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This paper studies the problem of finite-time 𝐻
∞

control for time-delayed Itô stochastic systems with Markovian switching. By
using the appropriate Lyapunov-Krasovskii functional and free-weighting matrix techniques, some sufficient conditions of finite-
time stability for time-delayed stochastic systems with Markovian switching are proposed. Based on constructing new Lyapunov-
Krasovskii functional, the mode-dependent state feedback controller for the finite-time𝐻

∞
control is obtained. Simulation results

illustrate the effectiveness of the proposed method.

1. Introduction

Finite-time stability is different from the usual Lyapunov
stability. Lyapunov stability is always used to deal with the
asymptotic pattern of system trajectories by applying the
steady-state behavior of control dynamics over an infinite-
time interval [1]. Often Lyapunov asymptotic stability is not
enough for practical applications, because there are some
cases where large values of the state are not acceptable,
for instance, in the presence of saturations [2]. Lyapunov
asymptotic stability depicts steady-state performance of a
dynamic system, and it could not reflect transient state
performance [3]. A finite-time stable system may not be
Lyapunov stable, and a Lyapunov stable system may not be
finite-time stable. To study the transient performances of a
system, the concept of finite-time stability was introduced by
Dorato in [4]. Finite-time stability (or short-time stability)
is also called finite-time boundness. A system is said to be
finite-time stable if, once a time interval is fixed, its state does
not exceed some bounds during this time interval. Because
the working time of many systems such as communication
network system, missile system, and robot control system is
short, people are more interested in finite-time stability of
these systems.

Early results on finite-time stability aremostly confined to
the stability analysis and lack of design and comprehensive-
ness of control systems (see [5–9]). During the nineteen sev-
enties, scholars began to discuss the control design method
of finite-time stabilization (see [10–13]). In recent years,
the development of the theory of linear matrix inequalities
promotes the research on finite-time stability and makes this
research field a new breakthrough [14–20].

In particular, for systems with time delay or Markov
switching or random disturbance, there are some significant
research results on finite-time stability and stabilization. For
example, finite-time stability and stabilization problem for Itô
stochastic systems was studied in [21–27], finite-time stability
and stabilization problem for Markovian jump systems was
studied in [28–31], and finite-time stability and stabilization
problem for time-delay systems was studied in [2, 32].

With the development of finite-time [33] stability, the
problem of finite-time 𝐻

∞
control has received a lot of

attention [1, 3, 34–39]. For example, using the average dwell
time method and the multiple Lyapunov-like function tech-
nique, some sufficient conditions are proposed to guarantee
the finite-time properties for the switched Itô stochastic
systems in the formofmatrix inequalities and a state feedback
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controller for the finite-time 𝐻
∞

control problem is also
obtained in [36]. Delay-dependent observer-based𝐻

∞
finite-

time control for switched systems with time-varying delay
was investigated in [34]. The robust finite-time 𝐻

∞
control

problem for a class of uncertain switched neutral systems
with unknown time-varying disturbance was developed in
[3]. The problem of robust finite-time 𝐻

∞
control of sin-

gular Itô stochastic systems via static output feedback was
addressed in [38]. However, the systems discussed in [3,
34, 36] are general switched systems rather than Markovian
jump systems. Markovian jump systems [40–45] (also called
systems with Markovian switching) are frequently used to
model the dynamics behavior of the process in which variable
parameters or structures subject to random abrupt changes
occur, for example, sudden environment changes, system
noises, subsystem switching, and failures that occurred in
interconnections or components and executor faults [46].
On the other hand, most work on the problem of finite-
time control focused on the determination of linear or
nonlinear system. As is known, stochastic modeling plays an
important role in many branches of science and engineering
(see [47, 48]). At present, the research of finite-time control
for Itô stochastic system is still at the beginning stage. To
the best of the authors’ knowledge, the problem of finite-
time 𝐻

∞
control for time-delayed Itô stochastic systems

with Markovian switching has not been investigated, which
motivated our study.

In this paper, we will focus on the finite-time 𝐻
∞

state
feedback control problem for time-delayed Itô stochastic
systems with Markovian switching. The aim is to find a state
feedback controller

𝑢
𝑖
(𝑡) = 𝐾

𝑖
𝑥 (𝑡) , 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 2, . . . , 𝑁 (1)

for system (2) such that the corresponding closed-loop
system is finite-time stochastically bounded with a weighted
𝐻
∞

performance 𝛾. The rest of the paper is organized as fol-
lows. In Section 2, problem description and some definitions
are given. In Section 3, finite-time stochastic stability and
bounded conditions for time-delayed Itô stochastic systems
with Markovian switching are presented. The corresponding
results of finite-time stochastic𝐻

∞
control problem for time-

delayed Itô stochastic systems with Markovian switching are
proposed in Section 4. An illustrative example is given in
Section 5, and conclusions are given in Section 6.

Notation. Throughout this paper, if not explicit, matrices
are assumed to have compatible dimensions. The nota-
tion 𝑀 > (≥, <, ≤)0 means that the symmetric matrix
𝑀 is positive-definite (positive-semidefinite, negative, and
negative-semidefinite). 𝜆min(⋅) and 𝜆max(⋅) denote the min-
imum and the maximum eigenvalue of the corresponding
matrix. ‖ ⋅ ‖ represents the Euclidean norm for vector or the
spectral norm of matrices. 𝐼 refers to an identity matrix
of appropriate dimensions. E{⋅} stands for the mathematical
expectation. The symbol “∗” within a matrix denotes a term
that is induced by symmetry.

2. Problem Description

In this paper, we consider the following time-delayed stochas-
tic systems with Markovian switching:

d𝑥 (𝑡) = [𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐴

1
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵

1
(𝑟
𝑡
) 𝑢 (𝑡)

+𝐸
1
(𝑟
𝑡
) V (𝑡)] d𝑡

+ [𝐻 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐻

1
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐵
2
(𝑟
𝑡
) 𝑢 (𝑡) + 𝐸

2
(𝑟
𝑡
) V (𝑡)] d𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐶

1
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐷

1
(𝑟
𝑡
) 𝑢 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(2)

where 𝑥(𝑡) ∈ R𝑛 is the system state, 𝑢(𝑡) ∈ R𝑙 is the
control input, 𝑧(𝑡) ∈ R𝑝 is the control output, and V(𝑡) ∈
R𝑞 is exogenous disturbance that satisfies ∫𝑇

0

V𝑇(𝑡)V(𝑡)d𝑡 ≤
𝑑(𝑑 ≥ 0). 𝐴(𝑟

𝑡
), 𝐴

1
(𝑟
𝑡
), 𝐵

1
(𝑟
𝑡
), 𝐸

1
(𝑟
𝑡
), 𝐻(𝑟

𝑡
), 𝐻

1
(𝑟
𝑡
),

𝐵
2
(𝑟
𝑡
), 𝐸

2
(𝑟
𝑡
), 𝐶(𝑟

𝑡
), 𝐶

1
(𝑟
𝑡
), and 𝐷

1
(𝑟
𝑡
) are known mode-

dependent constant matrices with appropriate dimensions.
𝑤(𝑡) is a zero-mean real scalar Wiener process on a complete
probability space (Ω,F, 𝑃) with a natural filtration {F

𝑡
}
𝑡≥0

,
whereΩ is the sample space,F is the 𝜎-algebras of sets of the
sample space, and 𝑃 is the probability measure onF. 𝜑(𝑡) is
an initial condition. It is known that system (2) has a unique
solution, denoted by 𝑥(𝑡) = 𝑥(𝑡, 𝜑). 𝜏(𝑡) is the time-varying
delay and satisfies 0 ≤ 𝜏(𝑡) < 𝜏, ̇𝜏(𝑡) ≤ ℎ, where 𝜏, ℎ are
constants.

The jump parameter 𝑟
𝑡
(𝑡 ≥ 0) is a continuous-time

discrete-state Markov stochastic process taking values on a
finite set Λ = {1, 2, . . . , 𝑁} with transition rate matrix Π =

{Π
𝑖𝑗
} given by

𝑃
𝑟
= 𝑃

𝑟
{𝑟
𝑡+Δ𝑡

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

Π
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 ̸= 𝑗

1 + Π
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 = 𝑗,

(3)

where lim
Δ𝑡→0

+(𝑜(Δ𝑡)/Δ𝑡) = 0, Π
𝑖𝑗
≥ 0, for 𝑖 ̸= 𝑗, and

∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
Π
𝑖𝑗
= −Π

𝑖𝑖
, for 𝑖, 𝑗 ∈ Λ.

Definition 1. For given time-constant 𝑇 > 0, system (2) with
𝑢(𝑡) = 0 and V(𝑡) = 0 is said to be stochastically finite-time
stable with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅

𝑖
), where 𝑐

1
< 𝑐
2
, 𝑅
𝑖
> 0, if

sup
𝑡∈[−𝜏,0]

𝜑
𝑇

(𝑡) 𝑅
𝑖
𝜑 (𝑡) ≤ 𝑐

1
󳨐⇒ E {𝑥𝑇 (𝑡) 𝑅

𝑖
𝑥 (𝑡)} < 𝑐

2
,

∀𝑡 ∈ [0, 𝑇] , 𝑖 ∈ Λ.

(4)

Definition 2. For given time-constant 𝑇 > 0, system (2) with
𝑢(𝑡) = 0 is said to be finite-time stochastically bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅

𝑖
, 𝑑), where 𝑐

1
< 𝑐
2
, 𝑅
𝑖
> 0, if

sup
𝑡∈[−𝜏,0]

𝜑
𝑇

(𝑡) 𝑅
𝑖
𝜑 (𝑡) ≤ 𝑐

1
󳨐⇒ E {𝑥𝑇 (𝑡) 𝑅

𝑖
𝑥 (𝑡)} < 𝑐

2
,

∀𝑡 ∈ [0, 𝑇] , 𝑖 ∈ Λ, ∀V (𝑡) : ∫
𝑇

0

V𝑇 (𝑡) V (𝑡) d𝑡 ≤ 𝑑.
(5)
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Definition 3. For given time-constant 𝑇 > 0, 𝛾 > 0, system
(2) with 𝑢(𝑡) = 0 is said to be 𝐻

∞
finite-time stochastically

boundedwith respect to (𝑐
1
, 𝑐
2
, 𝑇, 𝑅

𝑖
, 𝑑), where 𝑐

1
< 𝑐
2
,𝑅
𝑖
> 0,

if

(i) system (2) is finite-time stochastically bounded with
respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅

𝑖
, 𝑑);

(ii) under zero-initial condition, the output 𝑧(𝑡) satisfies

E{∫
𝑇

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) d𝑡} < 𝛾2 ∫
𝑇

0

V𝑇 (𝑡) V (𝑡) d𝑡. (6)

Definition 4. For given time-constant 𝑇 > 0, 𝛾 > 0, systems
(2) are said to be finite-time stabilizable with𝐻

∞
disturbance

attenuation level 𝛾, if there exists a controller 𝑢
𝑖
(𝑡) = 𝐾

𝑖
𝑥(𝑡)

such that
(i) the corresponding closed-loop system is finite-time

stochastically bounded with respect to (𝑐
1
, 𝑐
2
, 𝑇, 𝑅

𝑖
, 𝑑);

(ii) under zero-initial condition, (6) holds for any V(𝑡)
satisfying ∫𝑇

0

V𝑇(𝑡)V(𝑡)d𝑡 ≤ 𝑑.

Lemma 5. Given constant matrices Ω
1
, Ω

2
, and Ω

3
with

appropriate dimensions, where Ω
1
= Ω

𝑇

1
, 0 < Ω

2
= Ω

𝑇

2
, then

Ω
1
+ Ω

𝑇

3
Ω
−1

2
Ω
3
< 0 if and only if

[
Ω
1
Ω
𝑇

3

Ω
3
−Ω

2

] < 0. (7)

3. Finite-Time Stochastic Stability and
Bounded Analysis

In this section, we consider the systems (2) with 𝑢(𝑡) = 0:

d𝑥 (𝑡) = [𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐴

1
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐸

1
(𝑟
𝑡
) V (𝑡)] d𝑡

+ [𝐻 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐻

1
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡))

+𝐸
2
(𝑟
𝑡
) V (𝑡)] d𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐶

1
(𝑟
𝑡
) 𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(8)

Let 𝑉(𝑥(𝑡), 𝑟
𝑡
, 𝑡) be the stochastic Lyapunov Krasovskii func-

tional; define its weak infinitesimal operator as

L𝑉 (𝑥 (𝑡) , 𝑟
𝑡
, 𝑡)

= lim
Δ𝑡→0

1

Δ𝑡

[E {𝑉 (𝑥 (𝑡 + Δ𝑡) , 𝑟
𝑡+Δ𝑡

, 𝑡 + Δ𝑡) | 𝑥 (𝑡) , 𝑟
𝑡
}

−𝑉 (𝑥 (𝑡) , 𝑟
𝑡
, 𝑡)] .

(9)

Theorem 6. System (2) with 𝑢(𝑡) = 0 is finite-time stochas-
tically bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅

𝑖
, 𝑑), where 𝑐

1
< 𝑐

2
,

𝑅
𝑖
> 0, if there exist positive-definite symmetric matrices 𝑃

𝑖
,

𝑁
𝑖
, 𝑄, and𝑊 and positive scalars 𝛼, 𝜆

1
, 𝜆
2
, and 𝜆

3
, such that

the following conditions hold:

[

[

[

[

[

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
𝑖
− 𝛼𝑃

𝑖
+ 𝑄 +

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗

𝑃
𝑖
𝐴
1𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
1𝑖
− 𝐴

𝑇

𝑖
𝑁
𝑖

𝑃
𝑖
𝐸
1𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐸
2𝑖

𝐴
𝑇

𝑖
𝑁
𝑇

𝑖

∗ 𝐻
𝑇

1𝑖
𝑃
𝑖
𝐻
1𝑖
− Φ (ℎ)𝑄 − 𝑁

𝑖
𝐴
1𝑖
𝐻
𝑇

1𝑖
𝑃
𝑖
𝐸
2𝑖
− 𝑁

𝑖
𝐸
1𝑖
𝑁
𝑖
+ 𝐴

𝑇

1𝑖
𝑁
𝑖

∗ ∗ −𝑊 𝐸
𝑇

1𝑖
𝑁
𝑇

𝑖

∗ ∗ ∗ −𝑁
𝑖

]

]

]

]

]

]

]

]

]

< 0, (10)

𝜆
1
𝑅
𝑖
≤ 𝑃

𝑖
≤ 𝜆

2
𝑅
𝑖
, (11)

0 < 𝑄 ≤ 𝜆
3
𝑅
𝑖
, (12)

𝑒
𝛼𝑇

𝜆
2
𝑐
1
+ 𝑒
𝛼𝑇

𝜆
3
𝜏𝑒
𝛼𝜏

𝑐
1
+ 𝜆max (𝑊) 𝑒

𝛼𝑇

𝑑 < 𝜆
1
𝑐
2
. (13)

Proof. We denote that 𝑟
𝑡
= 𝑖. For convenience, we also denote

𝐴(𝑟
𝑡
),𝐴

1
(𝑟
𝑡
),𝐵

1
(𝑟
𝑡
),𝐸

1
(𝑟
𝑡
),𝐻(𝑟

𝑡
),𝐻

1
(𝑟
𝑡
),𝐵

2
(𝑟
𝑡
),𝐸

2
(𝑟
𝑡
),𝐶(𝑟

𝑡
),

𝐶
1
(𝑟
𝑡
), and 𝐷

1
(𝑟
𝑡
) as 𝐴

𝑖
, 𝐴

1𝑖
, 𝐵
1𝑖
, 𝐸
1𝑖
, 𝐻

𝑖
, 𝐻

1𝑖
, 𝐵
2𝑖
, 𝐸
2𝑖
, 𝐶
𝑖
,

𝐶
1𝑖
, and 𝐷

1𝑖
. Take the Lyapunov-Krasovskii functional for

systems (8) as

𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) = 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛼(𝑡−𝑠)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

≜ 𝑉
1𝑖
(𝑡) + 𝑉

2𝑖
(𝑡) ,

(14)

where 𝑃
𝑖
> 0 is the given mode-dependent symmetric

positive-definite matrix for each mode 𝑖 ∈ Λ and 𝑄 is the
symmetric positive-definite matrix.

Along the trajectory of system (8), we have

L𝑉
1𝑖
(𝑡)

= 𝑥
𝑇

(𝑡)(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
𝑖

−𝛼𝑃
𝑖
+

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗
)𝑥 (𝑡)
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+ 2𝑥
𝑇

(𝑡) (𝑃
𝑖
𝐴
1𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
1𝑖
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐸
1𝑖
V (𝑡) + 2𝑥𝑇 (𝑡)𝐻𝑇

𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐻
𝑇

1𝑖
𝑃
𝑖
𝐻
1𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐻
𝑇

1𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑡) − V𝑇 (𝑡)𝑊V (𝑡)

+ 𝛼𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) + V𝑇 (𝑡)𝑊V (𝑡) ,

(15)

where𝑊 > 0.
Consider the following:

L𝑉
2𝑖
(𝑡) = 𝑥

𝑇

(𝑡) 𝑄𝑥 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑒
𝛼𝜏(𝑡)

× 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝛼∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛼(𝑡−𝑠)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

≤ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − Φ (ℎ) 𝑥
𝑇

× (𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝛼∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛼(𝑡−𝑠)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠,

(16)

where

Φ (ℎ) = {

1 − ℎ, ℎ ≤ 1

(1 − ℎ) 𝑒
𝛼𝜏

, ℎ > 1.

(17)

Set 𝑦(𝑡) = 𝐴
𝑖
𝑥(𝑡) + 𝐴

1𝑖
𝑥(𝑡 − 𝜏(𝑡)) + 𝐸

1𝑖
V(𝑡), 𝑁

𝑖
> 0; we

have

2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝑁
𝑖
[𝑦 (𝑡) − 𝐴

𝑖
𝑥 (𝑡)

−𝐴
1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) − 𝐸

1𝑖
V (𝑡)] = 0,

(18)

2𝑦
𝑇

(𝑡)𝑁
𝑖
[𝐴
𝑖
𝑥 (𝑡) + 𝐴

1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐸

1𝑖
V (𝑡) − 𝑦 (𝑡)] = 0.

(19)

From (15) to (19), we obtain

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) < 𝜉
𝑇

(𝑡) Ω𝜉 (𝑡)

+ 𝛼𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) + V𝑇 (𝑡)𝑊V (𝑡) ,
(20)

where

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , V𝑇 (𝑡) , 𝑦𝑇 (𝑡)] ,

Ω =

[

[

[

[

[

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
𝑖
− 𝛼𝑃

𝑖
+ 𝑄 +

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗

𝑃
𝑖
𝐴
1𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
1𝑖
− 𝐴

𝑇

𝑖
𝑁
𝑖

𝑃
𝑖
𝐸
1𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐸
2𝑖

𝐴
𝑇

𝑖
𝑁
𝑇

𝑖

∗ 𝐻
𝑇

1𝑖
𝑃
𝑖
𝐻
1𝑖
− Φ (ℎ)𝑄 − 𝑁

𝑖
𝐴
1𝑖
𝐻
𝑇

1𝑖
𝑃
𝑖
𝐸
2𝑖
− 𝑁

𝑖
𝐸
1𝑖
𝑁
𝑖
+ 𝐴

𝑇

1𝑖
𝑁
𝑖

∗ ∗ −𝑊 𝐸
𝑇

1𝑖
𝑁
𝑇

𝑖

∗ ∗ ∗ −𝑁
𝑖

]

]

]

]

]

]

]

]

]

.

(21)

Using weak infinitesimal operator and (8), we can get

d [𝑒−𝛼𝑡𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)]

= −𝛼𝑒
−𝛼𝑡

𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) d𝑡 + 𝑒−𝛼𝑡d𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)

= 𝑒
−𝛼𝑡

(L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) − 𝛼𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)) d𝑡

+ 2𝑒
−𝛼𝑡

𝑥
𝑇

(𝑡) 𝑃
𝑖
[𝐻
𝑖
𝑥 (𝑡) + 𝐻

1𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝐸
2𝑖
V (𝑡)] d𝑤 (𝑡) .

(22)

By integrating both sides of (22) from 0 to 𝑡, taking expecta-
tions, and by (10)–(12), it follows that

E {𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)} < 𝑒𝛼𝑡E {𝑉 (𝑥 (0) , 𝑟
0
, 0)}

+ ∫

𝑡

0

𝑒
𝛼(𝑡−𝑠)V𝑇 (𝑠)𝑊V (𝑠) d𝑠

≤ 𝑒
𝛼𝑡

𝑥
𝑇

(0) 𝑃
𝑖
𝑥 (0) + 𝑒

𝛼𝑡

∫

0

−𝜏

𝑒
𝛼𝑠

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

+ 𝑒
𝛼𝑇

∫

𝑡

0

𝑒
−𝛼𝑠V𝑇 (𝑠)𝑊V (𝑠) d𝑠

≤ 𝑒
𝛼𝑇

𝜆
2
𝑥
𝑇

(0) 𝑅
𝑖
𝑥 (0)

+ 𝑒
𝛼𝑇

𝜆
3
∫

0

−𝜏

𝑒
𝛼𝑠

𝑥
𝑇

(𝑠) 𝑅
𝑖
𝑥 (𝑠) d𝑠

+ 𝑒
𝛼𝑇

∫

𝑡

0

V𝑇 (𝑠)𝑊V (𝑠) d𝑠

≤ 𝑒
𝛼𝑇

𝜆
2
𝑐
1
+ 𝑒
𝛼𝑇

𝜆
3
𝜏𝑒
𝛼𝜏

𝑐
1
+ 𝜆max (𝑊) 𝑒

𝛼𝑇

𝑑.

(23)

On the other hand, by (11), it is easy to see that

E {𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)} > E {𝑥𝑇 (𝑡) 𝑃
𝑖
𝑥 (𝑡)} ≥ 𝜆

1
E {𝑥𝑇 (𝑡) 𝑅

𝑖
𝑥 (𝑡)} .

(24)
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Now, (24) together with (13) and (23) implies that

E {𝑥𝑇 (𝑡) 𝑅
𝑖
𝑥 (𝑡)} < 𝑐

2
. (25)

The proof is completed.

Remark 7. It should be pointed out that the upper bound ℎ of
the derivative of time-varying delay 𝜏(𝑡) in this paper allows
ℎ ≤ 1 or ℎ > 1. When ℎ ≤ 1, we have ( ̇𝜏(𝑡) − 1)𝑒𝛼𝜏(𝑡) ≤ ℎ − 1.
When ℎ > 1, we have ( ̇𝜏(𝑡) − 1)𝑒𝛼𝜏(𝑡) < (ℎ − 1)𝑒

𝛼𝜏 whether
1 < ̇𝜏(𝑡) < ℎ or ̇𝜏(𝑡) < 1 < ℎ. So the function Φ(ℎ) in (16)
is introduced. It should be noted that the upper bound ℎ in
[49] only allows ℎ < 1. Moreover, as explained above, the
inequality amplification result on (14) in [49] is not true. So
our results can be applied to more general systems.

Remark 8. From (13), we can obtain the upper bound 𝜏max of
the delay 𝜏(𝑡); that is,

𝜏max =
𝜆
1
𝑐
2
/𝑒
𝛼𝑇

− 𝜆
2
𝑐
1
− 𝑑𝜆max (𝑊)

𝜆
3
𝑐
1

. (26)

Remark 9. Assuming that 𝑊 ≤ 𝜆
4
𝐼, for certain 𝜏 and

𝛼, by Lemma 5, we can obtain the following linear matrix
inequalities (LMIs) that are equivalent to condition (13):

[

[

[

[

−𝜆
1
𝑐
2
𝑒
−𝛼𝑇

𝜆
2√
𝑐
1
𝜆
3
√𝜏𝑐

1
𝑒
𝛼𝜏

𝜆
4
√𝑑

∗ −𝜆
2

0 0

∗ ∗ −𝜆
3

0

∗ ∗ ∗ −𝜆
4

]

]

]

]

< 0. (27)

Corollary 10. System (8) with V(𝑡) = 0 is stochastically finite-
time stable with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅

𝑖
), where 𝑐

1
< 𝑐
2
, 𝑅
𝑖
> 0,

if there exist positive-definite symmetric matrices 𝑃
𝑖
,𝑄, and𝑁

𝑖

and positive scalars 𝛼, 𝜆
1
, 𝜆
2
, and 𝜆

3
, such that the following

conditions hold:

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
𝑖
− 𝛼𝑃

𝑖
+

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗

𝑃
𝑖
𝐴
1𝑖
+ 𝐻

𝑇

𝑖
𝑃
𝑖
𝐻
1𝑖
− 𝐴

𝑇

𝑖
𝑁
𝑖

𝐴
𝑇

𝑖
𝑁
𝑇

𝑖

∗ 𝐻
𝑇

1𝑖
𝑃
𝑖
𝐻
1𝑖
− Φ (ℎ)𝑄 − 𝑁

𝑖
𝐴
1𝑖
𝑁
𝑖
+ 𝐴

𝑇

1𝑖
𝑁
𝑖

∗ ∗ −𝑁
𝑖

]

]

]

]

< 0,

𝜆
1
𝑅
𝑖
≤ 𝑃

𝑖
≤ 𝜆

2
𝑅
𝑖
,

0 < 𝑄 ≤ 𝜆
3
𝑅
𝑖
,

𝑒
𝛼𝑇

𝜆
2
𝑐
1
+ 𝑒
𝛼𝑇

𝜆
3
𝜏𝑒
𝛼𝜏

𝑐
1
< 𝜆

1
𝑐
2
.

(28)

4. Finite-Time Stochastic 𝐻
∞

Control

In this section, we consider the problem of finite-time
stochastic𝐻

∞
control for time-delayed Itô stochastic systems

withMarkovian switching.We consider themode-dependent
controller 𝑢(𝑡) = 𝐾

𝑖
𝑥(𝑡), 𝑡 ∈ [0, 𝑇], where 𝐾

𝑖
is the state

feedback gain that has to be determined. Applying the state
feedback controller into system (2) and denoting 𝑟

𝑡
= 𝑖, we

can obtain the corresponding closed-loop system as follows:

d𝑥 (𝑡) = [𝐴
𝑖
𝑥 (𝑡) + 𝐴

1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐸

1𝑖
V (𝑡)] d𝑡

+ [𝐻̃
𝑖
𝑥 (𝑡) + 𝐻

1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐸

2𝑖
V (𝑡)] d𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐶

1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(29)

where𝐴
𝑖
= 𝐴

𝑖
+𝐵

1𝑖
𝐾
𝑖
, 𝐻̃
𝑖
= 𝐻

𝑖
+𝐵

2𝑖
𝐾
𝑖
, and 𝐶

𝑖
= 𝐶

𝑖
+𝐷

1𝑖
𝐾
𝑖
.

Theorem 11. System (29) is finite-time stabilizable with 𝐻
∞

disturbance attenuation level 𝛾, if there exist positive-definite
symmetric matrices 𝑃

𝑖
, 𝑄, and 𝑁̃

𝑖
and positive scalars 𝛼, 𝜆

1
,

𝜆
2
, and 𝜆

3
, such that conditions (11)-(12) and the following

conditions hold:

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
− 𝛼𝑃

𝑖
+ 𝑄 +

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗

𝑃
𝑖
𝐴
1𝑖
− 𝐴

𝑇

𝑖
𝑁̃
𝑇

𝑖
𝑃
𝑖
𝐸
1𝑖

𝐴
𝑇

𝑖
𝑁̃
𝑇

𝑖
𝐶
𝑇

𝑖
𝐻̃
𝑇

𝑖

∗ −Φ (ℎ)𝑄 − 𝑁̃
𝑖
𝐴
1𝑖
−𝑁̃

𝑖
𝐸
1𝑖
𝑁̃
𝑖
+ 𝐴

𝑇

1𝑖
𝑁̃
𝑖
𝐶
𝑇

1𝑖
𝐻
𝑇

1𝑖

∗ ∗ −𝛾
2

𝐼 𝐸
𝑇

1𝑖
𝑁̃
𝑇

𝑖
0 𝐸

𝑇

2𝑖

∗ ∗ ∗ −𝑁̃
𝑖

0 0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝑃
𝑇

𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (30)

𝑒
𝛼𝑇

𝜆
2
𝑐
1
+ 𝑒
𝛼𝑇

𝜆
3
𝜏𝑒
𝛼𝜏

𝑐
1
+ 𝛾

2

𝑑𝑒
𝛼𝑇

< 𝜆
1
𝑐
2
. (31)
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Proof. Choose the Lyapunov-Krasovskii functional for sys-
tems (29) as

𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)

= 𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛼(𝑡−𝑠)

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

+ ∫

𝑡

0

𝑒
𝛼(𝑡−𝑠)V𝑇 (𝑠) 𝐸𝑇

2𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑠) d𝑠

≜ 𝑉
1𝑖
(𝑡) + 𝑉

2𝑖
(𝑡) + 𝑉

3𝑖
(𝑡) ,

(32)

where 𝑃
𝑖
> 0 is the given mode-dependent symmetric

positive-definite matrix for each mode 𝑖 ∈ Λ and 𝑄 is the
symmetric positive-definite matrix.

Along the trajectory of system (29), we have

L𝑉
1𝑖
(𝑡)

= 𝑥
𝑇

(𝑡)(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐻̃

𝑇

𝑖
𝑃
𝑖
𝐻̃
𝑖

−𝛼𝑃
𝑖
+

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗
)𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑃
𝑖
𝐴
1𝑖
+ 𝐻̃

𝑇

𝑖
𝑃
𝑖
𝐻
1𝑖
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃
𝑖
𝐸
1𝑖
V (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝐻̃
𝑇

𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐻
𝑇

1𝑖
𝑃
𝑖
𝐻
1𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐻
𝑇

1𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑡) − 𝛾2V𝑇 (𝑡) V (𝑡)

+ 𝛼𝑥
𝑇

(𝑡) 𝑃
𝑖
𝑥 (𝑡) + 𝛾

2V𝑇 (𝑡) V (𝑡) ,

L𝑉
2𝑖
(𝑡) ≤ 𝑥

𝑇

(𝑡) 𝑄𝑥 (𝑡)

−Φ (ℎ) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡)) + 𝛼𝑉
2𝑖
(𝑡) ,

L𝑉
3𝑖
(𝑡) = V𝑇 (𝑡) 𝐸𝑇

2𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑡)

+ 𝛼∫

𝑡

0

𝑒
𝛼(𝑡−𝑠)V𝑇 (𝑠) 𝐸𝑇

2𝑖
𝑃
𝑖
𝐸
2𝑖
V (𝑠) d𝑠.

(33)

Set 𝑦(𝑡) = 𝐴
𝑖
𝑥(𝑡) + 𝐴

1𝑖
𝑥(𝑡 − 𝜏(𝑡)) + 𝐸

1𝑖
V(𝑡), 𝑁̃

𝑖
> 0; we have

2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑁̃
𝑖
[𝑦 (𝑡) − 𝐴

𝑖
𝑥 (𝑡)

−𝐴
1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) − 𝐸

1𝑖
V (𝑡)] = 0,

2𝑦
𝑇

(𝑡) 𝑁̃
𝑖
[𝐴
𝑖
𝑥 (𝑡) + 𝐴

1𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐸

1𝑖
V (𝑡) − 𝑦 (𝑡)] = 0.

(34)

From (33) to (34), we obtain

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) < ̃𝜉
𝑇

(𝑡) Ω̃
̃
𝜉 (𝑡)

+𝛼𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) +𝛾
2V𝑇 (𝑡) V (𝑡)− 𝑧𝑇 (𝑡) 𝑧 (𝑡) ,

(35)

where

̃
𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , V𝑇 (𝑡) , 𝑦𝑇 (𝑡)] ,

Ω̃ =

[

[

[

[

[

[

[

[

[

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃

𝑖
𝐴
𝑖
+ 𝐻̃

𝑇

𝑖
𝑃
𝑖
𝐻̃
𝑖
− 𝛼𝑃

𝑖
+

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑃
𝑗
+ 𝐶

𝑇

𝑖
𝐶
𝑖

𝑃
𝑖
𝐴
1𝑖
+ 𝐻̃

𝑇

𝑖
𝑃
𝑖
𝐻
1𝑖
− 𝐴

𝑇

𝑖
𝑁̃
𝑖
+ 𝐶

𝑇

𝑖
𝐶
1𝑖

𝑃
𝑖
𝐸
1𝑖
+ 𝐻̃

𝑇

𝑖
𝑃
𝑖
𝐸
2𝑖

𝐴
𝑇

𝑖
𝑁̃
𝑇

𝑖

∗ 𝐻
𝑇

1𝑖
𝑃
𝑖
𝐻
1𝑖
− Φ (ℎ)𝑄 − 𝑁̃

𝑖
𝐴
1𝑖
+ 𝐶

𝑇

1𝑖
𝐶
1𝑖
𝐻
𝑇

1𝑖
𝑃
𝑖
𝐸
2𝑖
− 𝑁̃

𝑖
𝐸
1𝑖
𝑁̃
𝑖
+ 𝐴

𝑇

1𝑖
𝑁̃
𝑖

∗ ∗ −𝛾
2

𝐸
𝑇

2𝑖
𝑃
𝑖
𝐸
2𝑖

𝐸
𝑇

1𝑖
𝑁̃
𝑇

𝑖

∗ ∗ ∗ −𝑁̃
𝑖

]

]

]

]

]

]

]

]

]

.

(36)

Using Lemma 5, we have that (30) is equivalent to Ω̃ < 0.
Then (35) becomes

L𝑉 (𝑥 (𝑡) , 𝑖, 𝑡) < 𝛼𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)

+ 𝛾
2V𝑇 (𝑡) V (𝑡) − 𝑧𝑇 (𝑡) 𝑧 (𝑡) .

(37)

Under zero initial condition, we have

0 < 𝑒
−𝛼𝑇E {𝑉 (𝑥 (𝑡) , 𝑖, 𝑡)}

< E{∫
𝑇

0

𝑒
−𝛼𝑠

(𝛾
2V𝑇 (𝑠) V (𝑠) − 𝑧𝑇 (𝑠) 𝑧 (𝑠)) d𝑠} .

(38)
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Thus

E{∫
𝑇

0

𝑒
−𝛼𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠}

< 𝛾
2E{∫

𝑇

0

𝑒
−𝛼𝑠V𝑇 (𝑠) V (𝑠) d𝑠} ,

E{∫
𝑇

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) d𝑠}

< 𝛾
2

𝑒
𝛼𝑇E{∫

𝑇

0

𝑒
−𝛼𝑠V𝑇 (𝑠) V (𝑠) d𝑠}

< 𝛾
2

𝑒
𝛼𝑇E{∫

𝑇

0

V𝑇 (𝑠) V (𝑠) d𝑠} .

(39)

Let 𝛾 = √𝑒𝛼𝑇𝛾; then 𝛾 is𝐻
∞
performance index.When 𝑧(𝑡) =

0, similar to the proof of Theorem 6, it can be obtained that

E {𝑥𝑇 (𝑡) 𝑅
𝑖
𝑥 (𝑡)} ≤

𝑒
𝛼𝑇

𝜆
2
𝑐
1
+ 𝑒
𝛼𝑇

𝜆
3
𝜏𝑒
𝛼𝜏

𝑐
1
+ 𝛾

2

𝑒
𝛼𝑇

𝑑

𝜆
1

. (40)

From (31), we can get

E {𝑥𝑇 (𝑡) 𝑅
𝑖
𝑥 (𝑡)} < 𝑐

2
. (41)

The proof is completed.

Theorem 12. System (29) is finite-time stabilizable with 𝐻
∞

disturbance attenuation level 𝛾, if there exist positive-definite
symmetric matrices𝑋

𝑖
,𝑄
𝑖
,𝑄
𝑖
, and 𝑁̂

𝑖
, appropriate dimensions

matrices 𝑌
𝑖
, and positive scalars 𝛼, 𝜆

1
, 𝜆
2
, and 𝜆

3
, such that

conditions (11)-(12), (31) and the following conditions hold:

[

[

[

[

[

[

[

𝐴
𝑖
𝑋
𝑖
+ 𝑋

𝑖
𝐴
𝑇

𝑖
+ 𝐵

1𝑖
𝑌
𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

1𝑖
− 𝛼𝑋

𝑖
+ ̂𝑄

𝑖
+

𝑁

∑

𝑗=1

Π
𝑖𝑗
𝑋
𝑗
𝐴
1𝑖
𝑁̂
𝑖
− 𝑋

𝑖
𝐴
𝑇

𝑖
− 𝑌

𝑇

𝑖
𝐵
𝑇

1𝑖
𝐸
1𝑖

𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

1𝑖
𝑋
𝑖
𝐶
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐷
𝑇

1𝑖
𝑋
𝑖
𝐻
𝑇

𝑖
+ 𝑌

𝑇

𝑖
𝐵
𝑇

2𝑖

∗ −Φ (ℎ)
̃
𝑄
𝑖
− 𝐴

1𝑖
𝑁̂
𝑖

−𝐸
1𝑖

𝑁̂
𝑖
+ 𝑁̂

𝑖
𝐴
𝑇

1𝑖
𝑁̂
𝑖
𝐶
𝑇

1𝑖
𝑁̂
𝑖
𝐻
𝑇

1𝑖

∗ ∗ −𝛾
2

𝑁̂
𝑖

𝑁̂
𝑖
𝐸
𝑇

1𝑖
0 𝐸

𝑇

2𝑖

∗ ∗ ∗ −𝑁̂
𝑖

0 0

∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ −𝑋
𝑖

]

]

]

]

]

]

]

< 0.

(42)

Moreover, a state feedback controller gain is given by 𝐾
𝑖
=

𝑌
𝑖
𝑋
−1

𝑖
.

Proof. Replacing 𝐴
𝑖
, 𝐻̃
𝑖
, and 𝐶

𝑖
in (30) with 𝐴

𝑖
+ 𝐵

1𝑖
𝐾
𝑖
,𝐻
𝑖
+

𝐵
2𝑖
𝐾
𝑖
, and 𝐶

𝑖
+𝐷

1𝑖
𝐾
𝑖
, then premultiplying and postmultiply-

ing it by diag{𝑃−1
𝑖
, 𝑁̃

−1

𝑖
, 𝐼, 𝑁̃

−1

𝑖
, 𝐼, 𝐼}, and denoting 𝑃−1

𝑖
= 𝑋

𝑖
,

𝑌
𝑖
= 𝐾𝑋

𝑖
, 𝑋𝑇

𝑖
𝑄𝑋

𝑖
= 𝑄

𝑖
, 𝑁̃−1

𝑖
= 𝑁̂

𝑖
, and 𝑁̃−1

𝑖
𝑄𝑁̃

−1

𝑖
= 𝑄

𝑖
, we

can obtain (42).
The proof is completed.

Remark 13. Replacing 𝜆
4
in (27) with 𝛾2, then it is equivalent

to (31). For certain 𝜆
1
and 𝜆

2
, all the conditions ofTheorem 12

can be expressed as linear matrix inequalities. In this way,
finite-time 𝐻

∞
state feedback stabilization conditions for

time-delayed Itô stochastic systems with Markovian switch-
ing are based entirely on linear matrix inequalities. In the
practical application of dynamical systems, we can obtain
the controller effectively with the help of LMI toolbox in
MATLAB.

Remark 14. In order to obtain the finite-time 𝐻
∞

stabiliza-
tion conditions based on LMIs for time-delayed Itô stochas-
tic systems with Markovian switching, new Lyapunov-
Krasovskii functional (32) is introduced.

Remark 15. In the sense of Lyapunov stability, the problem
of 𝐻

∞
control for systems with Markovian switching and

time delay has attracted a lot of research (e.g., see [40,
41]). Different from these studies, this paper focuses on this
problem under the sense of finite-time stability. The latter is
suitable for transient performance of actual systems such as

communication network system, missile system, and robot
control system.

5. Illustrative Example

In this section, we will discuss one example to illustrate our
results.

Example 16. Consider time-delayed Itô stochastic systems
with Markovian switching (29) with the following parame-
ters:

𝐴
1
= [

−0.1 2

2 −1
] , 𝐴

2
= [

−2 1

0 −2
] ,

𝐴
11
= [

−0.1 0

−0.1 −0.1
] , 𝐴

12
= [

0.2 0.1

0.1 0.1
]

𝐶
1
= 𝐶

11
= [

−0.2 0

0 −0.2
] , 𝐶

2
= 𝐶

12
= [

0.2 0

0 0.1
] ,

𝐻
11
= [

−0.1 0

−0.1 −0.1
] , 𝐻

12
= [

0.1 0.1

0.1 0
] ,

𝐻
1
= [

0.1 0.2

0.2 0.3
] , 𝐻

2
= [

0.1 0.2

0.1 0.3
] ,

𝐸
21
= [

0.1 0.3

−0.2 0.4
] , 𝐸

22
= [

0.1 0.3

−0.1 0.1
] ,

𝐵
11
= [

16 12

2 13
] , 𝐵

12
= [

12 8

10 3
] ,
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Figure 1: Markovian switching signal.
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Figure 2: State trajectory of the closed-loop system.

𝐵
21
= [

0.1 0.3

−2 0.4
] , 𝐵

22
= [

0.1 0.3

0 0.1
] ,

𝐸
11
= [

0.01 0.02

0.1 0.2
] , 𝐸

12
= [

0.3 0.2

0.1 0
] ,

𝐷
11
= [

0.1 0.1

0.2 0.3
] , 𝐷

12
= [

0.2 0.2

1 0.1
] ,

Π = [

−6 6

8 −8
] .

(43)

Denote transition probabilities by 𝑝
1
and 𝑝

2
. By using

[𝑝
1

𝑝
2
]Π = 0 and 𝑝

1
+ 𝑝

2
= 1, we can obtain 𝑝

1
=

4/7 and 𝑝
2
= 3/7. Figure 1 shows the Markovian switching

signal within 100 times according to the above transition
probabilities.

Choose 𝛼 = 0.1, 𝜏 = 0.1, ℎ = 1, 𝑐
1
= 1, 𝑐

2
= 4, 𝑇 = 10,

𝑅
1
= 𝑅

2
= 𝐼, 𝛾 = √3, and 𝑑 = 0.1. Then, solving conditions

(41), (11), (12), and (31) inTheorem 12 for𝜆
1
= 2 and𝜆

2
= 2.01

yields

𝐾
1
= [

0.1209 −0.1828

−0.1743 0.0778
] , 𝐾

2
= [

−0.1106 0.3890

0.3831 −0.7077
] ,

𝜆
3
= 0.0012.

(44)

The state trajectories of the closed-loop system are shown
in Figure 2. It is easy to see that the system is finite-time
stochastically bounded.

6. Conclusions

In this paper, finite-time stochastic stability and finite-
time stochastic 𝐻

∞
control problem for time-delayed Itô

stochastic systems withMarkovian switching are investigated
with Lyapunov-Krasovskii functional approach and free-
weighting matrix techniques. Some criteria are established.
One example is given for illustration.
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