
Research Article
Error Bound for Conic Inequality in Hilbert Spaces

Jiangxing Zhu, Qinghai He, and Jinchuan Lin

Department of Mathematics, Yunnan University, Kunming 650091, China

Correspondence should be addressed to Qinghai He; heqh@ynu.edu.cn

Received 15 February 2014; Accepted 23 March 2014; Published 15 April 2014

Academic Editor: Jen-Chih Yao

Copyright © 2014 Jiangxing Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider error bound issue for conic inequalities in Hilbert spaces. In terms of proximal subdifferentials of vector-valued
functions, we provide sufficient conditions for the existence of a local error bound for a conic inequality. In the Hilbert space
case, our result improves and extends some existing results on local error bounds.

1. Introduction

Let 𝑋 be a Banach space and let 𝑓 : 𝑋 → R := R ∪ {+∞}

be a proper lower semicontinuous function. Consider the
following inequality:

𝑓 (𝑥) ≤ 0. (IE)

Let 𝑆𝑓 := {𝑥 ∈ 𝑋 : 𝑓(𝑥) ≤ 0} and 𝑎 ∈ 𝑆𝑓. Recall that
inequality (IE) has a local error bound at 𝑎 if there exist
𝜏, 𝛿 ∈ (0, +∞) such that

𝑑 (𝑥, 𝑆𝑓) ≤ 𝜏[𝑓 (𝑥)]+ ∀𝑥 ∈ 𝐵 (𝑎, 𝛿) , (1)

where 𝑑(𝑥, 𝑆𝑓) := inf{‖𝑥 − 𝑢‖ : 𝑢 ∈ 𝑆𝑓}, [𝑓(𝑥)]+ :=

max{𝑓(𝑥), 0} = 𝑑(0, 𝑓(𝑥) + R+) and 𝐵(𝑎, 𝛿) denotes the
open ball centered at 𝑎 of radius 𝛿. In the variational analysis
literature, sensitivity analysis of mathematical programming
and convergence analysis of some algorithms of optimization
problems are deeply tied to the notion of error bound.
Since Hoffman’s pioneering work [1], the study of error
bounds has received extensive attention in the mathematical
programming literature (for details, see [2–9] and references
therein). For us, the work of Ioffe in this area will be partic-
ularly important. The author in his seminal work [10] first
characterized error bound (under a different name) in terms
of the subdifferentials and gave the following interesting
result: if 𝑓 is locally Lipschitz at 𝑎 ∈ 𝑆𝑓 and there exist
𝜂, 𝛿 ∈ (0, +∞) such that

𝜂 ≤ 𝑑 (0, 𝜕𝑓 (𝑥)) ∀𝑥 ∈ 𝐵 (𝑎, 𝛿) \ 𝑆𝑓, (2)

then (IE)has a local error bound at 𝑎, where 𝜕𝑓(𝑥)denotes the
Clarke-Rockafellar subdifferential of 𝑓 at 𝑥 (for its definition,
see Section 2). Results of the same flavour have sprung up.
In 2010, in considering a general closed multifunction 𝐹

in place of 𝑓 and with the subdifferential 𝜕𝑓(𝑥) replaced
by the coderivative of 𝐹, Zheng and Ng [11] extended the
above-mentioned result to a generalized equation defined by
a closed multifunction. Recently, Zheng and Ng [12] once
again extended Ioffe’s classic result to the conic inequality case
in Asplund spaces in terms of the conic subdifferential 𝜕̂𝐾Φ
defined by Fréchet normal cone. In this paper, we will extend
Ioffe’s result to the conic inequality case in the Hilbert space
setting.

Let 𝑋,𝑌 be Banach spaces with 𝑌 ordered by a closed
convex cone𝐾 ⊂ 𝑌. Let 𝑏 ∈ 𝑌 andΦ : 𝑋 → 𝑌

∙ be a function,
where 𝑌∙ is the union of 𝑌 with an abstract infinity ∞𝑌. In
this paper, we consider the following conic inequality:

Φ (𝑥) ≤𝐾 𝑏. (CIE)

Indeed, many constraint systems in optimization can be
viewed as special cases of (CIE). For example, when 𝑌 =

R𝑛+𝑚, K = R𝑛+ × {0}, andΦ(𝑥) = (𝜙1(𝑥), . . . , 𝜙𝑛+𝑚(𝑥)), (CIE)
reduces to

𝜙𝑖 (𝑥) ≤ 0 for 𝑖 = 1, 2, . . . , 𝑛,

𝜙𝑖 (𝑥) = 0 for 𝑖 = 𝑛 + 1, . . . , 𝑛 + 𝑚,
(3)

where each 𝜙𝑖 is a real-valued function on 𝑋. Another
important case is the following: when 𝑌 = 𝐶(𝑇,R) and
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𝐾 = {𝜙 ∈ 𝐶(𝑇,R) : 𝜙(𝑡) ≥ 0 ∀𝑡 ∈ 𝑇}, (CIE) reduces
to constraint systems of semi-infinite optimization problems;
of course, one can also view the constraint systems in conic
optimization problems as examples of (CIE). Hence conic
inequality systems exist quite extensively. For such a kind of
systems,we consider their error bounds. Let 𝑆(Φ, 𝑏, 𝐾)denote
the solution set of (CIE); that is,

𝑆 (Φ, 𝑏, 𝐾) := {𝑥 ∈ 𝑋 : Φ (𝑥) ≤𝐾 𝑏} . (4)

We say that (CIE) has a local error bound at 𝑎 ∈ 𝑆(Φ, 𝑏, 𝐾) if
there exist 𝜏, 𝛿 ∈ (0, +∞) such that

𝑑 (𝑥, 𝑆 (Φ, 𝑏, 𝐾)) ≤ 𝜏𝑑 (𝑏, Φ (𝑥) + 𝐾) ∀𝑥 ∈ 𝐵 (𝑎, 𝛿) . (5)

It is clear that (5) reduces to (1) when 𝑌 = R and 𝐾 =

R+. The main aim of this paper is to extend the above-
mentioned Ioffe’s classic result on error bounds to conic
inequality (CIE)with𝑋,𝑌 being any pair of Hilbert spaces in
terms of proximal subdifferentials of vector-valued functions
defined by proximal normal cone with a kind of variational
behavior of “order two.” In particular, we have improved
Zheng and Ng’s result in the Hilbert space setting.

2. Preliminaries

In this section, we summarize some fundamental tools of
variational analysis and nonsmooth optimization using basi-
cally standard terminology and notation; see, for example,
[13–15], for more details.

Let𝑋 be a Banach space with topological dual𝑋∗ and let
R := R∪ {+∞}. For a proper lower semicontinuous function
𝑓 : 𝑋 → R, we denote by dom(𝑓) and epi(𝑓) the domain
and the epigraph of 𝑓, respectively; that is,

dom (𝑓) := {𝑥 ∈ 𝑋 : 𝑓 (𝑥) < +∞} ,

epi (𝑓) := {(𝑥, 𝛼) ∈ 𝑋 × 𝑅 : 𝑓 (𝑥) ≤ 𝛼} .

(6)

Throughout the paper, the symbol → always denotes the
convergence relative to the distance 𝑑(⋅, ⋅) induced by the

norm while the arrow 𝑤
∗

󳨀󳨀→ signifies the weak∗ convergence
in the dual space𝑋∗.

Recall that the Fréchet subdifferential of 𝑓 at 𝑥 is defined
as (see [15, 16])

𝜕̂𝑓 (𝑥) := {𝑥
∗
∈ 𝑋
∗

: lim inf
𝑢→𝑥

𝑓 (𝑢) − 𝑓 (𝑥) − ⟨𝑥
∗
, 𝑢 − 𝑥⟩

‖𝑢 − 𝑥‖
≥ 0} .

(7)

Let 𝜕𝑃𝑓(𝑥) denote the proximal subdifferential of 𝑓 at 𝑥; that
is,

𝜕𝑃𝑓 (𝑥) := {𝑥
∗
∈ 𝑋
∗
: ∃𝜎, 𝜂 ∈ (0, +∞)

s.t. ⟨𝑥∗, 𝑦 − 𝑥⟩ ≤ 𝑓 (𝑦) − 𝑓 (𝑥) + 𝜎󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩

2

∀𝑦 ∈ 𝐵 (𝑥, 𝜂)} .

(8)

For a closed subset𝐴 of𝑋 and 𝑎 ∈ 𝐴, define, respectively, the
Fréchet normal cone and the proximal normal cone 𝑁̂(𝐴, 𝑎)
and𝑁𝑃(𝐴, 𝑎) of 𝐴 to 𝑎 as

𝑁̂ (𝐴, 𝑎) = 𝜕̂𝛿𝐴 (𝑎) , 𝑁𝑃 (𝐴, 𝑎) = 𝜕𝑃𝛿𝐴 (𝑎) , (9)

where 𝛿𝐴 denotes the indicator function of 𝐴 (i.e., 𝛿𝐴(𝑥) = 0
if 𝑥 ∈ 𝐴 and 𝛿𝐴(𝑥) = +∞ otherwise). Clearly, 𝑥∗ ∈ 𝑁𝑃(𝐴, 𝑎)
if and only if each of the following two conditions holds.

(1) There exist 𝜎, 𝑟 ∈ (0, +∞) such that

⟨𝑥
∗
, 𝑥 − 𝑎⟩ ≤ 𝜎‖𝑥 − 𝑎‖

2
∀𝑥 ∈ 𝐵 (𝑎, 𝑟) ∩ 𝐴. (10)

(2) There exists 𝜎󸀠 ∈ (0, +∞) such that

⟨𝑥
∗
, 𝑥 − 𝑎⟩ ≤ 𝜎

󸀠
‖𝑥 − 𝑎‖

2
∀𝑥 ∈ 𝐴. (11)

Let 𝑁𝑀(𝐴, 𝑎) denote the Mordukhovich (limiting) normal
cone of 𝐴 to 𝑎; that is, 𝑥∗ ∈ 𝑁𝑀(𝐴, 𝑎) if and only if there
exist sequences {𝑎𝑛} ⊂ 𝐴 and {𝑥∗𝑛 } ⊂ 𝑋

∗ such that

𝑎𝑛 󳨀→ 𝑎, 𝑥
∗
𝑛

𝑤∗

󳨀→ 𝑥
∗
, 𝑥
∗
𝑛 ∈ 𝑁𝑃 (𝐴, 𝑎𝑛) .

(12)

It is well known that

𝜕̂𝑓 (𝑥) := {𝑥
∗
∈ 𝑋
∗
: (𝑥
∗
, −1) ∈ 𝑁̂ (epi (𝑓) , (𝑥, 𝑓 (𝑥)))} ,

𝜕𝑃𝑓 (𝑥) := {𝑥
∗
∈ 𝑋
∗
: (𝑥
∗
, −1) ∈ 𝑁𝑃 (epi (𝑓) , (𝑥, 𝑓 (𝑥)))} .

(13)

Let 𝑌 be a Banach space and let 𝐾 ⊂ 𝑌 be a closed
convex cone, which defines a preorder ≤𝐾 in 𝑌 as follows:
𝑦1 ≤𝐾 𝑦2 ⇔ 𝑦2 − 𝑦1 ∈ 𝐾. Let

𝐾
+
:= {𝑦
∗
∈ 𝑌
∗
: ⟨𝑦
∗
, 𝑦⟩ ≥ 0 ∀𝑦 ∈ 𝐾} ,

I𝐾+ := {𝑦
∗
∈ 𝐾
+
:
󵄩󵄩󵄩󵄩𝑦
∗󵄩󵄩󵄩󵄩 = 1} ;

(14)

usually 𝐾+ is called the dual cone of 𝐾. Let ∞𝑌 denote an
abstract infinity and 𝑌

∙
= 𝑌 ∪ {∞𝑌}. For a vector-valued

function 𝑓 : 𝑋 → 𝑌
∙, the epigraph of 𝑓 with respect to the

ordering cone𝐾 is defined by

epi𝐾 (𝑓) := {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑓 (𝑥) ≤𝐾 𝑦} . (15)

In the vector-valued setting, in view of (13), we will use the
following kinds of subdifferentials of 𝑓:

𝜕̂𝐾𝑓 (𝑥) = {𝑥
∗
∈ 𝑋
∗

: (𝑥
∗
, −I𝐾+) ∩ 𝑁̂ (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥))) ̸= 0} ,

𝜕
𝑃
𝐾𝑓 (𝑥) = {𝑥

∗
∈ 𝑋
∗

: (𝑥
∗
, −I𝐾+) ∩ 𝑁𝑃 (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥))) ̸= 0} ,

𝜕
𝑀
𝐾 𝑓 (𝑥) = {𝑥

∗
∈ 𝑋
∗

: (𝑥
∗
, −I𝐾+) ∩ 𝑁𝑀 (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥))) ̸= 0} .

(16)
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In the special case when 𝑌 = R and 𝐾 = R+, we haveI𝐾+ =
{1},

𝜕̂𝐾𝑓 (𝑥) = 𝜕̂𝑓 (𝑥) , 𝜕
𝑃
𝐾𝑓 (𝑥) = 𝜕𝑃𝑓 (𝑥) .

(17)

The following lemma will be useful in our analysis later.

Lemma 1. Let 𝑋,𝑌 be 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 spaces with 𝐾 ⊂ 𝑌 being a
closed convex cone and suppose that 𝑓 : 𝑋 → 𝑌

∙ is a function
such that epi𝐾(𝑓) is closed. Then, for any 𝑥 ∈ dom(𝑓) and
𝑦 ∈ 𝐾,

𝑁𝑃 (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥) + 𝑦)) ⊂ 𝑁𝑃 (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥))) .
(18)

Proof. Let (𝑥∗, 𝑦∗) ∈ 𝑁𝑃(epi𝐾(𝑓), (𝑥, 𝑓(𝑥) + 𝑦)). Then it
follows from (11) that there exists 𝜎 ∈ (0, +∞) such that

⟨(𝑥
∗
, 𝑦
∗
) , (𝑢
󸀠
, V󸀠) − (𝑥, 𝑓 (𝑥) + 𝑦)⟩

≤ 𝜎
󵄩󵄩󵄩󵄩󵄩
(𝑢
󸀠
, V󸀠) − (𝑥, 𝑓 (𝑥) + 𝑦)

󵄩󵄩󵄩󵄩󵄩

2
∀ (𝑢
󸀠
, V󸀠) ∈ epi𝐾 (𝑓) .

(19)

Noting that for any 𝑦 ∈ 𝐾

(𝑢, V) ∈ epi𝐾 (𝑓) 󳨐⇒ (𝑢, V + 𝑦) ∈ epi𝐾 (𝑓) (20)

and that

(𝑢, V) − (𝑥, 𝑓 (𝑥)) = (𝑢, V + 𝑦) − (𝑥, 𝑓 (𝑥) + 𝑦) , (21)

one has

⟨(𝑥
∗
, 𝑦
∗
) , (𝑢, V) − (𝑥, 𝑓 (𝑥))⟩

≤ 𝜎
󵄩󵄩󵄩󵄩(𝑢, V) − (𝑥, 𝑓 (𝑥))

󵄩󵄩󵄩󵄩

2
∀ (𝑢, V) ∈ epi𝐾 (𝑓) .

(22)

This means that (𝑥∗, 𝑦∗) ∈ 𝑁𝑃(epi𝐾(𝑓), (𝑥, 𝑓(𝑥))), which
implies in turn that

𝑁𝑃 (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥) + 𝑦)) ⊂𝑁𝑃 (epi𝐾 (𝑓) , (𝑥, 𝑓 (𝑥))) ,
(23)

and thus completes the proof of the lemma.

In establishing our main results, it will be crucial to
present the following lemmas (cf. Chapter 1, Proposition 2.11
andTheorem6.1 in [14] andChapter 8,Theorem 8.3.3 in [16]).

Lemma 2. Let 𝑋 be a Hilbert space and let 𝑓, 𝑔 : 𝑋 → R ∪

{+∞} be proper lower semicontinuous and suppose that 𝑔 is
twice continuously differentiable at 𝑥0 ∈ dom𝑓. Then

𝜕𝑃 (𝑓 + 𝑔) (𝑥0) = 𝜕𝑃𝑓 (𝑥0) + 𝑔
󸀠
(𝑥0) , (24)

where 𝑔󸀠(𝑥0) denotes the derivative of 𝑔 at 𝑥0.

Lemma3. Let𝐴 be a nonempty closed subset of aHilbert space
𝑋 and let 𝑥 ∈ 𝑋 \ 𝐴 be such that 𝜕𝑃𝑑(⋅, 𝐴)(𝑥) ̸= 0. Then there
exists 𝑎 ∈ 𝐴 satisfying the following properties.

(i) The set of closest points 𝑃𝐴(𝑥) in 𝐴 to 𝑥 is the singleton
{𝑎}.

(ii) 𝑑(⋅, 𝐴) is Fréchet differentiable at 𝑥 and

𝜕𝑃𝑑 (⋅, 𝐴) (𝑥) = {𝑑
󸀠
(⋅, 𝐴) (𝑥)} = {

𝑥 − 𝑎

‖𝑥 − 𝑎‖
} . (25)

(iii) 𝑥 − 𝑎 ∈ 𝑁𝑃(𝐴, 𝑎).

Lemma4. Let𝑋 be aHilbert space and let𝑓 : 𝑋 → R∪{+∞}

be a proper lower semicontinuous function. Let 𝑥0 ∈ 𝑋 and
𝜀 ∈ (0, +∞) be such that 𝑓(𝑥0) < inf𝑥∈𝑋𝑓(𝑥) + 𝜀. Then, for
any > 0, there exist 𝑦 and 𝑧 in𝑋 with

󵄩󵄩󵄩󵄩𝑧 − 𝑥0
󵄩󵄩󵄩󵄩 < 𝜆,

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 < 𝜆

𝑓 (𝑦) ≤ 𝑓 (𝑥0) ,

(26)

having the following property:

𝑓 (𝑧) +
𝜀

𝜆2

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩

2
≤ 𝑓 (𝑥) +

𝜀

𝜆2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
∀𝑥 ∈ 𝑋. (27)

3. Main Results

As an extension of Ioffe’s classic results on error bounds to
conic inequality inAsplund spaces, Zheng andNg [12] proved
Theorem I.

Theorem I. Let 𝑋,𝑌 be Asplund spaces with 𝐾 ⊂ 𝑌 being a
closed convex cone. Let Φ : 𝑋 → 𝑌

∙ be a function such that
its 𝐾-epigraph is closed. Let 𝑎 ∈ 𝑆(Φ, 𝑏, 𝐾) and 𝜂, 𝑟 ∈ (0, +∞)

be such that

𝜂 ≤ 𝑑 (0, 𝜕̂𝐾Φ (𝑥)) ∀𝑥 ∈ 𝐵 (𝑎, 𝑟) \ 𝑆 (Φ, 𝑏, 𝐾) . (28)

Then conic inequality (CIE) has a local error bound at 𝑎.

It is well known that 𝜕𝑃𝐾Φ(𝑥) ⊂ 𝜕̂𝐾Φ(𝑥) for any 𝑥 ∈

domΦ. So condition (28) will be much easier to be satisfied if
𝜕̂𝐾Φ(𝑥) is replaced by 𝜕𝑃𝐾Φ(𝑥). Taking this fact into account,
Theorem 6 provides a sharper result with 𝜕̂𝐾Φ replaced by
𝜕
𝑃
𝐾Φ and gives a relationship between the modulus of error
bound and corresponding radius which were not mentioned
in Theorem I. Its proof, which is slightly different from the
one of Theorem I in [12], is based on a smooth variational
principle rather than the Ekeland variational principle. Since
the proof of Theorem 6 proceeds by contradiction, we give
the following proposition to describe quantitative properties
for a point that violates (5).

Proposition 5. Let 𝑋,𝑌 be Hilbert spaces with 𝐾 ⊂ 𝑌 being
a closed convex cone. Let Φ : 𝑋 → 𝑌

∙ be a function such
that its 𝐾-epigraph is closed. Let 𝑎 ∈ 𝑆(Φ, 𝑏, 𝐾), 𝑥0 ∈ 𝑋, and
𝜏 ∈ (0, +∞) be such that

𝜏𝑑 (𝑏, Φ (𝑥0) + 𝐾) < 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) . (29)
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Then there exist (𝑢, V) ∈ epi𝐾(Φ), (𝑢̃, Ṽ) ∈ 𝑋 × 𝑌 satisfying the
following properties:

‖𝑢 − 𝑢̃‖ < 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) ,

‖V − Ṽ‖ < 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) ,
(30)

󵄩󵄩󵄩󵄩𝑢 − 𝑥0
󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑥0 − 𝑎
󵄩󵄩󵄩󵄩 , 𝑢 ∉ 𝑆 (Φ, 𝑏, 𝐾) , (31)

(0, 0) ∈ {0} × {
V − 𝑏
‖V − 𝑏‖

} +
2 (𝑢 − 𝑢̃, V − Ṽ)

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

+ 𝑁𝑃 (epi𝐾 (Φ) , (𝑢, V)) .
(32)

Proof. It follows from (29) that there exists 𝑦0 ∈ 𝐾 such that

𝜏
󵄩󵄩󵄩󵄩𝑏 − Φ (𝑥0) − 𝑦0

󵄩󵄩󵄩󵄩 < 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) . (33)

Define the function 𝜙 by 𝜙(𝑥, 𝑦) := ‖𝑦−𝑏‖+𝛿epi
𝐾
(Φ)(𝑥, 𝑦) for

all (𝑥, 𝑦) ∈ 𝑋 × 𝑌. Then 𝜙 is lower semicontinuous (due to
the closedness of epi𝐾(Φ)) and

𝜙 (𝑥0, Φ (𝑥0) + 𝑦0) <
𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

𝜏

≤ inf {𝜙 (𝑥, 𝑦) : (𝑥, 𝑦) ∈ 𝑋 × 𝑌}

+
𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

𝜏
.

(34)

This and Lemma 4 imply that there exist (𝑢̃, Ṽ), (𝑢, V) ∈ 𝑋×𝑌

such that

(
󵄩󵄩󵄩󵄩𝑢 − 𝑥0

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩V − Φ (𝑥0) − 𝑦0

󵄩󵄩󵄩󵄩

2
)
1/2

< 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) ,

(35)

(‖𝑢 − 𝑢̃‖
2
+ ‖V − Ṽ‖2)

1/2
< 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) ,

(36)

𝜙 (𝑢, V) +
‖(𝑢, V) − (𝑢̃, Ṽ)‖2

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

≤ 𝜙 (𝑥, 𝑦) +

󵄩󵄩󵄩󵄩(𝑥, 𝑦) − (𝑢̃, Ṽ)
󵄩󵄩󵄩󵄩

2

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(37)

From (36), it is easy to verify that (30) holds. Applying (35)
and 𝑎 ∈ 𝑆(Φ, 𝑏, 𝐾) leads us to the following:

󵄩󵄩󵄩󵄩𝑢 − 𝑥0
󵄩󵄩󵄩󵄩 < 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) ≤

󵄩󵄩󵄩󵄩𝑥0 − 𝑎
󵄩󵄩󵄩󵄩 , (38)

which also implies that

𝑢 ∉ 𝑆 (Φ, 𝑏, 𝐾) , (39)

and thus verifies (31), while (37) together with (𝑎, 𝑏) ∈

epi𝐾(Φ) gives us (𝑢, V) ∈ dom(𝜙) = epi𝐾(Φ) and so
Φ(𝑢) ≤𝐾 V. It follows from this and (39) that

V ̸= 𝑏. (40)

Furthermore, (37) implies that

(0, 0) ∈ 𝜕𝑃 (𝜓 + 𝛿epi
𝐾
(Φ)) (𝑢, V) , (41)

where

𝜓 (𝑥, 𝑦) :=
󵄩󵄩󵄩󵄩𝑦 − 𝑏

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(𝑥, 𝑦) − (𝑢̃, Ṽ)
󵄩󵄩󵄩󵄩

2

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(42)

It follows from (40) and Lemma 3 that𝜓 is twice continuously
differentiable at (𝑢, V) and

𝜓
󸀠
(𝑢, V) = {0} × {

V − 𝑏
‖V − 𝑏‖

} +
2 (𝑢 − 𝑢̃, V − Ṽ)

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
. (43)

So applying Lemma 2 to (41) leads us to the inclusions

(0, 0) ∈ {0} × {
V − 𝑏
‖V − 𝑏‖

} +
2 (𝑢 − 𝑢̃, V − Ṽ)

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

+ 𝜕𝑃𝛿epi
𝐾
(Φ) (𝑢, V)

= {0} × {
V − 𝑏
‖V − 𝑏‖

} +
2 (𝑢 − 𝑢̃, V − Ṽ)

𝜏𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

+ 𝑁𝑃 (epi𝐾 (Φ) , (𝑢, V)) ,

(44)

which justifies (32) and thus completes the proof of the
proposition.

With the preparation that we have done, the proof of our
main result is now straightforward.

Theorem 6. Let 𝑋,𝑌 be Hilbert spaces with 𝐾 ⊂ 𝑌 being a
closed convex cone. Let Φ : 𝑋 → 𝑌

∙ be a function such that
its 𝐾-epigraph is closed. Let 𝑎 ∈ 𝑆(Φ, 𝑏, 𝐾) and 𝜂, 𝑟 ∈ (0, +∞)

be such that

𝜂 ≤ 𝑑 (0, 𝜕
𝑃
𝐾Φ (𝑥)) ∀𝑥 ∈ 𝐵 (𝑎, 𝑟) \ 𝑆 (Φ, 𝑏, 𝐾) . (45)

Then, one has

𝑑 (𝑥, 𝑆 (Φ, 𝑏, 𝐾))

≤ (2 +
2

𝜂
)𝑑 (𝑏, Φ (𝑥) + 𝐾) ∀𝑥 ∈ 𝐵(𝑎,

𝑟

2
) .

(46)

Proof. Theproof proceeds by contradiction. Namely, suppose
to the contrary that (46) is not true; then, there exists 𝑥0 ∈
𝐵(𝑎, 𝑟/2) such that

𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)) > (2 +
2

𝜂
)𝑑 (𝑏, Φ (𝑥0) + 𝐾) , (47)

and consequently it follows from Proposition 5 that there
exist (𝑢, V) ∈ epi𝐾(Φ), (𝑢̃, Ṽ) ∈ 𝑋 × 𝑌 such that (30), (31),
and (32) hold. Then, one has

‖𝑢 − 𝑎‖ ≤
󵄩󵄩󵄩󵄩𝑢 − 𝑥0

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥0 − 𝑎

󵄩󵄩󵄩󵄩

<
󵄩󵄩󵄩󵄩𝑥0 − 𝑎

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥0 − 𝑎

󵄩󵄩󵄩󵄩 = 2
󵄩󵄩󵄩󵄩𝑥0 − 𝑎

󵄩󵄩󵄩󵄩 < 𝑟,

(48)
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which implies

𝑢 ∈ 𝐵 (𝑎, 𝑟) \ 𝑆 (Φ, 𝑏, 𝐾) . (49)

Since (𝑢, V) ∈ epi𝐾(Φ), we can take 𝑧 ∈ 𝐾 such that V =

Φ(𝑢) + 𝑧. Then, by Lemma 1, one has

𝑁𝑃 (epi𝐾 (Φ) , (𝑢, Φ (𝑢) + 𝑧)) ⊂ 𝑁𝑃 (epi𝐾 (Φ) , (𝑢, Φ (𝑢))) .

(50)

It follows from (32) and (50) that

(−
𝑢 − 𝑢̃

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏,K))
,

−
V − 𝑏
‖V − 𝑏‖

−
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
)

∈ 𝑁𝑃 (epi𝐾 (Φ) , (𝑢, Φ (𝑢))) .

(51)

Noting that (𝑢, Φ(𝑢)) + {0} × 𝐾 ⊂ epi𝐾(Φ), this implies that
((V − 𝑏)/‖V − 𝑏‖) + ((V − Ṽ)/(1 + 1/𝜂)𝑑(𝑥0, 𝑆(Φ, 𝑏, 𝐾))) ∈ 𝐾

+.
Indeed, due to the definition of proximal normal cone, there
exists 𝜎 ∈ (0, +∞) such that

⟨(−
𝑢 − 𝑢̃

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
,

−
V − 𝑏
‖V − 𝑏‖

−
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
) ,

(𝑢
󸀠
, V󸀠) − (𝑢, Φ (𝑢))⟩

≤ 𝜎
󵄩󵄩󵄩󵄩󵄩
(𝑢
󸀠
, V󸀠) − (𝑢, Φ (𝑢))

󵄩󵄩󵄩󵄩󵄩

2

(52)

for all (𝑢󸀠, V󸀠) ∈ epi𝐾(Φ).
Namely,

(⟨−
𝑢 − 𝑢̃

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
, 𝑢
󸀠
− 𝑢⟩

−⟨
V − 𝑏
‖V − 𝑏‖

+
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
,

V󸀠 − Φ (𝑢)⟩)

× (
󵄩󵄩󵄩󵄩󵄩
(𝑢
󸀠
, V󸀠) − (𝑢, Φ (𝑢))

󵄩󵄩󵄩󵄩󵄩

2
)

−1

≤ 𝜎

(53)

for all (𝑢󸀠, V󸀠) ∈ epi𝐾(Φ).
Setting 𝑢󸀠 = 𝑢 in the above inequality, one has

− ⟨
V − 𝑏
‖V − 𝑏‖

+
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
,

V󸀠 − Φ (𝑢)⟩

× (
󵄩󵄩󵄩󵄩󵄩
V󸀠 − Φ (𝑢)

󵄩󵄩󵄩󵄩󵄩

2
)

−1

≤ 𝜎.

(54)

Noting that V󸀠 − Φ(𝑢) ∈ 𝐾 and𝐾 is a cone, one has

⟨
V − 𝑏
‖V − 𝑏‖

+
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
, V󸀠 − Φ (𝑢)⟩ ≥ 0,

(55)

which means that

V − 𝑏
‖V − 𝑏‖

+
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
∈ 𝐾
+
. (56)

Let

𝑥
∗
:= (−

𝑢 − 𝑢̃

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V − 𝑏
‖V − 𝑏‖

+
(V − Ṽ)

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−1

,

𝑧
∗
:= (

V − 𝑏
‖V − 𝑏‖

+
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

V − 𝑏
‖V − 𝑏‖

+
V − Ṽ

(1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

−1

.

(57)

Then (𝑥∗−𝑧∗) ∈ 𝑁𝑃(epi𝐾(Φ), (𝑢, Φ(𝑢))) and so𝑥
∗
∈ 𝜕
𝑃
𝐾Φ(𝑢).

Combining this with (30) implies that

𝑑 (0, 𝜕
𝑃
𝐾Φ (𝑢))

⩽
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 ≤

‖𝑢 − 𝑢̃‖ / (1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾))

1 − (‖V − Ṽ‖ / (1 + 1/𝜂) 𝑑 (𝑥0, 𝑆 (Φ, 𝑏, 𝐾)))

<
1/ (1 + 1/𝜂)

1 − (1/ (1 + 1/𝜂))

= 𝜂,

(58)

which contradicts (45) and (49). The proof is complete.

Letting 𝑟 → +∞ in Theorem 6, we have the following
global error bound result.

Corollary 7. Let 𝑋,𝑌 be 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 spaces with 𝐾 ⊂ 𝑌 being a
closed convex cone. Let Φ : 𝑋 → 𝑌

∙ be a function such that
its 𝐾-epigraph is closed. Let 𝑎 ∈ 𝑆(Φ, 𝑏, 𝐾) and 𝜂, 𝑟 ∈ (0, +∞)

be such that

𝜂 ≤ 𝑑 (0, 𝜕
𝑃
𝐾Φ (𝑥)) ∀𝑥 ∈ 𝑋 \ 𝑆 (Φ, 𝑏, 𝐾) . (59)
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Then, one has

𝑑 (𝑥, 𝑆 (Φ, 𝑏, 𝐾)) ≤ (2 +
2

𝜂
)𝑑 (𝑏, Φ (𝑥) + 𝐾) ∀𝑥 ∈ 𝑋.

(60)

TakingTheorems I and 6 and Corollary 7 into considera-
tion, we arrive at the following remarks.

Remark 8. (1) Since the class of Asplund space is more
extensive than that of Hilbert space from the framework of
spaces, Theorem I has a wider range of applications than
Theorem 6.

(2)The subdifferential 𝜕𝑃𝐾Φ(𝑥) in Theorem 6 expresses a
kind of variational behavior of “order two,” while 𝜕̂𝐾Φ(𝑥) in
Theorem I is of “order one.” In general, 𝜕𝑃𝐾Φ(𝑥) is smaller than
𝜕̂𝐾Φ(𝑥), and, furthermore, dom(𝜕𝑃𝐾Φ) may have measure
zero even for a smooth function. In [17], Clarke et al. have
constructed a 𝐶1 function onR whose proximal subgradient
is nonempty on a set that is small in the sense of measure
and category. For the sake of convenience, we present this
interesting result to show this kind of somewhat surprising
phenomenon as follows.

Let 𝑔 be the (continuous) function of period 4 which
satisfies 𝑔(𝑥) = 𝑥 + 1 for −2 ≤ 𝑥 ≤ 0, 𝑔(𝑥) = −𝑥 + 1 for
0 ≤ 𝑥 ≤ 2, and define

𝜑 (𝑥) :=

∞

∑

𝑛=1

2
−𝑛
𝑔 (2
2𝑛
𝑥) . (61)

Clearly 𝜑 is continuous, and thus 𝑓(⋅) defined by 𝑓(𝑥) :=

∫
𝑥

0
𝜑(𝑡)𝑑𝑡 is 𝐶

1 on R. Following the excellent proof of
Clarke, we arrive at the conclusion that both dom(𝜕𝑃𝑓) and
dom(𝜕𝑃(−𝑓)) have measure zero. For more details, we refer
the reader to Theorem 6.1 in [17].

(3) To our knowledge, we do not know whether the
assumption of Hilbert spaces in Theorem 6 and Corollary 7
can be extended to more general Banach spaces or not, for
example, whether these results can be extended to ℓ𝑝 (1 <

𝑝 < +∞) spaces.

Under the assumption somewhat stronger than that for
Theorem 6, we have the following stability version regarding
local error bounds for (CIE).

Theorem 9. Let 𝑋,𝑌 be Hilbert spaces and suppose that Φ :

𝑋 → 𝑌
∙ is continuous and that𝐾 ⊂ 𝑌 is a closed convex cone

such that int(𝐾) ̸= 0, where int(⋅) denotes the interior. Let 𝑎 ∈ 𝑋
be such that 0 ∉ 𝜕

𝑀
𝐾 Φ(𝑎). Then, there exists 𝛾 > 0 such that,

for any 𝑏 ∈ Φ(𝐵(𝑎, 𝛾)) + 𝐾, the corresponding conic inequality
(CIE) has a local error bound at each 𝑥 ∈ 𝐵(𝑎, 𝛾) ∩ 𝑆(Φ, 𝑏, 𝐾).

Proof. ByTheorem 6, it suffices to show that there exist 𝑟, 𝜂 >
0 such that 𝑑(0, 𝜕𝑃𝐾Φ(𝑥)) ≥ 𝜂 for all 𝑥 ∈ 𝐵(𝑎, 𝑟). If it is not the
case, we can find a sequence {𝑥𝑛} in 𝑋 converging to 𝑎 and
satisfying

𝑑 (0, 𝜕
𝑃
𝐾Φ(𝑥𝑛)) <

1

𝑛
∀𝑛 ∈ N. (62)

By the definition of 𝜕𝑃𝐾Φ, this means that there exist 𝑦∗𝑛 ∈ 𝐾
+

and 𝑥∗𝑛 ∈ 𝑋
∗ such that

󵄩󵄩󵄩󵄩𝑦
∗
𝑛
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩𝑥
∗
𝑛
󵄩󵄩󵄩󵄩 <

1

𝑛
,

(𝑥
∗
𝑛 , −𝑦
∗
𝑛 ) ∈ 𝑁𝑃 (epi𝐾 (Φ) , (𝑥𝑛, Φ (𝑥𝑛))) .

(63)

Without loss of generality, we assume that {𝑦∗𝑛 } converges to
𝑦
∗
∈ 𝐾
+ with the weak∗ topology (taking a subsequence

if necessary). Taking the continuity assumption of Φ into
consideration, it follows from (63) that

(0, −𝑦
∗
) ∈ 𝑁𝑀 (epi𝐾 (Φ) , (𝑎, Φ (𝑎))) . (64)

We claim that 𝑦∗ ̸= 0. Granting this, one has (0, −𝑦∗/‖𝑦∗‖) ∈
𝑁𝑀(epi𝐾(Φ), (𝑎, Φ(𝑎))), which contradicts the assumption
that 0 ∉ 𝜕

𝑀
𝐾 Φ(𝑎). It remains to show that 𝑦∗ ̸= 0. Since

int(𝐾) ̸= 0, there exist 𝑘 ∈ 𝐾 and 𝛿 > 0 such that 𝑘+𝛿𝐵𝑌 ⊂ 𝐾.
Hence,

0 ≤ inf {⟨𝑦∗𝑛 , 𝑦⟩ : 𝑦 ∈ 𝑘 + 𝛿𝐵𝑌}

= ⟨𝑦
∗
𝑛 , 𝑘⟩ − 𝛿

󵄩󵄩󵄩󵄩𝑦
∗
𝑛
󵄩󵄩󵄩󵄩 = ⟨𝑦

∗
𝑛 , 𝑘⟩ − 𝛿,

(65)

and so 𝛿 ≤ ⟨𝑦
∗
𝑛 , 𝑘⟩. Since 𝑦

∗
𝑛

𝑤∗

󳨀󳨀→ 𝑦
∗
, 𝛿 ≤ ⟨𝑦

∗
, 𝑘⟩. This shows

that 𝑦∗ ̸= 0, which completes the proof.

It is important to note that int(𝐾) ̸= 0 plays an important
role in the validity of Theorem 9, as the following example
shows. Hence the assumption of int(𝐾) ̸= 0 in Theorem 9 is
not superfluous.

Example 10 (failure of having a local error bound). Let
𝑋 = 𝑌 = ℓ

2, 𝐾 = ℓ
2
+, 𝑎 = 𝑏 = 0, and Φ(𝑥) =

(𝑥1/2, 𝑥2/2
2
, . . . , 𝑥𝑛/2

𝑛
, . . .) for all 𝑥 ∈ ℓ

2. Then Φ is
continuous, 0 ∉ 𝜕𝑀𝐾 Φ(𝑎) and 𝑆(Φ, 𝑏, 𝐾) = ℓ

2
−.

It is well known and easy to check that int(𝐾) = int(ℓ2+) =
0. Take a sequence {𝑒𝑛} in ℓ

2, where

𝑒𝑛 = (0, . . . , 0,
1

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, 0, . . .) . (66)

Then {𝑒𝑛} converges to 𝑎 = 0 ∈ 𝑆(Φ, 𝑏, 𝐾) and Φ(𝑒𝑛) =

(0, . . . , 0, 1/2
𝑛
⋅ 𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, 0, . . .).

𝑑 (𝑏, Φ (𝑒𝑛) + 𝐾) = 𝑑 (−Φ (𝑒𝑛) , 𝐾)

= 𝑑 (−Φ (𝑒𝑛) , ℓ
2
+)

= inf
𝑦∈ℓ2
+

󵄩󵄩󵄩󵄩−Φ (𝑒𝑛) − 𝑦
󵄩󵄩󵄩󵄩

= inf
𝑦∈ℓ2
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(0, . . . , 0, −
1

2𝑛 ⋅ 𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, 0, . . .) − 𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

2𝑛 ⋅ 𝑛

(67)
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and that

𝑑 (𝑒𝑛, 𝑆 (Φ, 𝑏, 𝐾)) = 𝑑 (𝑒𝑛, ℓ
2
−)

= inf
𝑥∈ℓ2
−

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑥
󵄩󵄩󵄩󵄩

= inf
𝑥∈ℓ2
−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(0, . . . , 0,
1

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, 0, . . .) − 𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

𝑛
,

(68)

it follows that

𝑛𝑑 (𝑏, Φ (𝑒𝑛) + 𝐾)

=
1

2𝑛
<
1

𝑛
= 𝑑 (𝑒𝑛, 𝑆 (Φ, 𝑏, 𝐾)) ∀𝑛 ∈ N.

(69)

Hence the conic inequality (CIE) does not have a local error
bound at 𝑎. This situation occurs, of course, because int(𝐾) is
empty.
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