
Research Article
On Software Defect Prediction Using Machine Learning

Jinsheng Ren,1 Ke Qin,1 Ying Ma,2 and Guangchun Luo1

1 University of Electronic Science and Technology of China, Chengdu 611731, China
2 Xiamen University of Technology, Xiamen 361024, China

Correspondence should be addressed to Ke Qin; qinke@uestc.edu.cn

Received 19 October 2013; Revised 2 January 2014; Accepted 16 January 2014; Published 23 February 2014

Academic Editor: Chin-Yu Huang

Copyright © 2014 Jinsheng Ren et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper mainly deals with how kernel method can be used for software defect prediction, since the class imbalance can
greatly reduce the performance of defect prediction. In this paper, two classifiers, namely, the asymmetric kernel partial least
squares classifier (AKPLSC) and asymmetric kernel principal component analysis classifier (AKPCAC), are proposed for solving
the class imbalance problem. This is achieved by applying kernel function to the asymmetric partial least squares classifier and
asymmetric principal component analysis classifier, respectively. The kernel function used for the two classifiers is Gaussian
function. Experiments conducted on NASA and SOFTLAB data sets using F-measure, Friedman’s test, and Tukey’s test confirm the
validity of our methods.

1. Introduction

Software defect prediction is an essential part of software qua-
lity analysis and has been extensively studied in the domain
of software-reliability engineering [1–5]. However, as pointed
out by Menzies et al. [2] and Seiffert et al. [4], the perform-
ance of defect predictors can be greatly degraded by class
imbalance problem of the real-world data sets. Here the “class
imbalanced” means that the majority of defects in a software
system are located in a small percentage of the programmod-
ules. Current approaches to solve the class imbalance problem
can be roughly categorized into two ways: in a data-level
way or algorithm-level way, as reported in [4]. The literature
[4] shows that the algorithm-level method AdaBoost almost
always outperforms even the best data-level methods in
software defect prediction. AdaBoost is a typical adaptive
algorithm which has received great attention since Freund
and Schapire’s proposal [6]. Adaboost attempts to reduce
the bias generated by majority class data, by updating the
weights of instances dynamically according to the errors in
previous learning. Some other studies improved dimension
reduction methods for the class imbalanced problem by
means of partial least squares (PLS) [7], linear discriminant
analysis (LDA) [8], and principle component analysis (PCA)
[9, 10]. Although PLS was not inherently designed for
problems of classification and discrimination, it is widely

used in many areas that need class proclaimation. The
authors of [7] reported that rarely will PLS be followed
by an actual discriminant analysis on the scores and rarely
is the classification rule given a formal interpretation. Still
this method often produces nice separation. Based on the
previouswork, recently, Qu et al. investigated the effect of PLS
in unbalanced pattern classification. It is reported that,
beyond dimension reduction, PLS is proved to be superior
to generate favorable features for classification. Thereafter,
they proposed an asymmetric partial least squares (APLS)
classifier to deal with the class imbalance problem. They
illustrated that APLS outperforms other algorithms because
it can extract favorable features for unbalanced classification.
As for the PCA, it is an effective linear transformation,
which maps high-dimensional data to a lower dimensional
space. Based on the PCA, the authors of [11] proposed kernel
principal component analysis (KPCA) which can perform
nonlinear mapping Φ(𝑥) to transform an input vector to
a higher dimensional feature space, where kernel function
Φ(𝑥) is introduced to reduce computation for mapping the
data nonlinearly into a feature space.Then linear PCA is used
in this feature space.

While both APLS and KPCA are of great value, they have
their own disadvantages. For example, the APLS classifier is
a bilinear classifier, in which the dimension is mapped to a
bilinear subspace, which is, to some degree, obscure and not

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 785435, 8 pages
http://dx.doi.org/10.1155/2014/785435

http://dx.doi.org/10.1155/2014/785435


2 Journal of Applied Mathematics

easy to implement. The KPCA regression model does not
consider the correlation between principal components and
the class attribution. PCA dimension reduction is affected
inevitably by asymmetric distribution. In this paper, we
propose two kernel-based learningmethods to solve the class
imbalance problem, called asymmetric kernel partial least
squares classifier (AKPLSC) and asymmetric kernel principal
component analysis classifier (AKPCAC), respectively. The
former is able to nonlinearly extract the favorable features and
retrieve the loss caused by class imbalance problem, while the
latter is more adaptive to imbalance data sets.

It is not out of place to explain the relationship between
this paper and our previous papers [12, 13]. The AKPLSC
and AKPCAC were firstly proposed in [12, 13], respectively.
However, recently, we found some errors when we proceeded
to our work. And due to these errors, the AKPCAC and
AKPLSC proposed in [12, 13] show superiority only in part
of the data sets. We carefully rectified the source code and
then tested the AKPCAC and AKPLSC again on the whole
data sets by means of statistical tools, such as Friedman’s
test and Tukey’s test. The outcomes show that our classifiers
indeed outperform the others, namely, APLSC, KPCAC,
AdaBoost, and SMOTE.We carefully examine the theory and
experimental results and then form this paper in more detail.

2. State of the Art

In software defect prediction, 𝐿 = {(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . ,

(𝑥
ℓ
, 𝑦
ℓ
)} ⊂ 𝑋 × 𝑌 denotes the labeled example set with size

ℓ and 𝑈 = {𝑥
ℓ+1
, 𝑥
ℓ+2
, . . . , 𝑥

ℓ+𝑢
} ⊂ 𝑋 denotes the unlabeled

example set with size 𝑢. For labeled examples, 𝑌 = {+1, −1},
the defective modules are labeled “+1” and the nondefective
modules are labeled “−1”. Software defect data sets are
highly imbalanced; that is, the examples of the minority
class (defective modules) are heavily underrepresented in
comparison to the examples of majority class (nondefective
modules). Thereby, lots of algorithms are proposed to cope
with this problem, as will be seen below.

2.1. Software Defect Predictor Related to Partial Least Squares.
Linear partial least squares (PLS) [7] is an effective linear
transformation, which performs the regression on the subset
of extracted latent variables. Kernel PLS [14] first performs
nonlinear mapping, Φ : {𝑥

𝑖
}
𝑛

𝑖=1
∈ R𝑁 → Φ(𝑥) ∈ F , to proj-

ect an input vector to a higher dimensional feature space, in
which the linear PLS is used.

Given the center𝑀, the radius of the class region 𝑟, and
the parameter of overlapping 𝜂, the relationship of the two
classes can be expressed as𝑀

+1
−𝑀
−1
= 𝜂(𝑟
+1
−𝑟
−1
).Thepara-

meter 𝜂 indicates the level of overlapping between the region
of the two classes (the smaller the value of 𝜂 is, the higher the
overlapping will be).

APLSC can be expressed as �̂� = sign(∑𝑘
𝑖=1
𝑚
𝑖
𝑡
𝑖
−𝑏), which

is derived from the regression model of the linear PLS, 𝑦 =
∑
𝑘

𝑖=1
𝑚
𝑖
𝑡
𝑖
, where 𝑘 is the number of the latent variables, 𝑡

𝑖
is

the 𝑖th score vector of testing data,𝑚
𝑖
indicates the direction

of 𝑖th score, and the bias 𝑏 is equal to𝑚
1
(𝑀
+1
− 𝑟
+1
𝜂).

APLSC suffers from the high overlapping, especially
when the data sets are nonlinear separable [15]. A suggestion

of solving such overlapping problem is by using a kernel
method. Kernel PLS [14] corresponds to solving the eigen-
value equation as follows:

ΦΦ
𝑇
ΨΨ
𝑇
𝜏 = 𝜆𝜏, (1)

where Φ and Ψ denote the matrix of mapped X-space
data Φ(𝑥) and the matrix of mapped Y-space data Ψ(𝑦)
in the feature space F , respectively. The nonlinear feature
selectionmethods can reduce the overlapping level of the two
classes, but the class imbalance problem makes them fail to
distinguish theminority class [15]. In order to retrieve the loss
caused by class imbalance problem, we want to get the bias �̂�
of the kernel PLS classification, KPLSC [14].

Different from the APLSC, the kernel PLS regression is
𝑦 = ∑

ℓ

𝑖=1
𝛼
𝑖
𝜅(𝑥
𝑖
, 𝑥), where ℓ is the size of labeled example

set, 𝜅(𝑥
𝑖
, 𝑥) is a kernel function, and 𝛼

𝑖
is dual regression

coefficient. Consequently, we may combine the APLSC and
kernel PLS so that we get the asymmetric kernel PLS, as will
be seen in Section 3.1.

2.2. Kernel Principal Component Analysis Classifier for
Software Defect Prediction. Principal Component Analysis
(PCA) [10] is an effective linear transformation, which maps
high-dimensional data to a lower dimensional space. Kernel
principal component analysis (KPCA) [11] first performs
nonlinear mapping Φ(𝑥) to transform an input vector to a
higher dimensional feature space. And then linear PCA is
used in this feature space.

For both of the algorithms demonstrated in [10, 11], the
input data are centralized in the original space and the trans-
formed high-dimensional space; that is, ∑ℓ

𝑖=1
𝑥
𝑖
= 0 and

∑
ℓ

𝑖=1
Φ(𝑥
𝑖
) = 0, where ℓ is the number of the labeled data and

𝑥
𝑖
is the 𝑖th instance of the data set. In the proceeding of PCA,

the correlation matrix 𝐶 = (1/ℓ)∑ℓ
𝑖=1
𝑥
𝑖
𝑥


𝑖
should be diago-

nalized, while, in KPCA, the correlation matrix 𝐶Φ = (1/ℓ)
∑
ℓ

𝑖=1
Φ(𝑥
𝑖
)Φ(𝑥
𝑖
)
 should be diagonalized. It is equal to solving

the eigenvalue problem 𝜆𝑉 = 𝐶Φ𝑉, where 𝜆 is an eigenvalue
and 𝑉 is a matrix of eigenvectors in KPCA. It can also be
written as 𝑛𝜆𝛼 = 𝐾𝛼, where𝐾 = 𝑛𝐶Φ is the kernel matrix.

The kernel principal component regression algorithm has
been proposed by Rosipal et al. [11]. The standard regression
model in the transformed feature space can be written as

𝑓 (𝑥) =

𝑝

∑

𝑘=1

𝑤
𝑘
𝛽(𝑥)
𝑘
+ 𝑏, (2)

where 𝑝 is the number of components, 𝑤
𝑘
is the 𝑘th primal

regression coefficient, and 𝑏 is the regression bias. Consider
𝛽(𝑥)
𝑘
= 𝑉
𝑘
Φ(𝑥), where 𝑉

𝑘
is the 𝑘th eigenvector of 𝑉. 𝑉

and Λ are the eigenvectors and eigenvalues of the correlation
matrix, respectively.

2.3. Data Set. There are many data sets for machine learning
test, such as the UCI [16] and the PROMISE data repos-
itory [17] (since the contributors maintain these data sets
continuously, the metrics listed in Table 1 may vary at dif-
ferent times). What we are using in this paper are the latest



Journal of Applied Mathematics 3

Table 1: Data sets.

Project Modules Attributes Size (loc) %Defective Description
ar3 63 30 5,624 11.11 Embedded controller
ar4 107 30 9,196 18.69 Embedded controller
ar5 36 30 2,732 22.22 Embedded controller
cm1 327 38 14,763 12.84 Spacecraft instrument
kc1 2109 21 42,965 15.46 Storage management
kc2 521 22 19,259 20.54 Storage management
kc3 194 40 7,749 18.56 Storage management
mw1 253 38 8341 10.67 A zero gravity experiment
pc1 705 38 25,924 8.65 Flight software

Table 2: Metrics used in our experiment.

Type Number Metric

Loc 5
Halstead’s count of blank lines; McCabe’s line count of code;
Halstead’s line count;
Halstead’s count of lines of comments; line count of code and comment

McCabe 3 Cyclomatic complexity; essential complexity; design complexity

Halstead 12
Unique operators; unique operands; total operators; total operands;
total operators and operands; volume; program length; difficulty;
intelligence; effort; volume on minimal implementation; time estimator

BranchCount 1 BranchCount

Others 18

Global data complexity; cyclomatic density; decision count; decision density; global data
density; essential density; design density; loc executable; parameter count; percent
comments;
normalized cyclomatic complexity; modified condition count multiple condition count;
node count; maintenance severity; condition count; global data complexity; call pairs; edge
count

ones updated in June 2012.They are different from the data set
that we used in our previous papers [12, 13]), which is a data
collection from real-world software engineering projects.The
choice that which data set should be used depends on the area
of themachine learning where it will be applied. In this paper,
the experimental data sets come from NASA and SOFTLAB,
which can be obtained from PROMISE [17], as shown in
Tables 1 and 2. These software modules are developed in
different languages, at different sites by different teams, as
shown in Table 1. The SOFTLAB data sets (ar3, ar4, and
ar5) are drawn from three controller systems for a washing
machine, a dishwasher, and a refrigerator, respectively. They
are all written in C. The rests are from NASA projects. They
are all written in C++, except for kc3, which is written in
JAVA. All the metrics are computed according to [17].

3. Design the Asymmetric Classifiers Based on
Kernel Method

3.1. The Asymmetric Kernel Partial Least Squares Classifier
(AKPLSC). As we illustrated in Section 2.1, APLSC can be
expressed as �̂� = sign(∑𝑘

𝑖=1
𝑚
𝑖
𝑡
𝑖
−𝑏) and the kernel PLS regre-

ssion is 𝑦 = ∑
ℓ

𝑖=1
𝛼
𝑖
𝜅(𝑥
𝑖
, 𝑥); thus the AKPLSC can be well

characterized as

�̂� = sign(
ℓ

∑

𝑖=1

𝛼
𝑖
𝜅 (𝑥
𝑖
, 𝑥) − �̂�) , (3)

where 𝛼
𝑖
is dual regression coefficient, which can be obtained

from kernel PLS, as shown in Algorithm 1 and �̂� is the bias of
the classifier.

Since kernel PLS put most of the information on the
first dimension, the bias in the AKPLSC can be computed
similarly as [15]

�̂� = 𝑐
1
∗ (𝑀
+1
− 𝑟
+1
𝜂) = 𝑐

1
∗
𝑀
+1
𝑟
−1
+𝑀
−1
𝑟
+1

𝑟
−1
+ 𝑟
+1

, (4)

where 𝑐
1
indicates the direction of the first score 𝜏

1
and the

centers (𝑀
+1
, 𝑀
−1
) and radiuses (𝑟

+1
, 𝑟
−1
) are computed

based on 𝜏
1
, which can be obtained from (1). Then we move

the origin to the center of mass by employing data centering,
as reported in [14]:

𝐾 = 𝐾 −
1

ℓ
𝐽𝐽

𝐾 −

1

ℓ
𝐾𝐽𝐽

+
1

ℓ2
(𝐽

𝐾𝐽) 𝐽𝐽


, (5)

where 𝐽 is the a vector with all elements that are equal to 1.
After data centering, the AKPLSC can be described as shown
in Algorithm 1.

3.2. The Asymmetric Kernel Principal Component Analysis
Classifier (AKPCAC). The KPCA regression model does not
consider the correlation between principal components and
the class attribution. PCA dimension reduction is inevitably



4 Journal of Applied Mathematics

Input: Labeled and unlabeled data sets, 𝐿 and 𝑈; number of components, 𝑘.
Output: Asymmetric Kernel Partial Least Squares Classifier,𝐻;
Method:
(1) 𝐾
𝑖𝑗
= 𝜅 (𝑥

𝑖
, 𝑥
𝑗
) , 𝑖, 𝑗 = 1, . . . , ℓ, 𝑥

𝑖
, 𝑥
𝑗
∈ 𝐿;

(2) 𝐾
1
= 𝐾, �̂� = 𝑌, where 𝐾 is the kernel matrix, 𝑌 is the label vector.

(3) for 𝑗 = 1, . . . , 𝑘 do
(4) 𝛽

𝑗
= 𝛽
𝑗
/

𝛽
𝑗


, where 𝛽

𝑗
is a projection direction.

(5) repeat
(6) 𝛽

𝑗
= �̂��̂�


𝐾
𝑗
𝛽
𝑗

(7) 𝛽
𝑗
= 𝛽
𝑗
/

𝛽
𝑗


(8) untill convergence
(9) 𝜏

𝑗
= 𝐾
𝑗
𝛽
𝑗
, where 𝜏

𝑗
is the score

(10) 𝑐
𝑗
= �̂�

𝜏
𝑗
/

𝜏
𝑗



2

, where 𝑐
𝑗
is the direction of the score

(11) �̂� = �̂� − 𝜏
𝑗
𝑐


𝑗
, where �̂� is the deflation of 𝑌

(12) 𝐾
𝑗+1
= (𝐼 − 𝜏

𝑗
𝜏


𝑗
/

𝜏
𝑗



2

)𝐾
𝑗
(𝐼 − 𝜏

𝑗
𝜏


𝑗
/

𝜏
𝑗



2

)

(13) end for
(14) 𝐵 = [𝛽

1
, . . . , 𝛽

𝑘
], 𝑇 = [𝜏

1
, . . . , 𝜏

𝑘
]

(15) 𝛼 = 𝐵(𝑇𝐾𝐵)−1𝑇𝑌, where 𝛼 is the vector of dual regression coefficients
(16) Calculate �̂� according to (4);

(17)𝐻(𝑥) = sign(
ℓ

∑

𝑖=1

𝛼
𝑖
𝜅 (𝑥
𝑖
, 𝑥) − �̂�) , 𝑥 ∈ 𝑈;

(18) return 𝐻;
End Algorithm AKPLSC.

Algorithm 1: AKPLSC.

affected by asymmetric distribution [15].We analyze the effect
of class imbalance onKPCA.Considering the class imbalance
problem, we propose an asymmetric kernel principal compo-
nent analysis classifier (AKPCAC), which retrieves the loss
caused by this effect.

Suppose that 𝑆Φ
𝑏
= ∑
2

𝑖=1
𝑛
𝑖
(𝑢
𝑖
− 𝑢)(𝑢

𝑖
− 𝑢)
 denotes the

between-class scatter matrix and 𝑆Φ
𝑤
= ∑
2

𝑖=1
∑
𝑛𝑖

𝑗=1
(Φ(𝑥
𝑖

𝑗
) −

𝑢
𝑖
)(Φ(𝑥

𝑖

𝑗
)−𝑢
𝑖
)
 denotes the within-class scattermatrix, where

𝑢
𝑖
= (1/𝑛

𝑖
) ∑
𝑛𝑖

𝑗=1
Φ(𝑥
𝑖

𝑗
) is class-conditional mean vector, 𝑢 is

mean vector of total instances, Φ(𝑥𝑖
𝑗
) is the 𝑗th instances in

the 𝑖th class, and 𝑛
𝑖
is the number of instances of the 𝑖th class.

The total noncentralized scatter matrix in the form of kernel
matrix is

𝐾 =

2

∑

𝑖=1

ℓ

∑

𝑗=1

(Φ (𝑥
𝑖

𝑗
) − 𝑢) (Φ (𝑥

𝑖

𝑗
) − 𝑢)



=

2

∑

𝑖=1

ℓ

∑

𝑗=1

(Φ (𝑥
𝑖

𝑗
) − 𝑢
𝑖
+ 𝑢
𝑖
− 𝑢) (Φ (𝑥

𝑖

𝑗
) − 𝑢
𝑖
+ 𝑢
𝑖
− 𝑢)


= 𝑆
Φ

𝑤
+ 𝑆
Φ

𝑏
+

2

∑

𝑖=1

ℓ

∑

𝑗=1

(Φ (𝑥
𝑖

𝑗
) − 𝑢
𝑖
) (𝑢
𝑖
− 𝑢)


+

2

∑

𝑖=1

ℓ

∑

𝑗=1

(𝑢
𝑖
− 𝑢) (Φ (𝑥

𝑖

𝑗
) − 𝑢
𝑖
)


.

(6)

The third term of (6) can be rewritten as

2

∑

𝑖=1

ℓ

∑

𝑗=1

(Φ (𝑥
𝑖

𝑗
) − 𝑢
𝑖
) (𝑢
𝑖
− 𝑢)


=

2

∑

𝑖=1

(

ℓ

∑

𝑗=1

(Φ (𝑥
𝑖

𝑗
) − 𝑢
𝑖
)) (𝑢

𝑖
− 𝑢)


=

2

∑

𝑖=1

(

𝑛𝑖

∑

𝑗=1

Φ(𝑥
𝑖

𝑗
) − 𝑛
𝑖
𝑢
𝑖
)(𝑢
𝑖
− 𝑢)


.

(7)

Note that 𝑛
𝑖
𝑢
𝑖
= ∑
𝑛𝑖

𝑗=1
Φ(𝑥
𝑖

𝑗
). Then the third term and fourth

term of (6) are equal to zero. Thus, we have the relation
𝐾 = 𝑆

Φ

𝑏
+ 𝑆
Φ

𝑤
= 𝑆
Φ

𝑏
+ 𝑃Σ
Φ

𝑃
+ 𝑁Σ

Φ

𝑁
, where 𝑃 is the number

of positive instances, 𝑁 is the number of negative instances,
Σ
Φ

𝑃
is the positive covariance matrices, and ΣΦ

𝑁
is the negative

covariance matrix. Since class distribution has a great impact
on 𝑆Φ
𝑤
, the class imbalance also impacts the diagonalization

problem of KPCA.
In order to combat the class imbalance problem, we

propose the AKPCAC, based on kernel method. It consid-
ers the correlation between principal components and the
class distribution. The imbalance ratio can be denoted as
∑
ℓ

𝑖=1
𝐼(𝑦
𝑖
, +1)/∑

ℓ

𝑖=1
𝐼(𝑦
𝑖
, −1) = 𝑃/𝑁, which is the probabil-

ities of the positive instances to the negative instances of
training data, where 𝐼(⋅) is an indicator function: 𝐼(𝑥, 𝑦) = 1
if 𝑥 = 𝑦, zero otherwise. We assume that future test examples
are drawn from the same distribution, so the imbalance ratio



Journal of Applied Mathematics 5

Input:The set of Labeled samples, 𝐿 = {(𝑥
1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
) , . . . , (𝑥

ℓ
, 𝑦
ℓ
)};

The set of unlabeled samples, 𝑈 = {𝑥
ℓ+1
, 𝑥
ℓ+2
, . . . , 𝑥

ℓ+𝑢
};

Output: Kernel Principal Component Classifier,𝐻;
Method:
(1)𝐾
𝑖𝑗
= 𝜅(𝑥

𝑖
, 𝑥
𝑗
), 𝑖, 𝑗 = 1, . . . , ℓ;

(2) 𝐾 = 𝐾 − (1/ℓ)𝐽𝐽𝐾 − 1/ℓ𝐾𝐽𝐽 + 1/ℓ2(𝐽𝐾𝐽)𝐽𝐽, where 𝐽 is a vector with all elements equal to 1.
(3) [𝑉, Λ] = eig (𝐾);
(4) 𝛼 = ∑𝑝

𝑗=1
(1/𝜆
𝑗
)(𝑉


𝑗
𝑌
𝑠
)𝑉
𝑗
; where 𝑌𝑠 = {𝑦

1
, 𝑦
2
, . . . , 𝑦

ℓ
} is the label vector

(5) Calculate �̂�, 𝐻(𝑥) according to (9), (10);
(6) return 𝐻;
End Algorithm APPCC.

Algorithm 2: AKPCAC.

of the training data is the same as that of the test data. Then,
we have

∑
ℓ

𝑖=1
(𝑦
𝑖
− �̂�) 𝐼 (𝑦

𝑖
, +1)

∑
ℓ

𝑖=1
(𝑦
𝑖
− �̂�) 𝐼 (𝑦

𝑖
, −1)

=
∑
ℓ

𝑖=1
𝐼 (𝑦
𝑖
, +1)

∑
ℓ

𝑖=1
𝐼 (𝑦
𝑖
, −1)

=
𝑃

𝑁
, (8)

where �̂� is the bias of the classifier and 𝑦
𝑖
is the regression

result of 𝑥
𝑖
. 𝑦
𝑖
can be computed by regressionmodel equation

(2). Note that the regression is conducted on the 𝑝 principal
components. Solving this one variable equation, we get

�̂� =

𝑁 (∑
ℓ

𝑖=1
(𝑦
𝑖
𝐼 (𝑦
𝑖
, +1))) − 𝑃 (∑

ℓ

𝑖=1
(𝑦
𝑖
𝐼 (𝑦
𝑖
, −1)))

𝑁2 − 𝑃2
.

(9)

Based on principal components, (9) describes the detail
deviation of the classifier. This deviation may be caused by
class imbalance, noise, or other unintended factors. In order
to retrieve the harmful effect, we compensate this deviation.
By transforming the regressionmodel (2), the classifiermodel
can be written as

𝐻(𝑥) = sign(
𝑝

∑

𝑘=1

𝑤
𝑘
𝛽(𝑥)
𝑘
+ �̂�)

= sign(
𝑝

∑

𝑘=1

𝑤
𝑘

ℓ

∑

𝑖=1

𝛼
𝑘

𝑖
𝜅 (𝑥
𝑖
, 𝑥) + �̂�)

= sign(
ℓ

∑

𝑖=1

𝑐
𝑖
𝜅 (𝑥
𝑖
, 𝑥) + �̂�) ,

(10)

where {𝑐
𝑖
= ∑
𝑝

𝑘=1
𝑤
𝑘
𝛼
𝑘

𝑖
}, 𝑖 = 1, 2, . . . , ℓ.

AKPCAC is summarized in Algorithm 2. Since the AKP-
CAC was firstly studied for reducing the effect of class
imbalance for classification, it inherently has the advantage
of kernel method, which can conduct quite general dimen-
sional feature space mappings. In this paper, again, we have
illustrated how the unreliable dimensions based on KPCA
can be removed; thereafter, the imbalance problem based on
the PCA has also been solved.

4. Experimental Result

The experiments are conducted under the data set from
NASA and SOFTLAB. The Gaussian kernel function
𝐾(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖2) is adopted for the performance
investigation for both AKPLSC and AKPCAC.The efficiency
is evaluated by F-measure and Friedman’s test, as will be
explained presently.

4.1. Validation Method Using F-Measure. F-measure method
is widely used for assessing a test’s accuracy. It considers both
the precision 𝑃 and the recall 𝑅 to compute the score. 𝑃
is defined as the number of correct results divided by the
number of all returned results. 𝑅 is the number of correct
results divided by the number of results that should have
been returned. For the clarity of this paper, we give a short
explanation of the F-measure as below. Obviously, there are
four possible outcomes of a predictor:

(1) TP: true positives are modules classified correctly as
defective modules;

(2) FP: false positives refer to nondefective modules
incorrectly labeled as defective;

(3) TN: true negatives correspond to correctly classified
nondefective modules;

(4) FN: false negatives are defective modules incorrectly
classified as nondefective.

Thereby, the precision is defined as𝑃 = TP/(TP+FP) and
the recall is 𝑅 = TP/(TP + FN).

The general formula of the F-measure is

𝐹
𝛽
=

(1 + 𝛽
2
) 𝑃𝑅

𝛽2𝑃 + 𝑅
, (11)

where 𝛽 is a positive real number. According to the definition
of 𝑃 and 𝑅, (11) can be rewritten as

𝐹
𝛽
=

(1 + 𝛽
2
)TP

(1 + 𝛽2)TP + 𝛽2FN + FP
. (12)

Generally, there are 3 commonly used F-measures: 𝐹
1

(which is a balance of 𝑃 and 𝑅), 𝐹
0.5

(which puts more



6 Journal of Applied Mathematics

Table 3: Statistical 𝐹-measure (mean ± std) values of six classifiers on all data sets.The value of the winner method of each row is emphasized
in bold.

APLSC KPCAC AdaBoost SMOTE AKPCAC AKPLSC
ar3 0.498 (0.062) 0.394 (0.115) 0.357 (0.026) 0.415 (0.003) 0.569 (0.052) 0.500 (0.009)
ar4 0.421 (0.023) 0.422 (0.058) 0.412 (0.013) 0.457 (0.000) 0.474 (0.024) 0.421 (0.001)
ar5 0.526 (0.058) 0.562 (0.055) 0.435 (0.012) 0.555 (0.001) 0.625 (0.025) 0.553 (0.022)
cm1 0.254 (0.033) 0.069 (0.031) 0.234 (0.007) 0.237 (0.000) 0.089 (0.031) 0.235 (0.002)
kc1 0.408 (0.005) 0.309 (0.006) 0.325 (0.005) 0.428 (0.000) 0.462 (0.009) 0.433 (0.235)
kc2 0.431 (0.021) 0.433 (0.014) 0.534 (0.002) 0.520 (0.000) 0.523 (0.011) 0.480 (0.036)
kc3 0.382 (0.036) 0.231 (0.025) 0.386 (0.002) 0.340 (0.000) 0.234 (0.045) 0.412 (0.000)
mw1 0.285 (0.011) 0.276 (0.080) 0.224 (0.002) 0.290 (0.000) 0.371 (0.037) 0.268 (0.025)
pc1 0.215 (0.019) 0.212 (0.025) 0.354 (0.001) 0.387 (0.000) 0.254 (0.015) 0.398 (0.001)

emphasis on 𝑃 than 𝑅), and 𝐹
2
(which weights 𝑅 higher than

𝑃). In this paper, 𝐹
1
= 2𝑃𝑅/(𝑃 + 𝑅) is used to evaluate

the efficiency of different classifiers. The F-measure can be
interpreted as a weighted average of the precision and recall.
It reaches its best value at 1 and worst score at 0.

We compare the F-measure values of different predictors
including AKPLSC, AKPCAC, APLSC [15], KPCAC [11],
AdaBoost [4], and SMOTE [18]. The results are listed in
Table 3. For each data set, we perform a 10 × 5-fold cross
validation.

From the table we may see clearly that the AKPLSC and
the AKPCAC are superior than the other 4 classifiers, which
validates our contributions of this paper.

4.2. Validation Method Using Friedman’s Test and Tukey’s
Test. The Friedman test is a nonparametric statistical test
developed by Friedman [19, 20]. It is used to detect differences
in algorithms/classifiers across multiple test attempts. The
procedure involves ranking each block (or row) together and
then considering the values of ranks by columns. In this
section, we present a multiple AUC value comparison among
the six classifiers using Friedman’s test.

At first, we make two hypotheses:

𝐻
0
: the six classifiers have equal classification proba-

bility;
𝐻
1
: at least two of them have different probability

distribution.

In order to determine which hypothesis should be reje-
cted, we compute the statistic:

𝐹
𝑟
=

12

𝑏𝑘 (𝑘 + 1)

𝑘

∑

𝑖=1

𝑅
2

𝑖
− 3𝑏 (𝑘 + 1) , (13)

where 𝑏 is the number of blocks (or rows), 𝑘 is the number of
classifiers, and 𝑅

𝑖
is the summation of ranks of each column.

The range of rejection for null hypothesis is 𝐹
𝑟
> 𝜒
2

𝛼
. In our

experiment, the degree of freedom is 𝑘 − 1 = 5 and we set
𝛼 = 0.05; thus 𝐹

𝑟
= 18.9683 > 11.0705, which implies that

𝐻
0
should be rejected.
Friedman’s test just tells us that at least two of the

classifiers have different performance, but it does not give any

implication which one performs best. In this case, a post hoc
test should be proceeded. Actually, there are many post hoc
tests such as LSD (Fisher’s least significant difference), SNK
(Student-Newman-Keuls), Bonferroni-Dunn’s test, Tukey’s
test, and Nemenyi’s test, which is very similar to the Tukey
test for ANOVA. In this paper, the Tukey test [21] is applied.

Tukey’s test is a single-step multiple comparison proce-
dure and statistical test. It is used in conjunction with an
ANOVA to find means that are significantly different from
each other. It compares all possible pairs of means and is
based on a studentized range distribution.

Tukey’s test involves two basic assumptions:

(1) the observations being tested are independent;
(2) there is equalwithin-group variance across the groups

associated with each mean in the test.

Obviously, our case satisfies the two requirements.
The steps of the Tukey multiple comparison with equal

sample size can be summarized in Algorithm 3.
In this paper, we set 𝛼 = 0.05. Since we compare 6

classifiers over 9 data sets, then 𝑛 = 54, 𝑝 = 6, V = 𝑛−𝑝 = 48,
and 𝑛

𝑡
= 9. 𝑞

𝛼
(𝑝, V) ≈ 4.2, which can be found from the

studentized range statistic table. Now the only problem to
find the value of 𝜔 is to determine 𝑠 and MSE. This can be
calculated accordingly as

SY =
𝑛

∑

𝑖=1

𝑦
𝑖
, MY = SY

𝑛
, YS =

𝑛

∑

𝑖=1

𝑦
2

𝑖
,

CM =
(∑
𝑛

𝑖=1
𝑦
𝑖
)
2

𝑛
=
SY2

𝑛
,

SS =
𝑛

∑

𝑖=1

𝑦
2

𝑖
− CM = YS − CM, SST =

𝑝

∑

𝑖=1

𝑇
2

𝑖

𝑛
𝑖

− CM,

SSE = SS − SST, MSE = SSE
𝑛 − 𝑝

,

(14)

where 𝑦
𝑖
is the corresponding AUC value in Table 4 and 𝑇

𝑖

is the AUC summation of each column. Now we have the
results: MSE = 0.0051, 𝑠 = 0.0713, and 𝜔 = 0.0998. The



Journal of Applied Mathematics 7

Input: 𝛼, 𝑝, V, 𝑠, MSE, 𝑛
𝑡
and samples. The meaning of these parameters is: 𝛼 is an error rate.

𝑝 is the number of means, 𝑠 = √MSE, V is the degree of freedom related with MSE. 𝑛
𝑡
is the

number of observations of each sample.
Output: Theminimum significant difference 𝜔 and a deduction;
Method:
(1) Choose a proper error rate 𝛼;
(2) Calculate the statistic 𝜔 according to

𝜔 = 𝑞
𝛼
(𝑝, V)

𝑠

√𝑛𝑡

,

where 𝑞
𝛼
(𝑝, V) is the critical value of Studentized range statistic, which can be found from any

statistics textbooks.
(3) Compute and rank all the 𝑝means
(4) Draw a deduction based on the ranks in the confidence level (1 − 𝛼).
End Algorithm Tukey Multiple Comparison.

Algorithm 3: Tukey’s multiple comparison: equal sample size.

Table 4: Comparison of AUC between six classifiers. The ranks in the parentheses are used in computation of the Friedman test.

APLSC KPCAC AdaBoost SMOTE AKPCAC AKPLSC
ar3 0.626 (3) 0.588 (5) 0.580 (6) 0.590 (4) 0.699 (1) 0.682 (2)
ar4 0.563 (5) 0.600 (3) 0.555 (6) 0.610 (2) 0.671 (1) 0.579 (4)
ar5 0.626 (5) 0.710 (2) 0.614 (6) 0.651 (3) 0.722 (1) 0.640 (4)
cm1 0.611 (4) 0.724 (1) 0.589 (5) 0.550 (6) 0.681 (2) 0.650 (3)
kc1 0.682 (4) 0.592 (6) 0.627 (5) 0.700 (3) 0.800 (1) 0.768 (2)
kc2 0.591 (6) 0.601 (5) 0.796 (1) 0.635 (3) 0.732 (2) 0.610 (4)
kc3 0.598 (5) 0.569 (6) 0.698 (2) 0.612 (4) 0.658 (3) 0.713 (1)
mw1 0.587 (5) 0.602 (4) 0.534 (6) 0.654 (2) 0.725 (1) 0.639 (3)
pc1 0.692 (6) 0.718 (5) 0.769 (3) 0.753 (4) 0.841 (2) 0.882 (1)
Sum of ranks 𝑇

1
= 43 𝑇

2
= 37 𝑇

3
= 40 𝑇

4
= 31 𝑇

5
= 14 𝑇

6
= 24

Table 5: Tukey’s test result for the six classifiers.

APLSC KPCAC SMOTE AdaBoost AKPLSC AKPCAC
Rank 1 2 3 4 5 6
Mean: 𝑇

𝑖
0.6196 0.6338 0.6394 0.6402 0.6848 0.7254

Difference: 𝑇
𝑖+1
− 𝑇
𝑖

— 0.0142 0.0057 0.0008 0.0446 0.0407

means comparison is listed in Table 5. From this table we can
see clearly the following.

(1) The difference 𝑇
6
− 𝑇
1
= 0.1058 is greater than the

critical value 𝜔, which hints that the AKPCAC is
significantly better than the APLSC.

(2) But compared to the rest, except the APLSC, the two
newly proposed methods have no significant diffe-
rence.

(3) Nevertheless, the AKPCAC and AKPLSC have the
largest and second largest means, which implies that
both indeed outperform the rest, although insignifi-
cantly.

(4) Compared to the AKPLSC, the AKPCAC is slightly
more powerful, which supports our claim that the
AKPCAC is more adaptive to dimensional feature
space mappings over imbalanced data sets.

(5) The deduction is made in the confidence level (1 −
0.05).

5. Conclusion

In this paper, we introduce kernel-based asymmetric learning
for software defect prediction. To eliminate the negative effect
of class imbalance problem,we propose two algorithms called
the asymmetric kernel partial least squares classifier and the
asymmetric kernel principal component analysis classifier.
The former one is derived from the regressionmodel of linear
PLS, while the latter is derived from kernel PCAmethod.The
AKPLSC can extract feature information in a nonlinear way
and retrieve the loss caused by class imbalance.TheAKPCAC
is more adaptive to dimensional feature space mappings
over imbalanced data sets and has a better performance. F-
measure, Friedman’s test, and a post hoc test using Tukey’s



8 Journal of Applied Mathematics

method are used to verify the performance of our algorithms.
Experimental results on NASA and SOFTLAB data sets
validate their effectiveness.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thework of this paper was supported by theNational Natural
Science Foundation of China (Grant no. 61300093) and the
Fundamental Research Funds for the Central Universities in
China (Grant no. ZYGX2013J071). The authors are extremely
grateful to the anonymous referees of the initial version of
this paper, for their valuable comments. The present version
incorporates all the changes requested.Their comments, thus,
significantly improved the quality of this present paper.

References

[1] T. M. Khoshgoftaar, E. B. Allen, and J. Deng, “Using regression
trees to classify fault-prone software modules,” IEEE Transac-
tions on Reliability, vol. 51, no. 4, pp. 455–462, 2002.

[2] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE Transactions on
Software Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[3] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and
Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

[4] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving
software-quality predictions with data sampling and boosting,”
IEEE Transactions on Systems, Man, and Cybernetics A, vol. 39,
no. 6, pp. 1283–1294, 2009.

[5] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of
fault-proneness by random forests,” in Proceedings of the 15th
International Symposium on Software Reliability Engineering
(ISSRE ’04), pp. 417–428, November 2004.

[6] Y. Freund and R. Schapire, “Experiments with a new boosting
algorithm,” in Proceedings of the 13th International Conference
on Machine Learning, pp. 148–156, 1996.

[7] M. Barker andW. Rayens, “Partial least squares for discrimina-
tion,” Journal of Chemometrics, vol. 17, no. 3, pp. 166–173, 2003.

[8] J.-H. Xue and D. M. Titterington, “Do unbalanced data have a
negative effect on LDA?” Pattern Recognition, vol. 41, no. 5, pp.
1558–1571, 2008.

[9] X. Jiang, “Asymmetric principal component and discriminant
analyses for pattern classification,” IEEETransactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 5, pp. 931–937,
2009.

[10] I. T. Jolliffe, Principal Component Analysis, Springer, New York,
NY, USA, 1986.

[11] R. Rosipal, M. Girolami, L. J. Trejo, and A. Cichocki, “Kernel
PCA for feature extraction and de-noising in nonlinear regres-
sion,”Neural Computing and Applications, vol. 10, no. 3, pp. 231–
243, 2001.

[12] Y. Ma, G. Luo, and H. Chen, “Kernel based asymmetric lear-
ning for software defect prediction,” IEICE Transactions on
Information and Systems, vol. E-95-D, no. 1, pp. 267–270, 2012.

[13] Y. Ma, G. Luo, and H. Chen, “Kernel based asymmetric
learning for software defect prediction,” IEICE Transactions on
Information and Systems, vol. E-95-D, no. 1, pp. 267–270, 2012.

[14] R. Rosipal, L. J. Trejo, and B. Matthews, “Kernel PLS-SVC for
linear and nonlinear classification,” in Proceedings of the 20th
International Conference on Machine Learning (ICML ’03), pp.
640–647, August 2003.

[15] H.-N. Qu, G.-Z. Li, and W.-S. Xu, “An asymmetric classifier
based on partial least squares,” Pattern Recognition, vol. 43, no.
10, pp. 3448–3457, 2010.

[16] K. Bache andM. Lichman, “UCIMachine LearningRepository,”
University of California, School of Information and Computer
Science, Irvine, Calif, USA, 2013 http://archive.ics.uci.edu/ml/.

[17] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan, “The PROMISE Repository of empirical software
engineering data,” West Virginia University, Department of
Computer Science, 2012, http://promisedata.googlecode.com/.

[18] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal
of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[19] M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, no. 32, pp. C675–C701, 1937.

[20] M. Friedman, “A comparison of alternative tests of significance
for the problem of 𝑚 rankings,” Annals of Mathematical Statis-
tics, vol. 11, pp. 86–92, 1940.

[21] M. William and S. Terry, Statistics for Engineering and the
Sciences, Pearson, London, UK, 5th edition, 2006.


