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In the framework of a real Banach spacewith uniformlyGateaux differentiable norm, somenew viscosity iterative sequences {𝑥
𝑛
} are

introduced for an infinite family of asymptotically nonexpansivemappings {𝑇
𝑖
}
∞

𝑖=1
in this paper. Under some appropriate conditions,

we prove that the iterative sequences {𝑥
𝑛
} converge strongly to a commonfixed point of themappings {𝑇

𝑖
}
∞

𝑖=1
, which is also a solution

of a variational inequality. Our results extend and improve some recent results of other authors.

1. Introduction

Let 𝐸 be a real Banach space, 𝐶 a nonempty subset of 𝐸, and
𝑇 : 𝐶 → 𝐶 a nonlinear mapping. Denote by 𝐹(𝑇) the set of
fixed points of 𝑇. Recall that 𝑇 is said to be nonexpansive, if

𝑇𝑥 − 𝑇𝑦
 ≤

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

𝑇 is said to be contraction, if there exists a constant𝛼 ∈ (0, 1),
such that

𝑇 (𝑥) − 𝑇 (𝑦)
 ≤ 𝛼

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

We use∏
𝐶
to denote the collection of all contractions on 𝐶.

𝑇 is said to be asymptotically nonexpansive, if there exists
a sequence ℎ

𝑛
⊆ [1,∞) with ℎ

𝑛
→ 1 as 𝑛 → ∞ such that

𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
 ≤ ℎ𝑛

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (3)

{𝑇
𝑖
}
∞

𝑖=1
is said to be uniform Lipschitzian with the coefficient

𝐿, if for any 𝑖 = 1, 2, . . ., there holds
𝑇
𝑛

𝑖
𝑥 − 𝑇
𝑛

𝑖
𝑦
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (4)

It is clear that the class of contraction mappings must
be included in the class of nonexpansive mappings and the

class of nonexpansive mappings in that of asymptotically
nonexpansive mappings.

The class of asymptotically nonexpansive mappings was
introduced by Goebel and Kirk [1] in 1972. They proved
that if 𝐶 is a nonempty bounded closed convex subset of a
uniformly convex Banach space 𝐸, then every asymptotically
nonexpansive self-mapping 𝑇 has a fixed point in 𝐶. Further,
the set 𝐹(𝑇) of fixed points of 𝑇 is closed and convex.

In 2001, Khan and Takahasi [2] used the modified
Ishikawa process to approximate common fixed points of
two asymptotically nonexpansive mappings. In 2003, Sun [3]
studied an implicit iterative scheme initiated by Xu and Ori
[4] for a finite family of asymptotically quasi-nonexpansive
mappings. Shahzad and Udomene [5], in 2006, proved some
convergence theorems for the modified Ishikawa iterative
process of two asymptotically quasi-nonexpansive mappings
to a common fixed point. Shahzad and Zegeye [6] introduced
a new concept of generalized asymptotically nonexpansive
mappings and proved some strong convergence theorems for
fixed points of finite family of this class. In 2008, Khan et
al. [7] introduced an iterative sequence for a finite family
of asymptotically quasi-nonexpansive mappings in Banach
spaces.Meanwhile, Zhao [8] proved the following conclusion.

Let 𝐸 be a uniformly smooth Banach space, 𝑓 ∈ ∏
𝐶
, and

let𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
be a finite family of nonexpansive mappings
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from 𝐶 into itself, such that the set ⋂𝑁
𝑖=1
𝐹(𝑇
𝑖
) is nonempty.

Under some sufficient conditions, the iterative sequence {𝑥
𝑛
}

defined by (5) converges strongly to a common fixed point of
𝑇
1
, 𝑇
2
. . . , 𝑇
𝑁
. Consider

𝑦
𝑛
= 𝛽
𝑛+1
𝑥
𝑛
+ (1 − 𝛽

𝑛+1
) 𝑇
𝑛+1
𝑥
𝑛
, 𝑛 ≥ 0,

𝑥
𝑛+1

= 𝛼
𝑛+1
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛+1
) 𝑇
𝑛+1
𝑦
𝑛
, 𝑛 ≥ 0.

(5)

Common fixed points of nonlinear mappings play an
important role in solving systems of equations and inequal-
ities. Many researchers [9–19] are interested in studying
approximation method for finding common fixed points of
nonlinear mapping in recent years.

Motivated and inspired by the above results, in this
paper, for an infinite family of asymptotically nonexpansive
mappings {𝑇

𝑖
}
∞

𝑖=1
from 𝐶 into itself, we introduce a new

viscosity iterative process {𝑥
𝑛
} defined by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑖
𝑥
𝑛
, 𝑛 ≥ 0,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑛 ≥ 0.

(6)

Under appropriate conditions on𝐶,𝑇
𝑖
, {𝛼
𝑛
}, and {𝛽

𝑛
} in (0, 1),

we prove that the {𝑥
𝑛
} converges strongly to 𝑥 ∈ 𝐹, which is

also a solution of the following variational inequality:

⟨𝑥 − 𝑓 (𝑥) , 𝐽 (𝑥 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (7)

Our results extend and improve some results of other authors
(e.g., see [8, 17, 19]) from nonexpansivemappings to themore
general class of asymptotically nonexpansive mappings and
from finite family mappings to infinite family mappings.

2. Preliminaries

In order to prove our results, we need the following defini-
tions and lemmas.

Assume that 𝐸 is a real Banach space and 𝐸∗ is the dual
space of 𝐸.

𝐽 : 𝐸 → 2
𝐸
∗

is the normalized duality mapping defined
by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

=
𝑓

2

} , 𝑥 ∈ 𝐸. (8)

The space 𝐸 is said to be with Gateaux differentiable norm, if
the limit

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡
(9)

exists for each 𝑦 and any 𝑥 in its unit sphere 𝑈 = {𝑥 ∈ 𝐸 :

‖𝑥‖ = 1}.
In a Banach space 𝐸 whose norm is uniformly Gateaux

differentiable, the duality mapping 𝐽 is single-valued and
𝑛𝑜𝑟𝑚-𝑡𝑜-𝑤𝑒𝑎𝑘∗ uniformly continuous on any bounded sets
of 𝐸.

Lemma 1 (see [18]). In a Banach space 𝐸, there holds the
inequality

𝑥 + 𝑦

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐶,

𝑤ℎ𝑒𝑟𝑒 𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(10)

Lemma 2 (see [20]). Let {𝛼
𝑛
}
∞

𝑛=0
be a sequence of nonnegative

real numbers satisfying the property

𝛼
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝛼
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (11)

where {𝛾
𝑛
} ⊂ (0, 1) and {𝛿

𝑛
} are two sequences such that

(1) lim
𝑛→∞

𝛾
𝑛
= 0, ∑𝛾

𝑛
= ∞;

(2) lim sup
𝑛→∞

𝛿
𝑛
≤ (or ∑

𝜇𝑛𝛿𝑛
 < ∞) .

(12)

Then lim
𝑛→∞

𝛼
𝑛
= 0.

In order to prove themain results of this paper, the following
lemmas should be used.

Lemma 3 (see [21]). Let {𝑥
𝑛
}, {𝑦
𝑛
} be bounded sequences in a

Banach space X, {𝛼
𝑛
} ⊂ [0, 1], satisfying 0 < lim inf

𝑛→∞
𝛼
𝑛
≤

lim sup
𝑛→∞

𝛼
𝑛
< 1, and suppose

(1) 𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑦
𝑛
;

(2) lim sup
𝑛→∞

(
𝑦𝑛+1 − 𝑦𝑛

 −
𝑥𝑛+1 − 𝑥𝑛

) ≤ 0.
(13)

Then lim
𝑛→∞

‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

3. Main Results

Now, we are ready to give the main results.

Theorem4. Let K be a nonempty closed convex subset of a real
Banach space E with uniformly Gateaux differentiable norm.
Let {𝑇

𝑖
}
∞

𝑖=1
be an infinite family of asymptotically nonexpansive

mappings with the coefficients ℎ
𝑖𝑛

: lim
𝑛→∞

ℎ
𝑖𝑛

= 1 and
uniform Lipschitzian with the coefficient 𝐿 from K into itself,
𝐹 = ⋂

∞

𝑖=1
𝐹(𝑇
𝑖
) ̸=Ø and𝑓 ∈ ∏

𝐾
with the coefficient 𝛼. Assume

that the sequences {𝛼
𝑛
}, {𝛽
𝑛
} ∈ (0, 1) satisfy the following

conditions:

(C1) ∑∞
𝑛=1

𝛼
𝑛
= ∞, lim

𝑛→∞
𝛼
𝑛
= 0;

(C2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(C3) ℎ
𝑖𝑛
− 1 = 𝑜(𝛼

𝑛
).

Then the sequence {𝑥
𝑛
} defined by (6) converges strongly to

𝑥 ∈ 𝐹 if and only if, for any i, lim
𝑛→∞

‖𝑇
𝑖
𝑥
𝑛
− 𝑥
𝑛
‖ = 0 holds.

And 𝑥 is a solution of the following variational inequality:

⟨𝑥 − 𝑓 (𝑥) , 𝐽 (𝑥 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (14)

Proof.
Sufficiency. The sufficient proof is divided into five steps.
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Step 1. We observe that {𝑥
𝑛
} is bounded. Indeed, let 𝑎

𝑛
= 𝛽
𝑛
+

(1 − 𝛽
𝑛
)ℎ
𝑖𝑛
, 𝑎 = sup{𝑎

𝑛
}, 𝑏 = inf{𝑎

𝑛
} = 1. Taking a fixed point

𝑝 of 𝐹, we have

𝑦𝑛 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛽𝑛)

𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑝



≤ 𝑎
𝑛

𝑥𝑛 − 𝑝
 ,

𝑥𝑛+1 − 𝑝


≤ 𝛼
𝑛

𝑓 (𝑥𝑛) − 𝑓 (𝑝)
 + 𝛼𝑛

𝑓 (𝑝) − 𝑝


+ (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑝



≤ 𝛼
𝑛
𝛼
𝑥𝑛 − 𝑝

 + (1 − 𝛼𝑛) 𝑎𝑛
𝑥𝑛 − 𝑝

 + 𝛼𝑛
𝑓 (𝑝) − 𝑝



= (𝑎
𝑛
− (𝑎
𝑛
− 𝛼) 𝛼

𝑛
)
𝑥𝑛 − 𝑝

 + 𝛼𝑛 (𝑎𝑛 − 𝛼)

𝑓 (𝑝) − 𝑝


𝑎
𝑛
− 𝛼

≤ 𝑎
𝑛
max{𝑥𝑛 − 𝑝

 ,

𝑓 (𝑝) − 𝑝


𝑎
𝑛
− 𝛼

} .

(15)

Using an introduction, we have

𝑥𝑛 − 𝑝
 ≤ 𝑎max{𝑥0 − 𝑝

 ,

𝑓 (𝑝) − 𝑝


𝑏 − 𝛼
} . (16)

Hence, {𝑥
𝑛
} is bounded so are the sets {𝑦

𝑛
}, {𝑓(𝑥

𝑛
)} and

{𝑇
𝑛

𝑖
𝑥
𝑛
}.

Step 2. We claim that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0. Setting 𝑙

𝑛
=

(1 − 𝛼
𝑛
)𝛽
𝑛
, 𝑛 ≥ 1, it follows from (C1) and (C2) that

0 < lim inf
𝑛→∞

𝑙
𝑛
≤ lim sup
𝑛→∞

𝑙
𝑛
< 1. (17)

Define 𝑥
𝑛+1

= 𝑙
𝑛
𝑥
𝑛
+ (1 − 𝑙

𝑛
)𝑧
𝑛
, and observe that

𝑧
𝑛+1

− 𝑧
𝑛

=
𝑥
𝑛+2

− 𝑙
𝑛+1
𝑥
𝑛+1

1 − 𝑙
𝑛+1

−
𝑥
𝑛+1

− 𝑙
𝑛
𝑥
𝑛

1 − 𝑙
𝑛

= [(𝛼
𝑛+1
𝑓 (𝑥
𝑛+1
)

+ (1 − 𝛼
𝑛+1
) (𝛽
𝑛+1
𝑥
𝑛+1

+ (1 − 𝛽
𝑛+1
) 𝑇
𝑛+1

𝑖
𝑥
𝑛+1
) )

× (1 − 𝑙
𝑛+1
)
−1

−
𝑙
𝑛+1
𝑥
𝑛+1

1 − 𝑙
𝑛+1

]

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) (𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑖
𝑥
𝑛
) − 𝑙
𝑛
𝑥
𝑛

1 − 𝑙
𝑛

=
𝛼
𝑛+1
𝑓 (𝑥
𝑛+1
)

1 − 𝑙
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
)

1 − 𝑙
𝑛

+
(1 − 𝛼

𝑛+1
) (1 − 𝛽

𝑛+1
) 𝑇
𝑛+1

𝑖
𝑥
𝑛+1

1 − 𝑙
𝑛+1

−
(1 − 𝛼

𝑛
) (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑖
𝑥
𝑛

1 − 𝑙
𝑛

=
𝛼
𝑛+1

1 − 𝑙
𝑛+1

(𝑓 (𝑥
𝑛+1
) − 𝑇
𝑛+1

𝑖
𝑥
𝑛+1
)

−
𝛼
𝑛

1 − 𝑙
𝑛

(𝑓 (𝑥
𝑛
) − 𝑇
𝑛

𝑖
𝑥
𝑛
)

+ (𝑇
𝑛+1

𝑖
𝑥
𝑛+1

− 𝑇
𝑛

𝑖
𝑥
𝑛
) .

(18)

We have
𝑧𝑛+1 − 𝑧𝑛

 −
𝑥𝑛+1 − 𝑥𝑛



≤
𝛼
𝑛+1

1 − 𝑙
𝑛+1


𝑓 (𝑥
𝑛+1
) − 𝑇
𝑛+1

𝑖
𝑥
𝑛+1



+
𝛼
𝑛

1 − 𝑙
𝑛

𝑓 (𝑥𝑛) − 𝑇
𝑛

𝑖
𝑥
𝑛



+

𝑇
𝑛+1

𝑖
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑖
𝑥
𝑛


+

𝑇
𝑛+1

𝑖
𝑥
𝑛
− 𝑇
𝑛

𝑖
𝑥
𝑛



−
𝑥𝑛+1 − 𝑥𝑛



=
𝛼
𝑛+1

1 − 𝑙
𝑛+1

(
𝑓 (𝑥𝑛+1)

 +

𝑇
𝑛+1

𝑖
𝑥
𝑛+1


) +

𝛼
𝑛

1 − 𝑙
𝑛

× (
𝑓 (𝑥𝑛)

 +
𝑇
𝑛

𝑖
𝑥
𝑛

) + (ℎ𝑛+1 − 1)
𝑥𝑛+1 − 𝑥𝑛



+ ℎ
𝑛

𝑇𝑖𝑥𝑛 − 𝑥𝑛
 .

(19)

Using the conclusion of step 1, by (C1), lim
𝑛→∞

‖𝑇
𝑖
𝑥
𝑛
−

𝑥
𝑛
‖ = 0 and lim

𝑛→∞
ℎ
𝑖𝑛

= 1, and we obtain that
lim sup

𝑛→∞
(‖𝑧
𝑛+1

− 𝑧
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0.

Hence, by Lemma 3, we have lim
𝑛→∞

‖𝑧
𝑛
− 𝑥
𝑛
‖ = 0.

Consequently,

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = lim

𝑛→∞
(1 − 𝑙
𝑛
)
𝑧𝑛 − 𝑥𝑛

 = 0.

(20)

Step 3.We prove lim
𝑛→∞

‖𝑥
𝑛
−𝑇
𝑛

𝑖
𝑥
𝑛
‖ = 0. From (6), we arrive

at
𝑦𝑛 − 𝑥𝑛

 ≤
𝑥𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑦𝑛



=
𝑥𝑛 − 𝑥𝑛+1

 + 𝛼𝑛
𝑓 (𝑥𝑛) − 𝑦𝑛

 .
(21)

Since {𝑓(𝑥
𝑛
)} and {𝑦

𝑛
} are bounded, by (C1) and

lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0, we get lim

𝑛→∞
‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0. As

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑇
𝑛

𝑖
𝑥
𝑛
, then lim

𝑛→∞
‖𝑥
𝑛
− 𝑇
𝑛

𝑖
𝑥
𝑛
‖ = 0.

Step 4. We show that ⟨𝑥−𝑓(𝑥), 𝐽(𝑥−𝑝)⟩ ≤ 0. Same as [15], let
𝑥 = lim

𝑡→0
𝑥
𝑡
with 𝑥

𝑡
being the fixed point of the contraction
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𝑥 → 𝑡𝑓(𝑥)+(1−𝑡)𝑇
𝑛

𝑖
𝑥, where 𝑡 ∈ (0, 1).That is, 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
)+

(1 − 𝑡)𝑇
𝑛

𝑖
𝑥
𝑡
. Thanks to Lemma 1, we have

𝑥𝑡 − 𝑥𝑛

2

=
(1 − 𝑡)(𝑇

𝑛

𝑖
𝑥
𝑡
− 𝑥
𝑛
) + 𝑡(𝑓(𝑥

𝑡
) − 𝑥
𝑛
)

2

≤ (1 − 𝑡)
2𝑇
𝑛

𝑖
𝑥
𝑡
− 𝑥
𝑛


2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

ℎ
𝑖𝑛

𝑥𝑡 − 𝑥𝑛

2

+ 𝑔
𝑛
(𝑡)

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ 2𝑡 ⟨𝑥
𝑡
− 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩ ,

(22)

where 𝑔
𝑛
(𝑡) = (2ℎ

𝑖𝑛
‖𝑥
𝑡
− 𝑥
𝑛
‖ + ‖𝑇

𝑛

𝑖
𝑥
𝑛
− 𝑥
𝑛
‖)‖𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥
𝑛
‖. It

follows from step 2 that lim
𝑛→∞

𝑔
𝑛
(𝑡) = 0. Then from

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
) − 𝑥
𝑛
⟩

≤
(1 − 𝑡)

2

ℎ
𝑛
− 1 + 2𝑡

2𝑡

𝑥𝑡 − 𝑥𝑛
 +

1

2𝑡
𝑔
𝑛
(𝑡) ,

(23)

we see that

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤

𝑡

2
𝑀
1
, (24)

where𝑀
1
≥ 0, such that

𝑀
1
≥
𝑥𝑡 − 𝑥𝑛


2

, ∀𝑡 ∈ (0, 1) , 𝑛 ≥ 1. (25)
Then
lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤ 0. (26)

So for any 𝜖 > 0, there exists 𝛿
1
> 0. When 𝑡 ∈ (0, 𝛿

1
), we get

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤

𝜖

2
. (27)

On the other hand, because 𝑥
𝑡
→ 𝑥 and 𝐽 is norm-to-norm

uniformly continuous on bounded subsets of 𝐾, there exists
𝛿
2
> 0, such that when 𝑡 ∈ (0, 𝛿

2
), we have

⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥𝑛 − 𝑥)⟩ − ⟨𝑥𝑡 − 𝑓 (𝑥) , 𝐽 (𝑥𝑡 − 𝑥𝑛)⟩


≤
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥𝑛 − 𝑥)⟩ − ⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥𝑛 − 𝑥𝑡)⟩



+
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥𝑛 − 𝑥𝑡)⟩

− ⟨𝑥
𝑡
− 𝑓 (𝑥) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩


≤
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥𝑛 − 𝑥) − 𝐽 (𝑥𝑛 − 𝑥𝑡)⟩



+ ⟨𝑥
𝑡
− 𝑥, 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩ ≤

𝜖

2
.

(28)

Choosing 𝛿 = min{𝛿
1
, 𝛿
2
}, ∀𝑡 ∈ (0, 𝛿), we have

⟨𝑢 − 𝑥, 𝐽 (𝑥
𝑛
− 𝑥)⟩ ≤ ⟨𝑥

𝑡
− 𝑢, 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ +

𝜖

2
,

lim sup
𝑛→∞

⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥
𝑛
− 𝑥)⟩

≤ lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ +

𝜖

2
≤ 𝜖.

(29)

Since 𝜖 is chosen arbitrarily, we get

lim sup
𝑛→∞

⟨𝑢 − 𝑥, 𝐽 (𝑥
𝑛
− 𝑥)⟩ ≤ 0. (30)

Hence, we have

⟨𝑥 − 𝑓 (𝑥) , 𝐽 (𝑥 − 𝑝)⟩ ≤ 0,

lim sup
𝑛→∞

⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥
𝑛+1

− 𝑥)⟩ ≤ 0.
(31)

Step 5. We prove that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ = 0. Setting 𝜉

𝑛+1
=

max{⟨𝑓(𝑥) − 𝑥, 𝐽(𝑥
𝑛+1

− 𝑥)⟩}, we have lim sup
𝑛→∞

𝜉
𝑛+1

≤ 0

𝑥𝑛+1 − 𝑥

2

=
𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑥) + (1 − 𝛼𝑛)

× (𝛽
𝑛
(𝑥
𝑛
− 𝑥) + (1 − 𝛽

𝑛
) (𝑇
𝑛

𝑖
𝑥
𝑛
− 𝑥))


2

≤ (1 − 𝛼
𝑛
)
2

[𝛽
𝑛

𝑥𝑛 − 𝑥
 + (1 − 𝛽𝑛) ℎ𝑛

𝑥𝑛 − 𝑥
]
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑥) , 𝐽 (𝑥

𝑛+1
− 𝑥)⟩

+ 2𝛼
𝑛
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥

𝑛+1
− 𝑥)⟩

≤ (1 − 𝛼
𝑛
)
2

ℎ
2

𝑛

𝑥𝑛 − 𝑥

2

+ 2𝛼
𝑛
𝛼
𝑥𝑛 − 𝑥


𝑥𝑛+1 − 𝑥



+ 2𝛼
𝑛
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥

𝑛+1
− 𝑥)⟩

≤ (1 − 𝛼
𝑛
)
2𝑥𝑛 − 𝑥


2

+ (1 − 𝛼
𝑛
)
2

(ℎ
2

𝑛
− 1)

𝑥𝑛 − 𝑥

2

+ 𝛼
𝑛
𝛼 (
𝑥𝑛 − 𝑥


2

+
𝑥𝑛+1 − 𝑥


2

)

+ 2𝛼
𝑛
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥

𝑛+1
− 𝑥)⟩ .

(32)

So,

(1 − 𝛼
𝑛
𝛼)
𝑥𝑛+1 − 𝑥


2

≤ (1 − 2𝛼
𝑛
+ 𝛼
2

𝑛
)
𝑥𝑛 − 𝑥


2

+ (ℎ
2

𝑛
− 1)

𝑥𝑛 − 𝑥

2

+ 𝛼
𝑛
𝛼
𝑥𝑛 − 𝑥


2

+ 2𝛼
𝑛
⟨𝑓 (𝑥) − 𝑥, 𝐽 (𝑥

𝑛+1
− 𝑥)⟩

≤ (1 − 2𝛼
𝑛
+ 𝛼
𝑛
𝛼)
𝑥𝑛 − 𝑥


2

+ (𝛼
2

𝑛
+ ℎ
2

𝑛
− 1)

𝑥𝑛 − 𝑥

2

+ 2𝛼
𝑛
𝜉
𝑛+1
,

(33)

which implies that

𝑥𝑛+1 − 𝑥

2

≤ (1 −
2 (1 − 𝛼) 𝛼

𝑛

1 − 𝛼
𝑛
𝛼

)
𝑥𝑛 − 𝑥


2

+
2 (1 − 𝛼) 𝛼

𝑛

1 − 𝛼
𝑛
𝛼

× (
𝛼
𝑛
+ (ℎ
𝑛
− 1) /𝛼

𝑛

2 (1 − 𝛼)
𝑀
2
+

1

1 − 𝛼
𝜉
𝑛+1
)

= (1 − 𝛾
𝑛
)
𝑥𝑛 − 𝑥


2

+ 𝛾
𝑛
𝛿
𝑛
,

(34)
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where

𝑀
2
= sup (ℎ

𝑛
+ 1)

𝑥𝑛 − 𝑥

2

, 𝛾
𝑛
=
2 (1 − 𝛼) 𝛼

𝑛

1 − 𝛼
𝑛
𝛼

,

𝛿
𝑛
=
𝛼
𝑛
+ (ℎ
𝑛
− 1) /𝛼

𝑛

2 (1 − 𝛼)
𝑀
2
+

1

1 − 𝛼
𝜉
𝑛+1
.

(35)

Since {𝑥
𝑛
} is bounded, by (C1), (C3), and step 3, we have

lim
𝑛→∞

𝛾
𝑛
= 0, ∑𝛾

𝑛
= ∞, lim sup

𝑛→∞

𝛿
𝑛
≤ 0. (36)

According to Lemma 2,we deduce that lim
𝑛→∞

‖𝑥
𝑛
−𝑥‖ =

0.

Necessity. Since 𝑥 ∈ 𝐹, lim
𝑛→∞

‖𝑥
𝑛
− 𝑥‖ = 0, 𝑇

𝑖
is uniform

Lipschitzian,

lim
𝑛→∞

𝑇𝑖𝑥𝑛 − 𝑥𝑛


≤ lim
𝑛→∞

[
𝑇𝑖𝑥𝑛 − 𝑇𝑖𝑥

 +
𝑇𝑖𝑥 − 𝑥

 +
𝑥 − 𝑥𝑛

]

≤ lim
𝑛→∞

𝑇𝑖𝑥 − 𝑥
 + lim

𝑛→∞
(𝐿 + 1)

𝑥 − 𝑥𝑛
 ≤ 0.

(37)

Hence, the proof of Theorem 4 is completed.

Theorem 5. Under the same conditions as those inTheorem 4,
then the sequence {𝑥

𝑛
} defined by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛

𝑛
𝑥
𝑛
, 𝑛 ≥ 0,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, 𝑛 ≥ 0,

(38)

converges strongly to 𝑥 ∈ 𝐹, if and only if lim
𝑛→∞

‖𝑇
𝑛
𝑥
𝑛
−

𝑥
𝑛
‖ = 0 holds. And 𝑥 is a solution of the following variational

inequality:

⟨𝑥 − 𝑓 (𝑥) , 𝐽 (𝑥 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (39)

Proof. Theproof is the same as that ofTheorem 4.We can just
use 𝑇𝑛
𝑛
, ℎ
𝑛𝑛
to take the place of 𝑇𝑛

𝑖
, ℎ
𝑖𝑛
.

Theorem6. Let {𝑇
𝑖
}
𝑁

𝑖=1
be a finite family of asymptotically non-

expansive mappings with the coefficients ℎ
𝑖𝑛
: lim
𝑛→∞

ℎ
𝑖𝑛
= 1

and {𝑇
𝑛
} = {𝑇

𝑛( mod 𝑁)}. The rest of the conditions are the same
as those in Theorem 4. Then the sequence {𝑥

𝑛
} defined by (38)

converges strongly to 𝑥 ∈ 𝐹, if and only if lim
𝑛→∞

‖𝑇
𝑛
𝑥
𝑛
−

𝑥
𝑛
‖ = 0 holds. And 𝑥 is a solution of the following variational

inequality:

⟨𝑥 − 𝑓 (𝑥) , 𝐽 (𝑥 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (40)

Proof. This is a special case of Theorem 5.

Remark 7. If {𝑇
𝑖
}
𝑁

𝑖=1
is a finite family of nonexpansive map-

pings in Theorem 6, then it is the main result in reference
[8]. So our results in this paper extend and improve the
recent results of many other authors (e.g., see [1, 8, 17, 19]) in
different ways, such as from nonexpansive mappings to the
more general class of asymptotically nonexpansive mappings
and from finite family mappings to infinite family mappings.
And the methods here are different from the previous ones.
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