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We consider a new class CC(𝛼, 𝛽) of bounded doubly close-to-convex functions. Coefficient bounds, distortion theorems, and
radius of convexity for the class CC(𝛼, 𝛽) are investigated. A corresponding class of doubly close-to-starlike functions S∗S(𝛼, 𝛽)
is also considered.

1. Introduction

LetA denote the class of functions of the form

𝑓 (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑎
𝑛
𝑧
𝑛

, (1)

which are analytic in the unit disk U = {𝑧 ∈ C : |𝑧| < 1}.
Let S∗, K, and C denote the well-known classes of

starlike, convex, and close-to-convex functions, respectively.
A function 𝑓 ∈ A is said to be in the classC(𝛽) of close-

to-convex functions of order 𝛽 ≥ 0 (see [1]) if there exist 𝑔 ∈

K and 𝜃 ∈ R such that

arg(𝑒𝑖𝜃

𝑓


(𝑧)

𝑔 (𝑧)
)


≤ 𝛽

𝜋

2
(𝑧 ∈ U) . (2)

It is clear thatC(0) = K andC(1) = C.
Denote by B the class of analytic functions 𝜔 in U with

𝜔(0) = 0 and such that |𝜔(𝑧)| < 1 for all 𝑧 ∈ U.
Suppose that𝑓 and 𝑔 are two analytic functions inU.The

function𝑓 is said to be subordinate to the function𝑔, denoted
by 𝑓 ≺ 𝑔, if there exists a function 𝜔 ∈ B such that 𝑓(𝑧) =
𝑔(𝜔(𝑧)), 𝑧 ∈ U.

Let P be the well-known class of analytic functions 𝑝
normalized by 𝑝(0) = 1 and having positive real part in U.

For a fixed 𝛼 > 1/2 let P
𝛼
denote the subclass of P

defined by

P
𝛼
= {𝑝 ∈ P :

𝑝 (𝑧) − 𝛼
 < 𝛼, 𝑧 ∈ U} . (3)

The class P
𝛼
has been investigated by Goel [2] and also by

Libera and Livingston [3].

It is easy to observe that when 𝛼 → ∞, the class P
𝛼

reduces to the classP.
For 𝛼 > 1/2, the function

𝑝
𝛼
(𝑧) =

1 + 𝑧

1 − (1 − (1/𝛼)) 𝑧
(𝑧 ∈ U) (4)

maps the unit diskU onto the domain𝐷
𝛼
= {𝑧 ∈ U : |𝑧−𝛼| <

𝛼}. It follows that a function 𝑝 is in the classP
𝛼
if and only if

𝑝 ≺ 𝑝
𝛼
.

If

𝑝
𝛼
(𝑧) = 1 +

∞

∑
𝑛=1

𝑃
𝑛
𝑧
𝑛

, (5)

then it is easy to check that

𝑃
1
= 2 −

1

𝛼
, 𝑃

2
= (2 −

1

𝛼
) (1 −

1

𝛼
) . (6)

Some properties of the functions belonging to the class
P
𝛼
are listed in the next lemma.

Lemma 1 (see [2, 3]). Let 𝑝(𝑧) = 1 +∑
∞

𝑛=1
𝑝
𝑛
𝑧𝑛 be in the class

P
𝛼
(𝛼 > 1/2). Then

𝑝𝑛
 ≤ 2 −

1

𝛼
(𝑛 ∈ {1, 2, . . .}) ; (7)

1 − 𝑟

1 + (1 − (1/𝛼)) 𝑟
≤
𝑝 (𝑧)

 ≤
1 + 𝑟

1 − (1 − (1/𝛼)) 𝑟
; (8)



𝑧𝑝


(𝑧)

𝑝 (𝑧)


≤

(2 − (1/𝛼)) 𝑟

1 − (1/𝛼) 𝑟 − (1 − (1/𝛼)) 𝑟2
, (9)

for 𝑧 ∈ U and |𝑧| = 𝑟 < 1. All the inequalities are sharp.
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LetCC(𝛼) (𝛼 > 1/2) denote the class of all functions𝑓 ∈

A for which there exists a function 𝑔 ∈ K such that 𝑓/𝑔 ≺
𝑝
𝛼
, where 𝑝

𝛼
is given by (4), or equivalently



𝑓 (𝑧)

𝑔 (𝑧)
− 𝛼


< 𝛼 (𝑧 ∈ U) . (10)

It is easy to see that when 𝛼 → ∞ the class CC(𝛼)

reduces to the classC of close-to-convex functions.
A slightly different class than the class CC(𝛼) was

investigated in [2].
Recently, in [4] the authors considered a new class of

analytic functions defined in a similar way to the class C(𝛽).
For fixed 𝛽 ≥ 0 and 𝛾 ≥ 0 a function 𝑓 ∈ A is called doubly
close-to-convex if there exist 𝑔 ∈ C(𝛽) and 𝜙 ∈ R such that


arg(𝑒𝑖𝜙

𝑓 (𝑧)

𝑔 (𝑧)
)


≤ 𝛾

𝜋

2
(𝑧 ∈ U) . (11)

Motivated by the ideas from [4] we define a new class of
bounded doubly close-to-convex functions.

Definition 2. Let 𝛼 > 1/2 and 𝛽 > 1/2 be fixed. A function
𝑓 ∈ A is said to be in the class CC(𝛼, 𝛽) if there exists a
function 𝑔 ∈ CC(𝛼) such that 𝑓/𝑔 ≺ 𝑝

𝛽
, where 𝑝

𝛽
is given

by (4) with 𝛽 instead of 𝛼, or equivalently



𝑓 (𝑧)

𝑔 (𝑧)
− 𝛽


< 𝛽 (𝑧 ∈ U) . (12)

From the above definition and the definition of the class
CC(𝛼), it follows that 𝑓 ∈ CC(𝛼, 𝛽) if there exist a function
ℎ ∈ K and a function 𝑔 ∈ A such that 𝑔/ℎ ≺ 𝑝

𝛼
and

𝑓/𝑔 ≺ 𝑝
𝛽
, or equivalently



𝑔 (𝑧)

ℎ (𝑧)
− 𝛼


< 𝛼,



𝑓 (𝑧)

𝑔 (𝑧)
− 𝛽


< 𝛽 (𝑧 ∈ U) . (13)

In the next lemma we prove that the new class CC(𝛼, 𝛽)

is nonempty.

Lemma 3. Let 𝛼 > 1/2 and 𝛽 > 1/2. Then, there exists a
function 𝑓 ∈ CC(𝛼, 𝛽).

Proof. Define the following three functions:

𝑓 (𝑧) = ∫
𝑧

0

(1 + 𝜖
1
𝑢) (1 + 𝜖

2
𝑢)

× ((1 + 𝜖
3
𝑢)
2

[1 − (1 − (1/𝛼)) 𝜖
1
𝑢]

× [1 − (1 − (1/𝛽)) 𝜖
2
𝑢])
−1

𝑑𝑢,

(14)

𝑔 (𝑧) = ∫
𝑧

0

1 + 𝜖
1
𝑢

(1 + 𝜖
3
𝑢)
2

[1 − (1 − (1/𝛼)) 𝜖
1
𝑢]

𝑑𝑢,

ℎ (𝑧) =
𝑧

1 + 𝜖
3
𝑧
,

(15)

with 𝑧 ∈ U and |𝜖
𝑘
| = 1, 𝑘 ∈ {1, 2, 3}. Since ℎ ∈ K (see [5])

and

𝑔 (𝑧)

ℎ (𝑧)
=

1 + 𝜖
1
𝑧

1 − (1 − (1/𝛼)) 𝜖
1
𝑧
, (16)

it follows that 𝑔 ∈ CC(𝛼). The equality

𝑓 (𝑧)

𝑔 (𝑧)
=

1 + 𝜖
2
𝑧

1 − (1 − (1/𝛽)) 𝜖
2
𝑧

(17)

together with 𝑔 ∈ CC(𝛼) shows that the function 𝑓 defined
by (14) belongs toCC(𝛼, 𝛽).

In this paper we obtain distortion theorems, radius of
convexity, and coefficient bounds for the class CC(𝛼, 𝛽).
In the last section of the paper a corresponding class of
bounded doubly close-to-starlike functionsS∗S(𝛼, 𝛽) is also
considered.

2. Distortion Theorems

In this section distortion theorems for the classCC(𝛼, 𝛽) are
obtained.

Theorem 4. Let 𝛼 > 1/2 and 𝛽 > 1/2. If 𝑓 ∈ CC(𝛼, 𝛽), then

(1 − 𝑟)
2

(1 + 𝑟)
2

[1 + (1 − (1/𝛼)) 𝑟] [1 + (1 − (1/𝛽)) 𝑟]

≤

𝑓


(𝑧)


≤
(1 + 𝑟)

2

(1 − 𝑟)
2

[1 − (1 − (1/𝛼)) 𝑟] [1 − (1 − (1/𝛽)) 𝑟]

(18)

for 𝑧 ∈ U and |𝑧| = 𝑟 < 1.

Proof. Let 𝑓 ∈ CC(𝛼, 𝛽). Then there exists 𝑔 ∈ CC(𝛼)

such that 𝑓(𝑧) = 𝑔(𝑧)𝑞(𝑧), where 𝑞 belongs to the classP
𝛽

defined by (3) with 𝛽 instead of 𝛼. Since 𝑞 ∈ P
𝛽
, making use

of inequalities (8) from Lemma 1, we obtain

1 − 𝑟

1 + (1 − (1/𝛽)) 𝑟
≤



𝑓


(𝑧)

𝑔 (𝑧)


≤

1 + 𝑟

1 − (1 − (1/𝛽)) 𝑟
(19)

for 𝑧 ∈ U and |𝑧| = 𝑟 < 1.
The function 𝑔 belongs to the classCC(𝛼) and thus, there

exists a function ℎ ∈ K such that 𝑔(𝑧) = ℎ(𝑧)𝑝(𝑧), where
𝑝 ∈ P

𝛼
. Using once more the inequalities (8) from Lemma 1,

we have

1 − 𝑟

1 + (1 − (1/𝛼)) 𝑟
≤



𝑔 (𝑧)

ℎ (𝑧)


≤

1 + 𝑟

1 − (1 − (1/𝛼)) 𝑟
(20)

for 𝑧 ∈ U and |𝑧| = 𝑟 < 1.
Moreover, ℎ ∈ K implies that (see [5, 6])

1

(1 + 𝑟)
2

≤

ℎ


(𝑧)

≤

1

(1 − 𝑟)
2

(21)

for 𝑧 ∈ U and |𝑧| = 𝑟 < 1.
Combining the inequalities (19), (20), and (21), we obtain

the desired inequality (18).
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Theorem 5. Let 𝛼 > 1/2 and 𝛽 > 1/2. If 𝑓 ∈ CC(𝛼, 𝛽), then

𝑓 (𝑧)
 ≤ 4𝛼𝛽 [

𝑟

1 − 𝑟
+ (𝛼 + 𝛽 − 1) log (1 − 𝑟)]

−
𝛼𝛽

𝛼 − 𝛽
{(2𝛼 − 1)

2 log [1 − (1 −
1

𝛼
) 𝑟]

−(2𝛽 − 1)
2 log [1 − (1 −

1

𝛽
) 𝑟]} ,

(22)

𝑓 (𝑧)
 ≥ 4𝛼𝛽 [

𝑟

1 + 𝑟
− (𝛼 + 𝛽 − 1) log (1 + 𝑟)]

+
𝛼𝛽

𝛼 − 𝛽
{(2𝛼 − 1)

2 log [1 + (1 −
1

𝛼
) 𝑟]

− (2𝛽 − 1)
2 log [1 + (1 −

1

𝛽
) 𝑟]}

(23)

if 𝛼 ̸= 𝛽 and

𝑓 (𝑧)
 ≤ 4𝛼

2

[
𝑟

1 − 𝑟
+ (2𝛼 − 1) log (1 − 𝑟)]

+ (2𝛼 − 1) {
𝑟

1 − (1 − (1/𝛼)) 𝑟

− 4𝛼
2 log [1 − (1 −

1

𝛼
) 𝑟] } ,

(24)

𝑓 (𝑧)
 ≥ 4𝛼

2

[
𝑟

1 + 𝑟
− (2𝛼 − 1) log (1 + 𝑟)]

+ (2𝛼 − 1) {
𝑟

1 + (1 − (1/𝛼)) 𝑟

+ 4𝛼
2 log [1 + (1 −

1

𝛼
) 𝑟] }

(25)

if 𝛼 = 𝛽.

Proof. Let 𝑓 ∈ CC(𝛼, 𝛽). Integrating along the straight line
segment from origin to 𝑧 = 𝑟𝑒𝑖𝜃 (0 < 𝑟 < 1) the right-hand
side of inequality (18) we obtain
𝑓 (𝑧)



≤ ∫
𝑟

0


𝑓


(𝜌𝑒
𝑖𝜃

)

𝑑𝜌

≤ ∫
𝑟

0

(1 + 𝜌)
2

(1 − 𝜌)
2

[1 − (1 − (1/𝛼)) 𝜌] [1 − (1 − (1/𝛽)) 𝜌]
𝑑𝜌,

(26)

which leads to inequalities (22) and (24).
To prove the lower bound of |𝑓(𝑧)| we proceed in the

following way. Let 𝛿 > 0 be the radius of the open disk
contained entirely in𝑓(U). Consider 𝑧

0
with |𝑧

0
| = 𝑟 < 1 such

that |𝑓(𝑧
0
)| = min

|𝑧|=𝑟
|𝑓(𝑧)|. The minimum increases with 𝑟

and is less than 𝛿. Hence, the linear segment Γwhich connects
the origin with the point 𝑓(𝑧

0
)will be covered entirely by the

values of 𝑓(𝑧). Denote by 𝛾 the arc in U which is mapped by
𝑤 = 𝑓(𝑧) in Γ. Making use of the left-hand side of inequality
(18) we get
𝑓 (𝑧)



≥
𝑓 (𝑧
0
)
 = ∫
Γ

𝑑𝑤 ≥ ∫
𝛾


𝑓


(𝑧)
 |
𝑑𝑧|

≥ ∫
𝑟

0

(1 − 𝜌)
2

(1 + 𝜌)
2

[1 + (1 − (1/𝛼)) 𝜌] [1 + (1 − (1/𝛽)) 𝜌]
𝑑𝜌.

(27)

After simple calculations we obtain the inequalities (23)
and (25). Thus, the proof of our theorem is completed.

3. Radius of Convexity

In this section we obtain the radius of the disk which is
mapped onto a convex domain by the functions belonging to
CC(𝛼, 𝛽).

Theorem 6. Let 𝛼 > 1/2 and 𝛽 > 1/2. Suppose that 𝑓 ∈

CC(𝛼, 𝛽). Then, the function 𝑓 maps the disk {𝑧 ∈ C : |𝑧| <

𝑟
0
< 1} onto a convex domain, where 𝑟

0
is the smallest positive

root of the equation

(𝛼 + 𝛽 − 𝛼𝛽 − 1) 𝑟
4

+ 4 (𝛼𝛽 − 𝛼 − 𝛽 + 1) 𝑟
3

+ (10𝛼𝛽 − 5𝛼 − 5𝛽 + 1) 𝑟
2

+ 4𝛼𝛽𝑟 − 𝛼𝛽 = 0.

(28)

Proof. Let 𝑓 ∈ CC(𝛼, 𝛽). Then, there exists 𝑔 ∈ CC(𝛼) such
that

𝑓


(𝑧) = 𝑞 (𝑧) 𝑔


(𝑧) (𝑧 ∈ U) , (29)

where 𝑞 ∈ P
𝛽
. Since 𝑔 ∈ CC(𝛼), there exists a function ℎ ∈

K such that

𝑔


(𝑧) = 𝑝 (𝑧) ℎ


(𝑧) (𝑧 ∈ U) , (30)

where 𝑝 ∈ P
𝛼
. Moreover, since ℎ ∈ K it follows that there

exists a function 𝑘 ∈ S∗ (see [5, 6]) such that

𝑘 (𝑧) = 𝑧ℎ


(𝑧) (𝑧 ∈ U) . (31)

Combining the equalities (29), (30), and (31), we get

𝑧𝑓


(𝑧) = 𝑞 (𝑧) 𝑝 (𝑧) 𝑘 (𝑧) (𝑧 ∈ U) . (32)

By taking logarithmic derivative in (32), we obtain

1 +
𝑧𝑓 (𝑧)

𝑓 (𝑧)
=
𝑧𝑞 (𝑧)

𝑞 (𝑧)
+
𝑧𝑝 (𝑧)

𝑝 (𝑧)
+
𝑧𝑘 (𝑧)

𝑘 (𝑧)
(33)

which leads to

R(1 +
𝑧𝑓 (𝑧)

𝑓 (𝑧)
)

≥ minR(
𝑧𝑘 (𝑧)

𝑘 (𝑧)
) −max



𝑧𝑞 (𝑧)

𝑞 (𝑧)


−max



𝑧𝑝 (𝑧)

𝑝 (𝑧)


.

(34)
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For 𝑘 ∈ S∗, we have (see [7])

R(
𝑧𝑘 (𝑧)

𝑘 (𝑧)
) ≥

1 − 𝑟

1 + 𝑟
(35)

with 𝑧 ∈ U and |𝑧| = 𝑟 < 1.
Since 𝑝 ∈ P

𝛼
and 𝑞 ∈ P

𝛽
, making use of inequality (9)

from Lemma 1, we obtain


𝑧𝑝 (𝑧)

𝑝 (𝑧)


≤

(2 − (1/𝛼)) 𝑟

1 − (1/𝛼) 𝑟 − (1 − (1/𝛼)) 𝑟2
,



𝑧𝑞 (𝑧)

𝑞 (𝑧)


≤

(2 − (1/𝛽)) 𝑟

1 − (1/𝛽) 𝑟 − (1 − (1/𝛽)) 𝑟2

(36)

with 𝑧 ∈ U and |𝑧| = 𝑟 < 1.
Substituting (35) and (36) in (34) we have

R(1 +
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) ≥

1 − 𝑟

1 + 𝑟
−

(2 − (1/𝛼)) 𝑟

1 − (1/𝛼) 𝑟 − (1 − (1/𝛼)) 𝑟2

−
(2 − (1/𝛽)) 𝑟

1 − (1/𝛽) 𝑟 − (1 − (1/𝛽)) 𝑟2
.

(37)

It follows that the function 𝑓 is convex whenever the
expression in the right-hand side of (37) is positive. The
numerator of this expression can be written as 𝑃(𝑟) = (1 −

𝑟)𝑄(𝑟), where

𝑄 (𝑟) = (𝛼 + 𝛽 − 𝛼𝛽 − 1) 𝑟
4

+ 4 (𝛼𝛽 − 𝛼 − 𝛽 + 1) 𝑟
3

+ (10𝛼𝛽 − 5𝛼 − 5𝛽 + 1) 𝑟
2

+ 4𝛼𝛽𝑟 − 𝛼𝛽.

(38)

We observe that 𝑄(0) = −𝛼𝛽 < 0 and 𝑄(1) = 4(2𝛼 − 1)(2𝛽 −

1) > 0. It follows that the smallest root 𝑟
0
of 𝑄(𝑟) = 0 and

also of 𝑃(𝑟) = 0 lies between 0 and 1 and, thus, the theorem
is proved.

4. Coefficient Estimates

In order to find coefficient estimates for the class CC(𝛼, 𝛽),
we will find first the coefficient estimates for the classCC(𝛼).

Theorem 7. Let 𝛼 > 1/2. If the function𝑓 given by (1) is in the
classCC(𝛼), then

𝑎𝑛
 ≤ 1 +

(2𝛼 − 1) (𝑛 − 1)

2𝛼
(𝑛 ∈ {2, 3, . . .}) . (39)

Proof. Since 𝑓 ∈ CC(𝛼) we have

𝑓


(𝑧) = 𝑝 (𝑧) 𝑔


(𝑧) (𝑧 ∈ U) , (40)

where

𝑔 (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑏
𝑛
𝑧
𝑛

∈ K,

𝑝 (𝑧) = 1 +

∞

∑
𝑛=1

𝑝
𝑛
𝑧
𝑛

∈ P
𝛼
.

(41)

Equating the coefficients of 𝑧𝑛 on both sides of (40), we find
the following relation between the coefficients:

𝑛𝑎
𝑛
= 𝑛𝑏
𝑛
+ 𝑝
𝑛−1

+ 2𝑏
2
𝑝
𝑛−2

+ ⋅ ⋅ ⋅ + (𝑛 − 1) 𝑏
𝑛−1

𝑝
1

(𝑛 ∈ {2, 3, . . .}) .
(42)

For 𝑔 ∈ K we have |𝑏
𝑘
| ≤ 1, 𝑘 ≥ 2 (see [5, 6]). In virtue

of inequality (7) of Lemma 1 we have |𝑝
𝑘
| ≤ 2 − (1/𝛼), 𝑘 ∈

{1, 2, . . .}.
Making use of (42), we find

𝑛
𝑎𝑛

 ≤ 𝑛 + (2 −
1

𝛼
)

𝑛−1

∑
𝑘=1

𝑘

= 𝑛 + (2 −
1

𝛼
)
𝑛 (𝑛 − 1)

2
(𝑛 ∈ {2, 3, . . .})

(43)

and, thus, we get the desired inequality (39).

When 𝛼 → ∞ we find the well-known coefficient
estimates of close-to-convex functions (see [5, 6]).

In the next theoremwe obtain the coefficient estimates for
the classCC(𝛼, 𝛽).

Theorem 8. Let 𝛼 > 1/2 and 𝛽 > 1/2. If the function 𝑓 given
by (1) is in the classCC(𝛼, 𝛽), then

𝑎𝑛
 ≤ 1 + (4 −

1

𝛼
−
1

𝛽
)
𝑛 − 1

2

+ (2 −
1

𝛼
)(2 −

1

𝛽
)
(𝑛 − 1) (𝑛 − 2)

6
(𝑛 ∈ {2, 3, . . .}) .

(44)

Proof. Let 𝑓 ∈ CC(𝛼, 𝛽). Then, there exist

𝑔 (𝑧) = 𝑧 +

∞

∑
𝑛=2

𝑏
𝑛
𝑧
𝑛

∈ CC (𝛼) ,

𝑞 (𝑧) = 1 +

∞

∑
𝑛=1

𝑞
𝑛
𝑧
𝑛

∈ P
𝛽

(45)

such that

𝑓


(𝑧) = 𝑞 (𝑧) 𝑔


(𝑧) (𝑧 ∈ U) . (46)

Comparing the coefficients of 𝑧𝑛 on both sides of the above
equality, we obtain the next relation:

𝑛𝑎
𝑛
= 𝑛𝑏
𝑛
+ 𝑞
𝑛−1

+ 2𝑏
2
𝑞
𝑛−2

+ ⋅ ⋅ ⋅ + (𝑛 − 1) 𝑏
𝑛−1

𝑞
1

(𝑛 ∈ {2, 3, . . .}) .
(47)

Since 𝑔 ∈ CC(𝛼) and 𝑞 ∈ P
𝛽
, from (39) and (7), we get

𝑏𝑘
 ≤ 1 +

(2𝛼 − 1) (𝑘 − 1)

2𝛼
(𝑘 ∈ {2, 3, . . .}) ,

𝑞𝑘
 ≤ 2 −

1

𝛽
(𝑘 ∈ {1, 2, . . .}) .

(48)
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From (47) in connection with (48), we obtain
𝑎𝑛



≤ 1 +
(2𝛼 − 1) (𝑛 − 1)

2𝛼

+
1

𝑛
(2 −

1

𝛽
)[1 +

𝑛−1

∑
𝑘=2

𝑘(1 +
(2𝛼 − 1) (𝑘 − 1)

2𝛼
)]

= 1 +
(2𝛼 − 1) (𝑛 − 1)

2𝛼

+
1

𝑛
[(2 −

1

𝛽
)(1 +

𝑛−1

∑
𝑘=2

𝑘)+ (2 −
1

𝛽
)
2𝛼 − 1

2𝛼

𝑛−1

∑
𝑘=2

𝑘 (𝑘 − 1)]

= 1 +
(2𝛼 − 1) (𝑛 − 1)

2𝛼
+
2𝛽 − 1

2𝛽
(𝑛 − 1)

+
(2𝛼 − 1) (2𝛽 − 1)

6𝛼𝛽
(𝑛 − 1) (𝑛 − 2)

(49)

which leads to inequality (44).

5. Maximum Value of |𝑎
3
−(2/3)𝑎

2

2
|

Theproblemof finding sharp upper bounds for the functional
|𝑎
3
− 𝜇𝑎
2

2
| for a family of analytic functions is known as the

Fekete-Szegö problem. For the classesK andC, the following
estimates are known (see, e.g., [8–11]):

max
𝑓∈K


𝑎
3
− 𝜇𝑎
2

2


= max {1

3
,
𝜇 − 1

} , (50)

max
𝑓∈C


𝑎
3
− 𝜇𝑎
2

2


=

{{{{{{{

{{{{{{{

{

3 − 4𝜇, 0 ≤ 𝜇 ≤
1

3

1

3
+

4

9𝜇
,

1

3
≤ 𝜇 ≤

2

3

1,
2

3
≤ 𝜇 ≤ 1.

(51)

In this section, the case 𝜇 = 2/3 of the Fekete-Szegö
problem will be considered, first for the class CC(𝛼) and
then, for the classCC(𝛼, 𝛽).

In order to prove our results we need the following lemma
due to Keogh and Merkes [9].

Lemma 9. Let 𝜔(𝑧) = 𝑒
1
𝑧 + 𝑒
2
𝑧
2

+ ⋅ ⋅ ⋅ be in the class B and
let 𝜆 ∈ C. Then


𝑒
2
− 𝜆𝑒
2

1


≤ max {1, |𝜆|} . (52)

Equality may be attained for 𝜔(𝑧) = 𝑧2 and 𝜔(𝑧) = 𝑧.

Theorem 10. Let 𝛼 > 1/2. If 𝑓 ∈ CC(𝛼) is of the form (1),
then


𝑎
3
−
2

3
𝑎
2

2


≤ 1 −

1

3𝛼
. (53)

Proof. Let 𝑓 ∈ CC(𝛼). Then there exists 𝑔 ∈ K such that
𝑓
(𝑧)/𝑔(𝑧) ≺ 𝑝

𝛼
(𝑧), where 𝑝

𝛼
(𝑧) is given by (4). Let 𝑔(𝑧) =

𝑧 + 𝑏
2
𝑧2 + 𝑏

3
𝑧3 + ⋅ ⋅ ⋅ . Define

𝑝 (𝑧) =
𝑓 (𝑧)

𝑔 (𝑧)
= 1 + 𝑝

1
𝑧 + 𝑝
2
𝑧
2

+ ⋅ ⋅ ⋅ (𝑧 ∈ U) . (54)

Since 𝑝 ≺ 𝑝
𝛼
, there exists 𝜔(𝑧) = 𝑒

1
𝑧 + 𝑒
2
𝑧2 + ⋅ ⋅ ⋅ ∈ B such

that

𝑝 (𝑧) = 𝑝
𝛼
(𝜔 (𝑧))

= 1 + 𝑃
1
𝑒
1
𝑧 + (𝑃

1
𝑒
2
+ 𝑃
2
𝑒
2

1
) 𝑧
2

+ ⋅ ⋅ ⋅ (𝑧 ∈ U) ,
(55)

where 𝑃
1
and 𝑃

2
are given by (6). Combining (54) and (55),

after simple calculations, we get

𝑎
2
= 𝑏
2
+
𝑝
1

2
, 𝑎

3
= 𝑏
3
+
𝑝
2

3
+
2

3
𝑏
2
𝑝
1
, (56)

𝑝
1
= 𝑃
1
𝑒
1
, 𝑝

2
= 𝑃
1
𝑒
2
+ 𝑃
2
𝑒
2

1
. (57)

Substituting (6) and (57) in (56) we obtain

𝑎
2
= 𝑏
2
+ (1 −

1

2𝛼
) 𝑒
1
,

𝑎
3
= 𝑏
3
+
2

3
(2 −

1

𝛼
) 𝑏
2
𝑒
1
+
2

3
(2 −

1

𝛼
) [𝑒
2
+ (1 −

1

𝛼
) 𝑒
2

1
]

(58)

so that

𝑎
3
−
2

3
𝑎
2

2
= (𝑏
3
−
2

3
𝑏
2

2
) +

1

3
(2 −

1

𝛼
)(𝑒
2
−

1

2𝛼
𝑒
2

1
) . (59)

Since 𝑔 ∈ K, making use of (50) with 𝜇 = 2/3, we have

𝑏
3
−
2

3
𝑏
2

2


≤
1

3
. (60)

In virtue of Lemma 9 and taking into account that 𝛼 > 1/2,
we get


𝑒
2
−

1

2𝛼
𝑒
2

1


≤ 1. (61)

Combining (59), (60), and (61), we obtain

𝑎
3
−
2

3
𝑎
2

2


≤

𝑏
3
−
2

3
𝑏
2

2


+
1

3
(2 −

1

𝛼
)

𝑒
2
−

1

2𝛼
𝑒
2

1



≤
1

3
+
1

3
(2 −

1

𝛼
) = 1 −

1

3𝛼

(62)

and, thus, the proof is completed.

It is easy to observe that when 𝛼 → ∞ inequality (53)
reduces to |𝑎

3
− (2/3)𝑎2

2
| ≤ 1 which is the same with (51) for

𝜇 = 2/3.

Theorem 11. Let 𝛼 > 1/2 and 𝛽 > 1/2. If 𝑓 of the form (1)
belongs to the classCC(𝛼, 𝛽), then


𝑎
3
−
2

3
𝑎
2

2


≤
1

3
(5 −

1

𝛼
−
1

𝛽
) . (63)
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Proof. Since 𝑓 ∈ CC(𝛼, 𝛽), there exists 𝑔 ∈ CC(𝛼) such
that 𝑓(𝑧)/𝑔(𝑧) ≺ 𝑝

𝛽
(𝑧), where 𝑝

𝛽
(𝑧) is given by (4) with 𝛽

instead of 𝛼. Let 𝑔(𝑧) = 𝑧+ 𝑏
2
𝑧2 + 𝑏
3
𝑧3 + ⋅ ⋅ ⋅ and 𝑝(𝑧) defined

by

𝑝 (𝑧) =
𝑓 (𝑧)

𝑔 (𝑧)
= 1 + 𝑝

1
𝑧 + 𝑝
2
𝑧
2

+ ⋅ ⋅ ⋅ (𝑧 ∈ U) . (64)

From 𝑝 ≺ 𝑝
𝛽
it follows that there exists 𝜔(𝑧) = 𝑒

1
𝑧 + 𝑒
2
𝑧2 +

⋅ ⋅ ⋅ ∈ B such that 𝑝(𝑧) = 𝑝
𝛽
(𝜔(𝑧)).

Using the samemethod as in the proof ofTheorem 10, we
obtain

𝑎
3
−
2

3
𝑎
2

2
= (𝑏
3
−
2

3
𝑏
2

2
) +

1

3
(2 −

1

𝛽
)(𝑒
2
−

1

2𝛽
𝑒
2

2
) . (65)

Since 𝑔 ∈ CC(𝛼), from (53), we have


𝑏
3
−
2

3
𝑏
2

2


≤ 1 −

1

3𝛼
. (66)

Moreover, for 𝛽 > 1/2, we get from Lemma 9 that


𝑒
2
−

1

2𝛽
𝑒
2

2


≤ 1. (67)

Combining (65), (66), and (67), the inequality (63)
follows.

6. Bounded Doubly
Close-to-Starlike Functions

Let𝛼 > 1/2. ConsiderS∗S(𝛼) the class of all functions𝑓 ∈ A
for which there exists a function 𝑔 ∈ S∗ such that 𝑓/𝑔 ≺ 𝑝

𝛼
,

with 𝑝
𝛼
given by (4), or equivalently



𝑓 (𝑧)

𝑔 (𝑧)
− 𝛼


< 𝛼 (𝑧 ∈ U) . (68)

It is easy to observe that when 𝛼 → ∞ the class S∗S(𝛼)
reduces to the class of close-to-starlike functions defined by
Reade [12].

For 𝛼 > 1/2 and 𝛽 > 1/2 we denote by S∗S(𝛼, 𝛽) the
class of functions 𝑓 ∈ A for which there exists a function
𝑔 ∈ S∗S(𝛼) such that 𝑓/𝑔 ≺ 𝑝

𝛽
, with 𝑝

𝛽
given by (4), or

equivalently



𝑓 (𝑧)

𝑔 (𝑧)
− 𝛽


< 𝛽 (𝑧 ∈ U) . (69)

Connections between the classesS∗S(𝛼) andCC(𝛼) and
also between S∗S(𝛼, 𝛽) and CC(𝛼, 𝛽) are given in the next
theorem.

Theorem 12. Let 𝛼 > 1/2 and 𝛽 > 1/2. Then, the following
relationships hold:

𝑓 (𝑧) ∈ CC (𝛼) 𝑖𝑓𝑓 𝑧𝑓


(𝑧) ∈ S
∗

S (𝛼) , (70)

𝑓 (𝑧) ∈ CC (𝛼, 𝛽) 𝑖𝑓𝑓 𝑧𝑓


(𝑧) ∈ S
∗

S (𝛼, 𝛽) , (71)

𝑓 (𝑧) ∈ S
∗

S (𝛼) 𝑖𝑓𝑓 ∫
𝑧

0

𝑓 (𝑡)

𝑡
𝑑𝑡 ∈ CC (𝛼) , (72)

𝑓 (𝑧) ∈ S
∗

S (𝛼, 𝛽) 𝑖𝑓𝑓 ∫
𝑧

0

𝑓 (𝑡)

𝑡
𝑑𝑡 ∈ CC (𝛼, 𝛽) . (73)

Proof. It is well known that a function 𝑔(𝑧) ∈ K if and only
if 𝑧𝑔(𝑧) ∈ S∗.

The definition of the classCC(𝛼) implies that𝑓 ∈ CC(𝛼)

if and only if there exists 𝑔 ∈ K such that 𝑓(𝑧)/𝑔(𝑧) ≺

𝑝
𝛼
(𝑧).
The relation (70) follows from

𝑧𝑓 (𝑧)

𝑧𝑔 (𝑧)
=
𝑓 (𝑧)

𝑔 (𝑧)
≺ 𝑝
𝛼
(𝑧) , 𝑧𝑔



(𝑧) ∈ S
∗

. (74)

In the same way, 𝑓 ∈ CC(𝛼, 𝛽) if and only if there exists
𝑔 ∈ CC(𝛼) such that 𝑓(𝑧)/𝑔(𝑧) ≺ 𝑝

𝛽
(𝑧). We have

𝑧𝑓 (𝑧)

𝑧𝑔 (𝑧)
=
𝑓 (𝑧)

𝑔 (𝑧)
≺ 𝑝
𝛽
(𝑧) (75)

and taking into account (70), the relation (71) follows.
Theproofs of (72) and (73) are similar andwill be omitted.

The condition (71) ofTheorem 12 together with Lemma 3
and (14) shows that the function

𝑔 (𝑧)

=
𝑧 (1 + 𝜖

1
𝑧) (1 + 𝜖

2
𝑧)

(1 + 𝜖
3
𝑧)
2

[1 − (1 − (1/𝛼)) 𝜖
1
𝑧] [1 − (1 − (1/𝛽)) 𝜖

2
𝑧]

(𝑧 ∈ U) ,

(76)

where |𝜖
𝑘
| = 1, 𝑘 ∈ {1, 2, 3} belongs to the class S∗S(𝛼, 𝛽)

and, thus, this class is nonempty.
Combining Theorem 12 with Theorems 4 and 8 the next

properties of the class S∗S(𝛼, 𝛽) can be easily obtained.

Corollary 13. Let 𝛼 > 1/2 and 𝛽 > 1/2. If 𝑓 ∈ S∗S(𝛼, 𝛽),
then

𝑟(1 − 𝑟)
2

(1 + 𝑟)
2

[1 + (1 − (1/𝛼)) 𝑟] [1 + (1 − (1/𝛽)) 𝑟]

≤
𝑓 (𝑧)

 ≤
𝑟(1 + 𝑟)

2

(1 − 𝑟)
2

[1 − (1 − (1/𝛼)) 𝑟] [1 − (1 − (1/𝛽)) 𝑟]

(77)

for 𝑧 ∈ U and |𝑧| = 𝑟 < 1.
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Corollary 14. Let 𝛼 > 1/2 and 𝛽 > 1/2. If 𝑓 ∈ S∗S(𝛼, 𝛽) is
given by (1), then

𝑎𝑛
 ≤ 𝑛 + (4 −

1

𝛼
−
1

𝛽
)
𝑛 (𝑛 − 1)

2

+ (2 −
1

𝛼
)(2 −

1

𝛽
)
𝑛 (𝑛 − 1) (𝑛 − 2)

6

(𝑛 ∈ {2, 3, . . .}) .

(78)

Making use of Theorem 12, we can also obtain an upper
bound of |𝑎

3
− (1/2)𝑎2

2
| for functions in the class S∗S(𝛼, 𝛽).

Corollary 15. Let 𝛼 > 1/2 and 𝛽 > 1/2. If 𝑓 ∈ S∗S(𝛼, 𝛽) is
given by (1), then


𝑎
3
−
1

2
𝑎
2

2


≤ 5 −

1

𝛼
−
1

𝛽
. (79)

Proof. Let 𝑓 ∈ S∗S(𝛼, 𝛽). Then, from (73), the function
𝐹(𝑧) = 𝑧 + 𝑏

2
𝑧2 + 𝑏

3
𝑧3 + ⋅ ⋅ ⋅ given by

𝐹 (𝑧) = ∫
𝑧

0

𝑓 (𝑡)

𝑡
𝑑𝑡 (80)

belongs to the class CC(𝛼, 𝛽). Comparing the coefficients of
𝑧2 and 𝑧3 on both sides of the above equality, we obtain

𝑎
2
= 2𝑏
2
, 𝑎

3
= 3𝑏
3

(81)

so that

𝑎
3
−
1

2
𝑎
2

2


=

3𝑏
3
− 2𝑏
2

2


= 3


𝑏
3
−
2

3
𝑏
2

2


. (82)

Now, the inequality (79) follows as an application of
Theorem 11.

Once again making use of Theorem 12, we have that 𝑓 ∈

S∗S(𝛼, 𝛽) if and only if

𝑧𝑓


(𝑧)

𝑓 (𝑧)
= 1 +

𝑧𝐹


(𝑧)

𝐹 (𝑧)
(𝑧 ∈ U) (83)

for some 𝐹 ∈ CC(𝛼, 𝛽). Therefore, a radius of convexity
for CC(𝛼, 𝛽) will correspond to a radius of starlikeness for
S∗S(𝛼, 𝛽).

The next result follows easily fromTheorem 6.

Corollary 16. Let 𝛼 > 1/2 and 𝛽 > 1/2. Suppose that 𝑓 ∈

S∗S(𝛼, 𝛽). Then, the function 𝑓 maps the disk {𝑧 ∈ C : |𝑧| <

𝑟
0
< 1} onto a starlike domain, where 𝑟

0
is the smallest positive

root of (28) in Theorem 6.
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functions,” Proceedings of the American Mathematical Society,
vol. 101, no. 1, pp. 89–95, 1987.

[11] H. M. Srivastava, A. K. Mishra, and M. K. Das, “ The Fekete-
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