥(𝑡)) ≡
1; in [18], Zhang et al. established the existence of
positive periodic solutions of (1) by using the fixed-
point theorem in cones.
in the case (c), 𝐴(𝑡, 𝑥(𝑡)) = 𝐴(𝑡), 𝐵(𝑡, 𝑥(𝑡)) ≡ 1, and
𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)) ≡ 0; in [19], Jiang et al. investigated the

existence, multiplicity, and nonexistence of positive
periodic solutions of (1).
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In this paper, we will study the existence of positive periodic
solutions inmore cases than the previouslymentioned papers
and obtain some easily verifiable sufficient criteria.

Throughout the paper, we make the following assump-
tions:

(𝐻
1
) 𝑎
𝑖
, 𝑏
𝑖
: 𝑅 × 𝑅

+
→ 𝑅

+
satisfy Caratheodory con-

ditions; that is, 𝑎
𝑖
(𝑡, 𝑥), 𝑏

𝑖
(𝑡, 𝑥) are locally Lebesgue

measurable in 𝑡 for each fixed 𝑥, are continuous in
𝑥 for each fixed 𝑡, and are 𝜔-periodic functions in 𝑡.
Moreover, there exist𝜔-periodic functions 𝑎

1𝑖
, 𝑎
2𝑖
, 𝑏
1𝑖
,

𝑏
2𝑖
: 𝑅 → 𝑅

+
which are locally bounded Lebesgue

measurable such that 𝑎
1𝑖
(𝑡) ≤ 𝑎

𝑖
(𝑡, 𝑥(𝑡)) ≤ 𝑎

2𝑖
(𝑡),

𝑏
1𝑖
(𝑡) ≤ 𝑏

1𝑖
(𝑡, 𝑥(𝑡)) ≤ 𝑏

2𝑖
(𝑡) and ∫𝜔

0
𝑎
1𝑖
(𝑡)𝑑𝑡 > 0,

∫

𝜔

0
𝑏
1𝑖
(𝑡)𝑑𝑡 > 0;

(𝐻
2
) 𝑓(𝑡, 𝜑

𝑡
) ≤ 0 for all (𝑡, 𝜑) ∈ 𝑅×𝐵𝐶(𝑅, 𝑅𝑛

+
), and 𝑓

𝑖
(𝑡, 𝜑
𝑡
)

is a continuous function of 𝑡 for each 𝜑 ∈ 𝐵𝐶(𝑅, 𝑅𝑛
+
),

𝑖 = 1, 2, . . . , 𝑛;
(𝐻
3
) for any 𝐿 > 0 and 𝜖 > 0, there exists 𝛿 > 0 such that
for 𝜙, 𝜓 ∈ 𝐵𝐶(𝑅, 𝑅𝑛

+
), |𝜙| ≤ 𝐿, |𝜓| ≤ 𝐿, and |𝜙−𝜓| < 𝛿

imply that |𝑓
𝑖
(𝑠, 𝜙
𝑠
) − 𝑓
𝑖
(𝑠, 𝜓
𝑠
)| < 𝜖, 𝑠 ∈ [0, 𝜔] (𝑖 =

1, 2, . . . , 𝑛);
(𝐻
4
) {𝑡
𝑘
}, 𝑘 ∈ 𝑍

+
satisfies 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ and lim
𝑘→+∞

𝑡
𝑘
= +∞; 𝐼

𝑘
: 𝑅 × 𝑅

+
→ 𝑅,

𝑘 ∈ 𝑍
+
, satisfy Caratheodory conditions and are 𝜔-

periodic functions in 𝑡 and, moreover, 𝐼
𝑘
(𝑡, 0) = 0 for

all 𝑘 ∈ 𝑍+. There exists a positive constant 𝑞 such that
𝑡
𝑘+𝑞
= 𝑡
𝑘
+𝜔, 𝐼
𝑘+𝑞
(𝑡
𝑘+𝑞
, 𝑥(𝑡
𝑘+𝑞
)) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)), 𝑘 ∈ 𝑍

+
.

Without loss of generality, we can assume that 𝑡
𝑘
̸= 0

and [0, 𝜔] ∩ {𝑡
𝑘
, 𝑘 ∈ 𝑍

+
} = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑞
}.

In addition, the parameters in this paper are assumed to be
not identically equal to zero.

Furthermore, we will use the following notation. Let 𝐽 ⊂
𝑅 denote by 𝑃𝐶(𝐽, 𝑅𝑛) the set of operators 𝜑 : 𝐽 → 𝑅

𝑛 which
are continuous for 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
and have discontinuities of the

first kind at the points 𝑡
𝑘
∈ 𝐽(𝑘 ∈ 𝑍

+
) but are continuous from

the left at these points. For each 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛,

the norm of 𝑥 is defined as |𝑥| = ∑𝑛
𝑖=1
|𝑥
𝑖
|. The matrix 𝐴 >

𝐵 (𝐴 ≤ 𝐵)means that each pair of corresponding elements of
𝐴 and 𝐵 satisfies the inequality “>” (“≤”). In particular, 𝐴 is
called a positive matrix if 𝐴 > 0.

The paper is organized as follows. In Section 2, we give
some definitions and lemmas to prove the main results of
this paper. In Section 3, existence theorems for one or two
positive periodic solutions of (1) are established by using the
Krasnoselskii fixed-point theorem under some conditions.

2. Preliminaries

In this section, we make some preparations for the following
sections. For (𝑡, 𝑠) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
𝑖
(𝑡, 𝑠) =

𝑒
−∫
𝑠

𝑡

𝑎
𝑖
(𝜉,𝑥(𝜉))

𝑑𝜉

𝑒
−∫
𝜔

0

𝑎
𝑖
(𝜉,𝑥(𝜉))

𝑑𝜉 − 1

,

𝐺 (𝑡, 𝑠) = diag [𝐺
1
(𝑡, 𝑠) , 𝐺

2
(𝑡, 𝑠) , . . . , 𝐺

𝑛
(𝑡, 𝑠)] .

(2)

It is clear that 𝐺
𝑖
(𝑡 + 𝜔, 𝑠 + 𝜔) = 𝐺

𝑖
(𝑡, 𝑠), 𝜕𝐺

𝑖
(𝑡, 𝑠)/𝜕𝑡 =

𝑎
𝑖
(𝑡, 𝑥(𝑡))𝐺

𝑖
(𝑡, 𝑠), 𝐺

𝑖
(𝑡, 𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡) = 1. For all (𝑡, 𝑠) ∈ 𝑅2

and by (𝐻
2
), we have

𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝜑
𝑠
) ≥ 0, for any (𝑡, 𝑠) ∈ 𝑅2,

(𝑠, 𝜑
𝑠
) ∈ 𝑅 × 𝐵𝐶 (𝑅, 𝑅

𝑛

+
) .

(3)

In view of (𝐻
1
), we also define for 1 ≤ 𝑖 ≤ 𝑛 the following:

𝛼
𝑖
:= min
0≤𝑡≤𝑠≤𝜔





𝐺
𝑖
(𝑡, 𝑠)





=

𝑒
−∫
𝜔

0

𝑎
2𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

1 − 𝑒
−∫
𝜔

0

𝑎
2𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

,

𝛽
𝑖
:= max
0≤𝑡≤𝑠≤𝜔





𝐺
𝑖
(𝑡, 𝑠)





=

𝑒
−∫
𝜔

0

𝑎
1𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

1 − 𝑒
−∫
𝜔

0

𝑎
1𝑖
(𝜉,𝑥(𝜉))𝑑𝜉

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽

∈ (0, 1) ,

𝐵
𝑖
(𝑡) = max {


𝑏
1𝑖
(𝑡)




,




𝑏
2𝑖
(𝑡)




} ,

𝐵


𝑖
(𝑡) = min {


𝑏
1𝑖
(𝑡)




,




𝑏
2𝑖
(𝑡)




} ,

𝐵 (𝑡) = max
1≤𝑖≤𝑛

{𝐵
𝑖
(𝑡)} , 𝐵



(𝑡) = min
1≤𝑖≤𝑛

{𝐵


𝑖
(𝑡)} .

(4)

Let 𝑋 = {𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑃𝐶(𝑅, 𝑅

𝑛
) |

𝑥(𝑡 + 𝜔) = 𝑥(𝑡)} with the norm ‖𝑥‖ = ∑𝑛
𝑖=1
|𝑥
𝑖
|
0
, |𝑥
𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑥
𝑖
(𝑡)|. It is easy to verify that (𝑋, ‖ ⋅ ‖) is a Banach

space. Define 𝐸 as a cone in𝑋 by

𝐸 = {𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝑋 : 𝑥
𝑖
(𝑡)

≥ 𝜎




𝑥
𝑖




0
, 𝑡 ∈ [0, 𝜔]} .

(5)

We easily verify that 𝐸 is a cone in 𝑋. We define an operator
𝑇 : 𝑋 → 𝑋 as follows:

(𝑇𝑥) (𝑡) = ((𝑇
1
𝑥) (𝑡) , (𝑇

2
𝑥) (𝑡) , . . . , (𝑇

𝑛
𝑥) (𝑡))

𝑇

, (6)

where

(𝑇
𝑖
𝑥) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) .

(7)

The proofs of the main results in this paper are based on an
application of theKrasnoselskii fixed-point theorem in cones.
To make use of the fixed-point theorem in cones, firstly, we
need to introduce some definitions and lemmas.

Definition 1 (see [20]). A function 𝑥 : 𝑅 → (0, +∞) is said
to be a positive solution of (1), if the following conditions are
satisfied:

(a) 𝑥(𝑡) is absolutely continuous on each (𝑡
𝑘
, 𝑡
𝑘+1
);

(b) for each 𝑘 ∈ 𝑍
+
, 𝑥(𝑡
+

𝑘
) and 𝑥(𝑡−

𝑘
) exist, and 𝑥(𝑡−

𝑘
) =

𝑥(𝑡
𝑘
);

(c) 𝑥(𝑡) satisfies the first equation of (1) for almost every-
where in 𝑅 and 𝑥(𝑡

𝑘
) satisfies the second equation of

(1) at impulsive point 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
.
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Definition 2 (see [21]). Let 𝑋 be a real Banach space; 𝐸 is a
cone of 𝑋. The semiorder induced by the cone 𝐸 is denoted
by “≤”; that is, 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃 for any 𝑥, 𝑦 ∈ 𝐸.

Secondly, let us introduce the Krasnoselskii point theo-
rem in cones which will be used in this paper.

Lemma3 (for theKrasnoselskii fixed-point theorem; see [22–
24]). Let𝐸 be a cone in a real Banach space𝑋. Assume thatΩ

1

and Ω
2
are open subsets of 𝑋 with 0 ∈ Ω

1
⊂ Ω
1
⊂ Ω
2
, where

Ω
𝑖
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟

𝑖
} (𝑖 = 1, 2). Let 𝑇 : 𝐸 ∩ (Ω

2
\ Ω
1
) → 𝐸

be a completely continuous operator and satisfy either

(1) ‖𝑇𝑥‖ ≥ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≤ ‖𝑥‖, for

any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
, or

(2) ‖𝑇𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
1
and ‖𝑇𝑥‖ ≥ ‖𝑥‖, for

any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
2
.

Then 𝑇 has a fixed point in 𝐸 ∩ (Ω
2
\ Ω
1
).

Lemma 4 (see [25]). Assume that 𝑓(𝑡) and 𝑔(𝑡) are continu-
ous nonnegative functions defined on the interval [𝛼, 𝛽]; then
there exists 𝜉 ∈ [𝛼, 𝛽] such that

∫

𝛽

𝛼

𝑓 (𝑡) 𝑔 (𝑡) 𝑑𝑡 = 𝑓 (𝜉) ∫

𝛽

𝛼

𝑔 (𝑡) 𝑑𝑡. (8)

Lemma 5. Assume that (𝐻
1
)–(𝐻
4
) hold. The existence of

positive 𝜔-periodic solution of (1) is equivalent to that of
nonzero fixed point of 𝑇 in 𝐸.

Proof. Assume that 𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑋 is a

periodic solution of (1). Then, we have

[𝑥
𝑖
(𝑡) 𝑒
−∫
𝑡

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

]



= 𝜆𝑒
−∫
𝑡

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

𝑏
𝑖
(𝑡, 𝑥 (𝑡)) 𝑓

𝑖
(𝑡, 𝑥
𝑡
) ,

𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛.

(9)

Integrating the above equation over [𝑡, 𝑡 + 𝜔], we can have

𝑥
𝑖
(𝑢) 𝑒
−∫
𝑢

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠








𝑡
𝑚
1

+𝑛𝜔

𝑡

+𝑥
𝑖
(𝑢) 𝑒
−∫
𝑢

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠








𝑡
𝑚
2

+𝑛𝜔

𝑡
𝑚
1

+𝑛𝜔

+ ⋅ ⋅ ⋅

+𝑥
𝑖
(𝑢) 𝑒
−∫
𝑢

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠








𝑡+𝜔

𝑡
𝑚𝑞
+𝑛𝜔

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑢

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

𝑏
𝑖
(𝑢, 𝑥 (𝑢)) 𝑓

𝑖
(𝑢, 𝑥
𝑢
) 𝑑𝑢,

(10)

where 𝑡
𝑚
𝑘

+ 𝑛𝜔 ∈ (𝑡, 𝑡 + 𝜔),𝑚
𝑘
∈ {1, 2, . . . , 𝑞}, 𝑘 = 1, 2, . . . , 𝑞,

and 𝑛 ∈ 𝑍
+
. Therefore,

𝑥
𝑖
(𝑡) 𝑒
−∫
𝑡

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

[𝑒
−∫
𝑡+𝜔

𝑡

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

− 1]

− ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

Δ𝑥
𝑖
(𝑡
𝑚
𝑘

) 𝑒
−∫

𝑡𝑚
𝑘
+𝑛𝜔

0
𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

= 𝜆∫

𝑡+𝜔

𝑡

𝑒
−∫
𝑢

0

𝑎
𝑖
(𝑠,𝑥(𝑠))𝑑𝑠

𝑏
𝑖
(𝑢, 𝑥 (𝑢)) 𝑓

𝑖
(𝑢, 𝑥
𝑢
) 𝑑𝑢,

(11)

which can be transformed into

𝑥
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) = (𝑇

𝑖
𝑥) (𝑡) .

(12)

Thus, 𝑥
𝑖
is a periodic solution for (7).

If 𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝐸 and 𝑇𝑥 =

(𝑇
1
𝑥, 𝑇
2
𝑥, . . . , 𝑇

𝑛
𝑥)
𝑇
= 𝑥 with 𝑥 ̸= 0, then, for any 𝑡 = 𝑡

𝑘
we

can get the derivation of (7) about 𝑡,

(𝑇
𝑖
𝑥)


(𝑡) =

𝑑

𝑑𝑡

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠]

= 𝜆 [𝐺
𝑖
(𝑡, 𝑡 + 𝜔) 𝑏

𝑖
(𝑡 + 𝜔, 𝑥 (𝑡 + 𝜔))

× 𝑓
𝑖
(𝑡 + 𝜔, 𝑥

𝑡+𝜔
) − 𝐺
𝑖
(𝑡, 𝑡)

× 𝑏
𝑖
(𝑡, 𝑥 (𝑡)) 𝑓

𝑖
(𝑡, 𝑥
𝑡
)] + 𝑎

𝑖
(𝑡, 𝑥 (𝑡)) 𝑥

𝑖
(𝑡)

= 𝑎
𝑖
(𝑡, 𝑥 (𝑡)) 𝑥

𝑖
(𝑡) + 𝜆𝑏

𝑖
(𝑡, 𝑥 (𝑡)) 𝑓

𝑖
(𝑡, 𝑥
𝑡
) = 𝑥


𝑖
(𝑡) .

(13)

For any 𝑡 = 𝑡
𝑗
, 𝑗 ∈ 𝑍

+
, we have from (7) that

𝑥
𝑖
(𝑡
+

𝑗
) − 𝑥
𝑖
(𝑡
𝑗
)

= 𝜆∫

𝑡
𝑗
+𝜔

𝑡
𝑗

[𝐺
𝑖
(𝑡
+

𝑗
, 𝑠) − 𝐺

𝑖
(𝑡
𝑗
, 𝑠)]

× 𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡
+

𝑗
≤𝑡
𝑘
<𝑡
𝑗
+𝜔

𝐺
𝑖
(𝑡
+

𝑗
, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

− ∑

𝑡
𝑗
≤𝑡
𝑘
<𝑡
𝑗
+𝜔

𝐺
𝑖
(𝑡
𝑗
, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

= 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) .

(14)

Hence𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 is a positive𝜔-periodic

solution of (1). Thus we complete the proof of Lemma 5.

Lemma 6. Assume that (𝐻
1
)–(𝐻
4
) hold. Then 𝑇 : 𝐸 → 𝐸 is

well defined.
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Proof. From (7), it is easy to verify that (𝑇𝑥)(𝑡) is continuous
in (𝑡
𝑘
, 𝑡
𝑘+1
), (𝑇𝑥)(𝑡+

𝑘
) and (𝑇𝑥)(𝑡−

𝑘
) exist, and (𝑇𝑥)(𝑡−

𝑘
) =

(𝑇𝑥)(𝑡
𝑘
) for each 𝑘 ∈ 𝑍

+
. Moreover, for any 𝑥 ∈ 𝐸,

(𝑇𝑥) (𝑡 + 𝜔) = 𝜆∫

𝑡+2𝜔

𝑡+𝜔

𝐺 (𝑡 + 𝜔, 𝑠) 𝑏 (𝑠, 𝑥 (𝑠)) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡+𝜔≤𝑡
𝑘
<𝑡+2𝜔

𝐺 (𝑡 + 𝜔, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡 + 𝜔, 𝑢 + 𝜔)

× 𝑏 (𝑢 + 𝜔, 𝑥 (𝑢 + 𝜔))

× 𝑓 (𝑢 + 𝜔, 𝑥
𝑢+𝜔
) 𝑑𝑢

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

= 𝜆∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑏 (𝑠, 𝑥 (𝑠)) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺 (𝑡, 𝑡
𝑘
) 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) = (𝑇𝑥) (𝑡) .

(15)

Therefore, (𝑇𝑥) ∈ 𝑋. From (7), we have





𝑇
𝑖
𝑥



0
≤ 𝛽
𝑖
[𝜆∫

𝜔

0





𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))] .

(16)

Noticing that 𝐺
𝑖
(𝑡, 𝑠)𝑓

𝑖
(𝑠, 𝑥
𝑠
) ≥ 0, we obtain

(𝑇
𝑖
𝑥) (𝑡) ≥ 𝛼

𝑖
[𝜆∫

𝜔

0





𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≥

𝛼
𝑖

𝛽
𝑖





𝑇
𝑖
𝑥



0
≥ 𝜎






𝑇
𝑖
𝑥





0
.

(17)

Therefore,𝑇𝑥 ∈ 𝐸.This completes the proof of Lemma 6.

Lemma 7. Assume that (𝐻
1
)–(𝐻
4
) hold. Then 𝑇 : 𝐸 → 𝐸 is

completely continuous.

Proof. We first show that 𝑇 is continuous. By (𝐻
3
)-(𝐻
4
), 𝑓

and 𝐼
𝑘
are continuous in 𝑥; it follows that, for any 𝜖 > 0, let

𝛿 > 0 be small enough to satisfy that, if 𝑥, 𝑦 ∈ 𝐸, with |𝑥−𝑦| <
𝛿,





𝑓 (𝑠, 𝑥

𝑠
) − 𝑓 (𝑠, 𝑦

𝑠
)




<

𝜖

2𝐵𝜆𝛽𝜔

, 𝑠 ∈ 𝑅;





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) − 𝐼
𝑘
(𝑡
𝑘
, 𝑦 (𝑡
𝑘
))




<

𝜖

2𝛽𝑞

, 𝑘 ∈ 𝑍
+
.

(18)

Therefore,





(𝑇𝑥) (𝑡) − (𝑇𝑦) (𝑡)






=

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥 − 𝑇
𝑖
𝑦



0

≤ 𝛽

𝑛

∑

𝑖=1

𝜆∫

𝑡+𝜔

𝑡





𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)

− 𝑏
𝑖
(𝑠, 𝑦 (𝑠)) 𝑓

𝑖
(𝑠, 𝑦
𝑠
)




𝑑𝑠

+ 𝛽

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))

− 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑦 (𝑡
𝑘
))







< 𝛽𝜆𝐵𝜔

𝜖

2𝐵𝜆𝛽𝜔

+ 𝛽𝑞

𝜖

2𝛽𝑞

= 𝜖,

(19)

which implies that 𝑇 is continuous on 𝐸.
Next we show that 𝑇maps a bounded set into a bounded

set. Indeed, let 𝐶 ⊂ 𝐸 be a bounded set. For any 𝑡 ∈ 𝑅 and
𝑥 ∈ 𝐶, by (7), we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

≤ 𝛽[𝜆

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

= 𝛽[∫

𝜔

0

𝑏
2𝑖
(𝑠) 𝑓 (𝑠, 𝑥

𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




] .

(20)

Since 𝐶 is bounded, in view of the continuity of 𝑇, it follows
from (19) that 𝑇𝑥 is bounded and {𝑇𝑥 : 𝑥 ∈ 𝐶} is uniformly
bounded. Finally, we show that the family of functions {𝑇𝑥 :
𝑥 ∈ 𝐶} is equicontinuous on [0, 𝜔]. Let 𝜃

1
, 𝜃
2
∈ [0, 𝜔] with

𝜃
1
< 𝜃
2
. From (7), for any 𝑥 ∈ 𝐶, we have





(𝑇𝑥) (𝜃

2
) − (𝑇𝑥) (𝜃

1
)





≤ 𝜆

𝑛

∑

𝑖=1

[∫

𝜃
2

𝜃
1

(𝐺
𝑖
(𝜃
2
, 𝑠) − 𝐺

𝑖
(𝜃
1
, 𝑠))

× 𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∫

𝜃
1
+𝜔

𝜃
2

(𝐺
𝑖
(𝜃
2
, 𝑠) − 𝐺

𝑖
(𝜃
1
, 𝑠))
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× 𝑏
𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝜃
1
≤𝑡
𝑘
<𝜃
2

(𝐺
𝑖
(𝜃
2
, 𝑡
𝑘
) − 𝐺
𝑖
(𝜃
1
, 𝑡
𝑘
))

×






𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







+ ∑

𝜃
2
≤𝑡
𝑘
<𝜃
1
+𝜔

(𝐺
𝑖
(𝜃
2
, 𝑡
𝑘
) − 𝐺
𝑖
(𝜃
1
, 𝑡
𝑘
))

×






𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






] .

(21)

Since for 𝑥 ∈ 𝐶, 𝑡 ∈ [0, 𝜔], 0 ≤ 𝑘 ≤ 𝑞, 𝑏
𝑖
(𝑡, 𝑥(𝑡)),

𝑓
𝑖
(𝑡, 𝑥(𝑡 − 𝜏

1
(𝑡, 𝑥(𝑡))), . . . , 𝑥(𝑡 − 𝜏

𝑚
(𝑡, 𝑥(𝑡)))), and 𝐼𝑖

𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))

are uniformly bounded in 𝑋; in view of (21), it is easy to see
that when 𝜃

2
− 𝜃
1
tends to zero, |(𝑇𝑥)(𝜃

2
) − (𝑇𝑥)(𝜃

1
)| tends

uniformly to zero in 𝑋. Hence, {𝑇𝑥 : 𝑥 ∈ 𝐶} is a family
of uniformly bounded and equicontinuous functions on
[0, 𝜔]. By Ascoli-Arzelà theorem, the operator𝑇 is completely
continuous. The proof of Lemma 7 is complete.

For convenience in the following discussion, we intro-
duce the following notations:

𝑓
𝑎
= lim sup
𝑥∈𝑃,‖𝑥‖→𝑎

max
𝑡∈[0,𝜔]

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡

‖𝑥‖

,

𝑓
𝑎
= lim inf
𝑥∈𝑃,‖𝑥‖→𝑎

min
𝑡∈[0,𝜔]

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡

‖𝑥‖

,

𝑓
𝑟
= max
0<𝑥≤𝑟

max
𝑡∈[0,𝜔]

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡

‖𝑥‖

,

𝑓
𝑟

= min
0<𝑥≤𝑟

min
𝑡∈[0,𝜔]

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡

‖𝑥‖

,

𝐼
𝑎
= lim sup
𝑥∈𝑃,‖𝑥‖→𝑎

max
𝑡∈[0,𝜔]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡, 𝑥)






‖𝑥‖

,

𝐼
𝑎
= lim inf
𝑥∈𝑃,‖𝑥‖→𝑎

min
𝑡∈[0,𝜔]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡, 𝑥)






‖𝑥‖

,

𝐼
𝑟
= max
0<𝑥≤𝑟

max
𝑡∈[0,𝜔],𝑘∈[1,𝑞]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡, 𝑥)






‖𝑥‖

,

𝐼
𝑟
= min
0<𝑥≤𝑟

min
𝑡∈[0,𝜔],𝑘∈[1,𝑞]

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡, 𝑥)






‖𝑥‖

,

(22)

where 𝑎 denotes either 0 or∞, 𝑟 denotes a positive number,
and ‖𝑥‖ = max{|𝑥

1
|, |𝑥
2
|, . . . , |𝑥

𝑚
|}.

3. Main Results

Our main results of this paper are as follows.

Theorem 8. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
5
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
𝑟

+ 𝐼
𝑟
) > 1, 𝜉 ∈ [0, 𝜔];

(𝐻
6
) 𝑓
0
= 𝐼
0
= 𝑓
∞
= 𝐼
∞
= 0

hold. Then (1) has two positive 𝜔-periodic solutions.

Proof. First, we define Ω
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}; then Ω

𝑟
is

an open subset of 𝑋. From (7), (𝐻
5
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≥ 𝛼 (𝜆𝐵


(𝜉) 𝑓
𝑟

+ 𝐼
𝑟
) ‖𝑥‖ > ‖𝑥‖ .

(23)

This yields

‖(𝑇𝑥) (𝑡)‖ > ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
. (24)

On the other hand, if 𝑓0 = 𝐼
0
= 0 holds, then we can

choose 0 < 𝑟
1
< 𝑟, such that ∫𝜔

0
|𝑓(𝑡, 𝑥

𝑡
)|𝑑𝑡 ≤ 𝜖‖𝑥‖ and

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

|𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))| ≤ 𝜖‖𝑥‖ for 𝑥 ∈ [0, 𝑟

1
], 𝑡 ∈ [0, 𝜔], and

1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0 satisfies 𝜖𝛽(𝜆𝐵(𝜉) + 1) ≤ 1.
By (7) and Lemma 4, we can obtain

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]
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≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 1) ‖𝑥‖ ≤ ‖𝑥‖ .

(25)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (26)

In view of (24) and (26), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which is a

positive 𝜔-periodic solution of (1).
Likewise, if 𝑓∞ = 𝐼∞ = 0 holds, then there is𝑁 > 0 such

that ∫𝜔
0
|𝑓(𝑡, 𝑥

𝑡
)|𝑑𝑡 ≤ 𝜖‖𝑥‖ and ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

|𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))| ≤ 𝜖‖𝑥‖

for 𝑥 ≥ 𝑁, 𝑡 ∈ [0, 𝜔], and 1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0
satisfies 𝜖𝛽(𝜆𝐵(𝜉) + 1) ≤ 1. Let 𝑟

2
= max{2𝑟,𝑁/𝜎} and it

follows that 𝑥(𝑡) ≥ 𝜎‖𝑥‖ > 𝑁 for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔], and
0 < 𝑘 < 𝑞. Thus

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≤ 𝜖 ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≤ 𝜖 ‖𝑥‖ ,

for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔] , 1 ≤ 𝑘 < 𝑞.

(27)

By (7) and Lemma 4, we have

(𝑇𝑥) (𝑡) ≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 1) ‖𝑥‖ ≤ ‖𝑥‖ ; (28)

this yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any , 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (29)

In view of (24) and (29), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 8.

Remark 9. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
5
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
𝑟

+ 𝐼
𝑟
) > 1;

(𝐻
7
) 𝑓
0
= 𝐼
0
= 0, or𝑓∞ = 𝐼∞ = 0

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 10. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 > 1/𝛼𝜎𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
6
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions;

(𝐻
7
) is satisfied; then (1) has a positive 𝜔-periodic solution.

Theorem 11. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
8
) 𝛽(𝜆𝐵(𝜉)𝑓

𝑟
+ 𝐼
𝑟
) < 1;

(𝐻
9
) 𝑓
0
= 𝐼
0
= 𝑓
∞
= 𝐼
∞
= ∞

hold. Then (1) has two positive 𝜔-periodic solutions.

Proof. We define Ω
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}, for a positive

number 𝑟. ThenΩ
𝑟
is an open subset of𝑋 and 0 ∈ Ω

𝑟
. By (7),

(𝐻
8
), and Lemma 4, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω

𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝛽 (𝜆𝐵 (𝜉) 𝑓
𝑟
+ 𝐼
𝑟
) ‖𝑥‖ < ‖𝑥‖ .

(30)

This implies that for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟

‖(𝑇𝑥) (𝑡)‖ < ‖𝑥‖ . (31)

On the one hand, since 𝑓
0
= 𝐼
0
= ∞, there exists 0 < 𝑟

1
< 𝑟

and small enough 0 < 𝜖 satisfies 𝛼𝛿[𝜆𝐵(𝜉)(𝑓
0
−𝜖)+(𝐼

0
−𝜖)] >

1 such that, for any 𝑥 with ‖𝑥‖ ∈ [0, 𝑟
1
],

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≥ (𝑓

0
− 𝜀) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≥ (𝐼
0
− 𝜀) ‖𝑥‖ .

(32)



Abstract and Applied Analysis 7

Define Ω
𝑟
2

= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟
2
}; then Ω

𝑟
1

is an open subset
of𝑋. For any 𝑥 ∈ 𝐸 ∩ 𝜕Ω

𝑟
1

, by (7) and Lemma 4, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





(𝑇
𝑖
𝑥)



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≥ 𝛼𝛿 [𝜆𝐵


(𝜉) (𝑓
0
− 𝜖) + (𝐼

0
− 𝜖)] ‖𝑥‖ ≥ ‖𝑥‖ .

(33)

This yields

‖(𝑇𝑥) (𝑡)‖ ≥ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (34)

In view of (31) and (34), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which

is a positive 𝜔-periodic solution of (1). On the other hand, if
𝑓
∞
= 𝐼
∞
= ∞, we can find small enough 0 < 𝜖 that satisfies

𝛼𝛿[𝜆𝐵

(𝜉)(𝑓
∞
−𝜖)+(𝐼

∞
−𝜖)] > 1 and large enough 𝜂 > 𝑟 > 0,

such that ‖𝑥‖ ≥ 𝜂,

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≥ (𝑓

∞
− 𝜖) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≥ (𝐼
∞
− 𝜖) ‖𝑥‖ .

(35)

Define 𝑟
2
= 𝜂/𝜎 > 𝑟 and Ω

𝑟
2

= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟
2
}; then Ω

𝑟
2

is an open subset of 𝑋. For any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

, from (7) and
Lemma 3, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





(𝑇
𝑖
𝑥)



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≥ 𝛼𝛿 [𝜆𝐵


(𝜉) (𝑓
∞
− 𝜖) + (𝐼

∞
− 𝜖)] ‖𝑥‖ ≥ ‖𝑥‖ .

(36)

This yields

‖(𝑇𝑥) (𝑡)‖ ≥ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (37)

In view of (31) and (37), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore, (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 11.

Remark 12. Assume that (𝐻
1
)–(𝐻
4
) and the following condi-

tions:

(𝐻
8
) 𝛽(𝜆𝐵(𝜉)𝑓

𝑟
+ 𝐼
𝑟
) < 1;

(𝐻
10
) 𝑓
0
= 𝐼
0
= ∞, or 𝑓

∞
= 𝐼
∞
= ∞

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 13. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 < 1/𝛽𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
9
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions;

(𝐻
10
) is satisfied; then (1) has a positive 𝜔-periodic solution.

Theorem 14. Assume that (𝐻
1
)–(𝐻
4
) and

(𝐻
11
) 𝛽(𝜆𝐵(𝜉)𝑓

0
+ 𝐼
0
) < 1;

(𝐻
12
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
∞
+ 𝐼
∞
) > 1

hold.Then (1) has a positive𝜔-periodic solution, where𝑓0,𝑓
∞
,

𝐼
0, and 𝐼

∞
are positive constants.

Proof. From (𝐻
11
), we can choose 𝜖 > 0 such that

𝛽(𝜆𝐵(𝑥𝑖)(𝑓
0
+ 𝜖) + (𝐼

0
+ 𝜖)) < 1. Thus there exists 𝑟 > 0

such that, for 𝑥 ∈ [0, 𝑟], 𝑡 ∈ [0, 𝜔] and 1 ≤ 𝑘 < 𝑞,

∫

𝜔

0

𝑓 (𝑡, 𝑥
𝑡
) 𝑑𝑡 ≤ (𝑓

0
+ 𝜖) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
)) ≤ (𝐼

0
+ 𝜖) ‖𝑥‖ ,

(38)
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by (7), (𝐻
11
), and Lemma 4, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)





+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝛽 (𝜆𝐵 (𝜉) (𝑓
0
+ 𝜖) + (𝐼

0
+ 𝜖)) ‖𝑥‖ < ‖𝑥‖ .

(39)

This implies that for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟

‖(𝑇𝑥) (𝑡)‖ < ‖𝑥‖ . (40)

On the other hand, choose 𝜀 > 0 such that 𝑓
∞
− 𝜖 > 0 and

𝐼
∞
− 𝜖 > 0, and from (𝐻

12
), we can obtain

𝛼𝜎 [𝜆𝐵


(𝜉) (𝑓
∞
− 𝜖) + (𝐼

∞
− 𝜖)] > 1. (41)

It is easy to see that there exists large enough 𝜂 > 𝑟 > 0, such
that ‖𝑥‖ ≥ 𝜂,

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≥ (𝑓

∞
− 𝜖) ‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≥ (𝐼
∞
− 𝜖) ‖𝑥‖ .

(42)

Define 𝑅 = 𝜂/𝜎 > 𝑟 and Ω
𝑅
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑅}; then Ω

𝑅
is

an open subset of 𝑋. From (7), (𝐻
12
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑅
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≥ 𝛼𝜎 [𝜆𝐵


(𝜉) (𝑓
∞
− 𝜖) + (𝐼

∞
− 𝜖)] ‖𝑥‖ > ‖𝑥‖ .

(43)

This yields

‖𝑇𝑥‖ > ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑅
. (44)

In view of (40) and (44), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥∗ ∈ 𝐸 ∩ (Ω

𝑅
\ Ω
𝑟
) with 𝑟 < ‖𝑥∗‖ < 𝑅, which is

a positive 𝜔-periodic solution of (1).This provesTheorem 14.

Corollary 15. Assume that (𝐻
1
)–(𝐻
3
) and the following

condition:

(𝐻
13
) 1/𝛼𝜎𝐵


(𝜉)𝑓
∞
< 𝜆 < 1/𝛽𝐵(𝜉)𝑓

0

hold. Then (1) has a positive 𝜔-periodic solution.

Similarly, we can prove the following theorem and corol-
lary.

Theorem 16. Assume that (𝐻
1
)–(𝐻
4
) and the following con-

ditions:

(𝐻
14
) 𝛽(𝜆𝐵(𝜉)𝑓

∞
+ 𝐼
∞
) < 1;

(𝐻
15
) 𝛼𝜎(𝜆𝐵


(𝜉)𝑓
0
+ 𝐼
0
) > 1

hold.Then (1) has a positive𝜔-periodic solution, where𝑓
0
,𝑓∞,

𝐼
0
, and 𝐼∞ are positive constants.

Corollary 17. Assume that (𝐻
1
)–(𝐻
3
) and the following

condition:

(𝐻
16
) 1/𝛼𝜎𝐵


(𝜉)𝑓
0
< 𝜆 < 1/𝛽𝐵(𝜉)𝑓

∞

hold. Then (1) has a positive 𝜔-periodic solution.

Theorem 18. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and the following

condition:

(𝐻
17
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 and 0 < 𝑓∞ <

1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ < 1/2𝛽,

hold. Then (1) has two positive 𝜔-periodic solutions.
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Proof. First, we define Ω
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}; then Ω

𝑟
is

an open subset of 𝑋. From (7), (𝐻
5
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≥ 𝛼 (𝜆𝐵


(𝜉) 𝑓
𝑟

+ 𝐼
𝑟
) ‖𝑥‖ > ‖𝑥‖ .

(45)

This yields

‖(𝑇𝑥) (𝑡)‖ > ‖𝑥‖ , for any𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
. (46)

On the one hand, since 0 < 𝑓0 < 1/2𝜆𝛽𝐵(𝜉) and 0 < 𝐼0 <
1/2𝛽, there exists 0 < 𝑟

1
< 𝑟 such that for 0 < ‖𝑥‖ < 𝑟

1

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≤

𝑟
1

2𝜆𝛽𝐵 (𝜉)

;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≤

𝑟
1

2𝛽

.

(47)

Set Ω
𝑟
1

= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟
1
}; then Ω

𝑟
1

is an open subset
of 𝑋. From (7), (𝐻

17
), and Lemma 4, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω

𝑟
1

,
𝑡 ∈ [0, 𝜔], and 1 ≤ 𝑘 < 𝑞, we have

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝛽 [𝜆𝐵 (𝜉)

1

2𝜆𝛽𝐵 (𝜉)

+

𝑟
1

2𝛽

] ‖𝑥‖ = ‖𝑥‖ .

(48)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (49)

In view of (46) and (49), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which is a

positive 𝜔-periodic solution of (1).
On the other hand, if 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉), and 0 < 𝐼∞ <

1/2𝛽 hold, then there is𝑁 > 0 such that

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≤

𝑁

2𝜆𝛽𝐵 (𝜉)

;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≤

𝑁

2𝛽

,

(50)

for 𝑥 ≥ 𝑁, 𝑡 ∈ [0, 𝜔], 1 ≤ 𝑘 < 𝑞. Let 𝑟
2
= max{2𝑟,𝑁/𝜎} and

it follows that 𝑥(𝑡) ≥ 𝜎‖𝑥‖ > 𝑁 for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔], and
0 < 𝑘 < 𝑞. Thus

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≤

1

2𝜆𝛽𝐵 (𝜉)

‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≤

1

2𝛽

‖𝑥‖ ,

for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔] , 1 ≤ 𝑘 < 𝑞.

(51)

By (7), (𝐻
17
), and Lemma 4, we have

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]
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≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝛽 [𝜆𝐵 (𝜉)

1

2𝜆𝛽𝐵 (𝜉)

+

𝑟
1

2𝛽

] ‖𝑥‖ = ‖𝑥‖ .

(52)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (53)

In view of (46) and (53), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 18.

Remark 19. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and the following

condition:

(𝐻
18
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 or 0 < 𝑓∞ <

1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ < 1/2𝛽

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 20. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 > 1/𝛼𝜎𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
17
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions.

(𝐻
18
) is satisfied; then (1) has a positive 𝜔-periodic solution.

From the arguments in the previous proof, we have the
following consequences immediately.

Theorem 21. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and the following

condition:

(𝐻
19
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 and∞ >

𝑓
∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
> 1/2𝛼𝜎

hold. Then (1) has two positive 𝜔-periodic solutions.

Remark 22. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and the following

condition:

(𝐻
20
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 or∞ >

𝑓
∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
> 1/2𝛼𝜎

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 23. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 < 1/𝛽𝐵(𝜉)𝑓

𝑟

hold.

(𝐻
19
) is satisfied; then (1) has two positive 𝜔-periodic solu-
tions.

(𝐻
20
) is satisfied; then (1) has a positive 𝜔-periodic solution.

Theorem 24. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and one of the

following conditions

(𝐻
21
) 𝑓
0
= 𝐼
0
= 0 and 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ <

1/2𝛽,

(𝐻
22
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 and 𝑓∞ = 𝐼∞ =

0

hold. Then (1) has two positive 𝜔-periodic solutions.

Proof. We only consider the case (𝐻
21
). When the case (𝐻

22
)

holds, the conclusion remains true by a similar proof and we
will omit it. We define Ω

𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟}; then Ω

𝑟
is

an open subset of 𝑋. From (7), (𝐻
5
), and Lemma 4, for any

𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ =

𝑛

∑

𝑖=1





𝑇
𝑖
𝑥



0

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))






]

≥ 𝜆𝐵


(𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛼 [𝜆𝐵


(𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≥ 𝛼 (𝜆𝐵


(𝜉) 𝑓
𝑟

+ 𝐼
𝑟
) ‖𝑥‖ > ‖𝑥‖ .

(54)

This yields

‖(𝑇𝑥) (𝑡)‖ > ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
. (55)

On the one hand, if 𝑓0 = 𝐼
0
= 0 holds, then we can

choose 0 < 𝑟
1
< 𝑟, such that ∫𝜔

0
|𝑓(𝑡, 𝑥

𝑡
)|𝑑𝑡 ≤ 𝜖‖𝑥‖ and

∑
𝑡≤𝑡
𝑘
<𝑡+𝜔

|𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
))| ≤ 𝜖‖𝑥‖ for 𝑥 ∈ [0, 𝑟

1
], 𝑡 ∈ [0, 𝜔], and



Abstract and Applied Analysis 11

1 ≤ 𝑘 < 𝑞, where constant 𝜖 > 0 satisfies 𝜖𝛽(𝜆𝐵(𝜉) + 1) ≤ 1.
By (7), (𝐻

21
), and Lemma 4, we can obtain

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝜖𝛽 (𝜆𝐵 (𝜉) + 1) ‖𝑥‖ ≤ ‖𝑥‖ .

(56)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
1

. (57)

In view of (55) and (57), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

1
∈ 𝐸 ∩ (Ω

𝑟
\ Ω
𝑟1
) with 𝑟

1
< ‖𝑥
1
‖ < 𝑟, which is a

positive 𝜔-periodic solution of (1).
On the other hand, if 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉) and 0 < 𝐼∞ <

1/2𝛽 hold, then there is𝑁 > 0 such that

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≤

𝑁

2𝜆𝛽𝐵 (𝜉)

;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≤

𝑁

2𝛽

,

(58)

for 𝑥 ≥ 𝑁, 𝑡 ∈ [0, 𝜔], and 1 ≤ 𝑘 < 𝑞; let 𝑟
2
= max{2𝑟,𝑁/𝜎}

and it follows that 𝑥(𝑡) ≥ 𝜎‖𝑥‖ > 𝑁 for 𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔],
and 0 < 𝑘 < 𝑞. Thus

∫

𝜔

0





𝑓 (𝑡, 𝑥

𝑡
)




𝑑𝑡 ≤

1

2𝜆𝛽𝐵 (𝜉)

‖𝑥‖ ;

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




≤

1

2𝛽

‖𝑥‖ ,

for𝑥 ∈ Ω
𝑟
2

, 𝑡 ∈ [0, 𝜔] , 1 ≤ 𝑘 < 𝑞.

(59)

By (7), (𝐻
21
), and Lemma 4, we have

(𝑇𝑥) (𝑡) =

𝑛

∑

𝑖=1

(𝑇
𝑖
𝑥)

=

𝑛

∑

𝑖=1

[𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠, 𝑥 (𝑠)) 𝑓

𝑖
(𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))]

≤ 𝜆𝐵 (𝜉)

𝑛

∑

𝑖=1

∫

𝑡+𝜔

𝑡





𝐺
𝑖
(𝑡, 𝑠) 𝑓

𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+

𝑛

∑

𝑖=1

∑

𝑡≤𝑡
𝑘
<𝑡+𝜔






𝐺
𝑖
(𝑡, 𝑡
𝑘
) 𝐼
𝑖

𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))







= 𝛽[𝜆𝐵 (𝜉) ∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ ∑

𝑡≤𝑡
𝑘
<𝑡+𝜔





𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
𝑘
))




]

≤ 𝛽 [𝜆𝐵 (𝜉)

1

2𝜆𝛽𝐵 (𝜉)

+

𝑟
1

2𝛽

] ‖𝑥‖ = ‖𝑥‖ .

(60)

This yields

‖(𝑇𝑥) (𝑡)‖ ≤ ‖𝑥‖ , for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟
2

. (61)

In view of (55) and (61), by Lemma 3, it follows that 𝑇 has a
fixed point 𝑥

2
∈ 𝐸 ∩ (Ω

𝑟
2

\ Ω
𝑟
) with 𝑟 < ‖𝑥

2
‖ < 𝑟
2
, which

is a positive 𝜔-periodic solution of (1). Therefore (1) has at
least two positive periodic solutions; that is, 𝑟

1
< ‖𝑥
1
‖ < 𝑟 <

‖𝑥
2
‖ < 𝑟
2
. This proves Theorem 24.

Remark 25. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
5
), and one of the

following conditions:

(𝐻
23
) 𝑓
0
= 𝐼
0
= 0 or 0 < 𝑓∞ < 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼∞ < 1/2𝛽,

(𝐻
24
) 0 < 𝑓

0
< 1/2𝜆𝛽𝐵(𝜉), 0 < 𝐼0 < 1/2𝛽 or 𝑓∞ = 𝐼∞ = 0

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 26. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 > 1/𝛼𝜎𝐵(𝜉)𝑓

𝑟

hold.

Either (𝐻
21
) or (𝐻

22
) is satisfied; then (1) has two

positive 𝜔-periodic solutions.
Either (𝐻

23
) or (𝐻

24
) is satisfied; then (1) has a positive

𝜔-periodic solution.

From the arguments in the previous proof, we have the
following consequences immediately.

Theorem 27. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and one of the

following conditions:
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(𝐻
25
) 𝑓
0
= 𝐼
0
= 0 and∞ > 𝑓

∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
>

1/2𝛼𝜎,
(𝐻
26
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 and 𝑓

∞
=

𝐼
∞
= 0

hold. Then (1) has two positive 𝜔-periodic solutions.

Remark 28. Assume that (𝐻
1
)–(𝐻
4
), (𝐻
8
), and one of the

following conditions

(𝐻
27
) 𝑓
0
= 𝐼
0
= 0 or∞ > 𝑓

∞
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

∞
>

1/2𝛼𝜎,
(𝐻
28
) ∞ > 𝑓

0
> 1/2𝜆𝛼𝜎𝐵


(𝜉),∞ > 𝐼

0
> 1/2𝛼𝜎 or 𝑓

∞
=

𝐼
∞
= 0

hold. Then (1) has a positive 𝜔-periodic solution.

Corollary 29. Assume that (𝐻
1
)–(𝐻
3
) and 𝜆 < 1/𝛽𝐵(𝜉)𝑓

𝑟

hold.

Either (𝐻
25
) or (𝐻

26
) is satisfied; then (1) has two

positive 𝜔-periodic solutions.
Either (𝐻

27
) or (𝐻

28
) is satisfied; then (1) has a positive

𝜔-periodic solution.

Remark 30. Suppose that 𝐵(𝑡, 𝑥(𝑡)) = 1 and 𝐼
𝑘
(𝑡
𝑘
, 𝑥(𝑡
𝑘
)) =

0, under some conditions; we can obtain the corresponding
results of [17]. Hence, our results generalize and improve the
corresponding results of [17].

Remark 31. Assume that 𝐴(𝑡, 𝑥(𝑡)) = 𝐴(𝑡), 𝐵(𝑡, 𝑥(𝑡)) = 1, 𝜆 =
1 under some conditions; we can obtain the corresponding
results of [18]. Hence, our results generalize and improve the
corresponding results of [18].
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