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Logistic regression model is the most popular regression technique, available for modeling categorical data especially for
dichotomous variables. Classic logistic regression model is typically used to interpret relationship between response variables
and explanatory variables. However, in real applications, most data sets are collected in follow-up, which leads to the temporal
correlation among the data. In order to characterize the different variables correlations, a new method about the latent variables
is introduced in this study. At the same time, the latent variables about AR (1) model are used to depict time dependence. In the
framework of Bayesian analysis, parameters estimates and statistical inferences are carried out via Gibbs sampler with Metropolis-
Hastings (MH) algorithm. Model comparison, based on the Bayes factor, and forecasting/smoothing of the survival rate of the tree
are established. A simulation study is conducted to assess the performance of the proposed method and a pika data set is analyzed
to illustrate the real application. Since Bayes factor approaches vary significantly, efficiency tests have been performed in order to
decide which solution provides a better tool for the analysis of real relational data sets.

1. Introduction

Logistic regression model, a widely appreciated model for
analyzing categorical response data especially for binary/
dichotomous data in social science research, marketing,
biomedical studies, and ecology, has been received a substan-
tive attention [1, 2].Theprimary concern of logistic regression
analysis is to build the interrelationships between explana-
tory variables and responses and explain the variability of
the response probability in terms of the variability in the
observed covariates. The common analysis for the logistic
regression model is based on the independent subjects, and
statistical inference is carried out via themaximum likelihood
approach (see [3–5]).

However, in practice, many studies need to account for
correlations among the items within time as well as corre-
lations among the same items between times. Independent
assumptions cannot capture such correlations. In order to
interpret the correlations among the responses, one popular
choice is to introduce the latent variables. Even more, taking

into account the temporal correlations, a dynamic system is
established which leads to the latent variable models [6–8].
However, this dynamic system is associated with dynamic
factor. So, a Bayesian approach is proposed in this paper.With
an alternative approach about the ML, the development is
based on the generalized logistic model in the well-known
linear dynamic factor analysis model. To cope with this
complicated model, Gibbs sampler [9] with MH algorithm
[10, 11] is implemented to generate a sequence of observations
from the appropriate joint posterior distribution. The joint
Bayes estimates of the parameters and latent variables scores
associated with standard error estimates can be obtained
directly based on the simulated observations. Beyond the
estimation problem, anothermain objective of this paper is to
introduce theBayes factor (see [12]) to test various hypotheses
about the posited model. In general, the computation of the
Bayes factor involving multiple integrals is rather intractable
and, more often, are evaluated via various computational
methods (see [13–19], and among others). Among easy-
to-construct, we adopted the well-known path sampling
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technique [20] for computing Bayes factor. The nice feature
of path sampling lies in its simplicity in implementation and
effectiveness over such an important sampling (e.g., [21]) and
bridge sampling [22].

A basic intent of modeling dynamic model is to represent
series of observations generated in time and to predict the
future evolution of the series.The well-known Kalman recur-
sion [23] is commonly employed for forecasting and provides
the optimal forecasts in the case where the state transitions
are linear and dynamic system is Gaussian. However, if
Gaussian assumptions, in particular, of the distributions of
the measurement errors are violated, Kalman recursion only
yields the best linear predictor for linear dynamic system
which is substantially different from the optimal forecasts.
Many authors have suggested various alternatives to the
Kalman filter; see, among others, Kitagawa [24], Meinhold
and Singpurwalla [25], Carlin et al. [26], and Smith andWest
[27]. Motivated by the key idea in Carlin et al. [26], in this
paper, the missing data is treated as the future observations
and augmented them with parameters of latent variables
as observed data. Therefore, it can use Bayesian analysis
approach to deal them. Simulated observations generated by
Gibbs sampler from the joint posterior distribution can be
directly applied to forecasts and/or smoothing.

This paper is organized as follows. In Section 2, we
describe the problem under consideration. Section 3 gives
the estimation procedure and explores the Bayesian approach
in detail. For model selection, Bayes factor and Bayesian
forecasting are introduced in Section 4. Simulation study
and a real example are given in Section 5. Some concluding
remarks are presented in Section 6.

2. Materials and Methods about Model

In this section, the problem and model structure are pre-
sented as follows, which will be considered throughout the
paper. For 𝑖 = 1, . . . , 𝑇, 𝑗 = 1, . . . , 𝐾, let𝑦

𝑖𝑗
denote the number

of living tree within the 𝑗th plot in the 𝑖th month. We assume
that 𝑦

𝑖𝑗
follows the binomial distribution with the unknown

survival rate 𝑝
𝑖𝑗

[𝑦
𝑖𝑗

| 𝑝
𝑖𝑗
] ∼ 𝐵𝑖𝑛 (𝑛

𝑖𝑗
, 𝑝
𝑖𝑗
) , (1)

where 𝑛
𝑖𝑗
is the total number of tree being investigated at time

𝑖 in the𝑗th plot. Further, the probability𝑝
𝑖𝑗
is in relation to the

covariates via the following link function:

log 𝑖𝑡 (𝑝
𝑖𝑗
) = x𝑇
𝑖𝑗
𝛽 + 𝜆
𝑗
𝜉
𝑖
+ 𝜀
𝑖𝑗
, (2)

in which “log 𝑖𝑡” denotes the log 𝑖𝑡 function, x
𝑖𝑗

=

(1, 𝑥
𝑖𝑗1

, . . . , 𝑥
𝑖𝑗𝑟

)
𝑇 is a (𝑟 + 1) vector of fixed covariates, 𝛽 is a

(𝑟 + 1) regression parametric vector, 𝜉
𝑖
is the common factor,

and 𝜀
𝑖
= (𝜀
𝑖1
, . . . , 𝜀

𝑖𝐾
)
󸀠 is the unique error with distribution

𝑁
𝐾
(0,Ψ
𝜀
) where Ψ

𝜀
= diag{𝜓

𝜀1
, . . . , 𝜓

𝜀𝑝
} is the diagonal

matrix. The factor loading vector is Λ = (𝜆
1
, . . . , 𝜆

𝐾
)
󸀠, which

measures the effect of 𝜉
𝑖
on the functions of the response

probability.Moreover, it assumes that 𝜉
𝑖
satisfies the following

one-order autoregressive model

𝜉
𝑖
= 𝜙𝜉
𝑖−1

+ 𝛿
𝑖
, (3)
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Figure 1: Path diagram about interaction with the latent variables
and manifest variables.

where |𝜙| < 1 and 𝛿
𝑖
is the iid random errors distributed

according to the normal distribution 𝑁(0, 𝜎
2
) (𝜎2 > 0). For

the initial variable 𝜉
0
, we assume that 𝜉

0
∼ 𝑁(𝜇

0
, 𝜎
2

0
) with

mean 𝜇
0
and variance 𝜎

2

0
. 𝛿
𝑖
and 𝜀
𝑖𝑗
are mutually independent

and both are independent of 𝜉
𝑖
. In this paper, we treat 𝜇

0
and

𝜎
2

0
to be known and fix them at some preassigned values.
Let 𝜗
𝑖𝑗

= x𝑇
𝑖𝑗
𝛽 + 𝜆
𝑗
𝜉
𝑖
+ 𝜀
𝑖𝑗
, 𝑏(𝜗
𝑖𝑗
) = log(1 + exp(𝜗

𝑖𝑗
)). Then,

(1), (2), and (3) can be reformulated as follows:

𝑝 (𝑦
𝑖𝑗

| 𝜗
𝑖𝑗
) = 𝐶

𝑦𝑖𝑗

𝑛𝑖𝑗
exp {𝑦

𝑖𝑗
𝜗
𝑖𝑗
− 𝑛
𝑖𝑗
𝑏 (𝜗
𝑖𝑗
)} ,

𝜗
𝑖𝑗

= x𝑇
𝑖𝑗
𝛽 + 𝜆
𝑗
𝜉
𝑖
+ 𝜀
𝑖𝑗
, 𝜀
𝑖
∼ 𝑁 (0,Ψ

𝜀
) ,

𝜉
𝑖
= 𝜙𝜉
𝑖−1

+ 𝛿
𝑖
,

𝜉
0
∼ 𝑁(𝜇

0
, 𝜎
2

0
) , 𝛿

𝑖
∼ 𝑁(0, 𝜎

2
) ,

𝛿
𝑖
⊥ 𝜀
𝑖
, 𝜉
0
⊥ 𝜀
𝑖
, 𝛿
𝑖
⊥ 𝜉
0
.

(4)

The main aim of introducing the latent variables is to char-
acterize the temporal correlation between the consecutive
observations and explain the interrelationships among the
response probability. To give more details, note that for 𝑖 > 𝑖

󸀠,
and 𝑗, 𝑙 = 1, . . . , 𝐾, the correlation between 𝜗

𝑖
󸀠
𝑗
and 𝜗
𝑖𝑙
is given

by

Corr (𝜗
𝑖
󸀠
𝑗
, 𝜗
𝑖𝑙
) =

𝜆
𝑗
𝜆
𝑙
𝜎
2

𝜉
(𝑖) 𝜙
𝑖−𝑖
󸀠

√𝜆
𝑗
𝜎
2

𝜉
+ 𝜓
𝜀𝑗√𝜆
2

𝑙
𝜎
2

𝜉
+ 𝜓
𝜀𝑙

, (5)

in which

𝜎
2

𝜉
(𝑖) = 𝜎

2

0
𝜙
2𝑖

+ 𝜎
2 1 − 𝜙

2𝑖

1 − 𝜙2
. (6)

A path diagram of latent variables and manifest variables at
time 𝑖−1 and 𝑖 is given in Figure 1. Following the conventions
of path diagrams, the ellipses represent the latent variables,
the rectangles denote the observed measurements, and the
arrows represent the direct effect.

For ease of exposition, let y
𝑖

= (𝑦
𝑖1
, . . . , 𝑦

𝑖𝐾
)
󸀠, 𝜗
𝑖

=

(𝜗
𝑖1
, . . . , 𝜗

𝑖𝐾
)
󸀠, and X

𝑖
= (x
𝑖1
, . . . , x

𝑖𝐾
)
󸀠, which denote the vec-

tor of random observations, the vector of latent variables, and
the vector of covariates cross 𝐾 items at time 𝑖, respectively.
Let Y = {y

𝑖
: 𝑖 = 1, . . . , 𝑇} be the collection of the observed

data, let Ω = {𝜉
𝑖

: 𝑖 = 0, . . . , 𝑇} be the collection of the
factor variables, let Ξ = {𝜗

𝑖
: 𝑖 = 1, . . . , 𝑇} be the collection

of the latent variables, and let 𝜃 be the vector of unknown
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parameters in 𝛽, Λ, Ψ
𝜀
, 𝜙, and 𝜎

2 involved in the model and
then the joint distribution of (Y,Ξ,Ω) conditioning on 𝜃 is
given by

𝑝 (Y,Ξ,Ω𝜃) = 𝑝 (Y | Ξ, 𝜃) 𝑝 (Ξ | Ω, 𝜃) 𝑝 (Ω | 𝜃)

= (

𝑇

∏

𝑖=1

𝐾

∏

𝑗=1

𝑝 (𝑦
𝑖𝑗

| 𝜗
𝑖𝑗
) 𝑝 (𝜗

𝑖𝑗
| 𝜉
𝑖
, 𝜃))

× 𝑝 (𝜉
0
)

𝑇

∏

𝑖=1

𝑝 (𝜉
𝑖
| 𝜃) .

(7)

In the framework of Bayesian analysis, the following priors
for unknown parameter vector 𝜃 are used to complete
Bayesian specifications: 𝑝(𝜃) = 𝑝(𝛽)𝑝(Λ,Ψ

𝜀
)𝑝(𝜙)𝑝(𝜎

2
) and

𝛽 ∼ 𝑁
𝑟+1

(𝛽
0
,Σ
0
) , 𝜙 ∼ Uniform (−1, 1) ,

𝜎
−2

∼ Gamma (𝛼
0
, 𝜏
0
) ,

(Λ | Ψ
𝜀
) ∼

𝐾

∏

𝑘=1

𝑁(Λ
0𝑘
, 𝜓
𝜀𝑘
H
0𝑘
) ,

Ψ
𝜀
∼

𝐾

∏

𝑘=1

Gamma (𝛼
𝜀0𝑘

, 𝛽
𝜀0𝑘

) ,

(8)

in which 𝛽
0
, Σ
0
,Λ
0𝑘
,H
0𝑘
, 𝛼
0
, 𝜏
0
, 𝛼
𝜀0𝑘

, and 𝛽
𝜀0𝑘

are the known
superparameters.

3. Parameters Estimation via Gibbs
Sampler with MH Algorithm

For the Bayesian analysis, we are required to evaluate
the complicated posterior distribution 𝑝(𝜃 | Y) which
involves the high-dimensional integrals. Data augmentation
[28] technique is used to cope with the posterior analysis
in relation to the complicated 𝑝(𝜃 | Y). Specifically, the
observed data Y are augmented with the latent quantities
{Ξ,Ω} in the posterior analysis. A sequence of random
observations will be generated by the Gibbs sampler [9],
coupled with theMetropolis-Hastings algorithm [10, 11] from
the joint posterior distribution 𝑝(Ξ,Ω, 𝜃 | Y), specifically,
at the 𝑚th iteration with current values (Ξ(𝑚),Ω(𝑚), 𝜃(𝑚)) =

(Ξ(𝑚),Ω(𝑚),𝛽(𝑚),Λ(𝑚),Ψ(𝑚)
𝜀

, 𝜙
(𝑚)

, 𝜎
2(𝑚)

). We do the follow-
ing:

(i) draw Ξ(𝑚+1) from 𝑝 (Ξ | Ω(𝑚),𝛽(𝑚),Λ(𝑚),Ψ(𝑚)
𝜀

, 𝜙
(𝑚)

,

𝜎
2(𝑚)

,Y);

(ii) draw Ω(𝑚+1) from 𝑝 (Ω | Ξ(𝑚+1),𝛽(𝑚),Λ(𝑚),Ψ(𝑚)
𝜀

,

𝜙
(𝑚)

, 𝜎
2(𝑚)

,Y);

(iii) draw 𝛽(𝑚+1) from 𝑝 (𝛽 | Ξ(𝑚+1),Ω(𝑚+1),Λ(𝑚),Ψ(𝑚)
𝜀

,

𝜙
(𝑚)

, 𝜎
2(𝑚)

,Y);

(iv) draw (Λ(𝑚+1),Ψ(𝑚+1)
𝜀

) from 𝑝(Λ,Ψ
𝜀
| Ξ(𝑚+1),Ω(𝑚+1),

𝛽(𝑚+1), 𝜙(𝑚), 𝜎2(𝑚),Y);

(v) draw 𝜙
(𝑚+1) from 𝑝 (𝜙 | Ξ(𝑚+1),Ω(𝑚+1),𝛽(𝑚+1),

Λ(𝑚+1),Ψ(𝑚+1)
𝜀

, 𝜎
2(𝑚)

,Y);

(vi) draw 𝜎
2(𝑚+1) from 𝑝 (𝜎

2 | Ξ(𝑚+1),Ω(𝑚+1),𝛽(𝑚+1),

Λ(𝑚+1),Ψ(𝑚+1)
𝜀

, 𝜙
(𝑚+1)

,Y).

It has been shown [9, 29] that under mild conditions and,
for sufficiently large 𝑚, such as 𝐽, the joint distribution
of (Ξ(𝑚),Ω(𝑚), 𝜃(𝑚)) converges at an exponential rate to
the desired posterior distribution 𝑝(Ξ,Ω, 𝜃 | Y). Hence,
𝑝(Ξ,Ω, 𝜃 | Y) can be approximated by the empirical
distribution of {(Ξ(𝑚),Ω(𝑚), 𝜃(𝑚)) : 𝑚 = 𝐽 + 1, . . . , 𝐽 + 𝑀},
where𝑀 is chosen to give sufficient precision to the empirical
distribution. The convergence of the hybrid Gibbs sampler
with MH algorithm can be monitored by the “estimated
potential scale reduction (EPSR)” values as suggested by
Gelman and Rubin [30]. To implement Gibbs sampler with
MH algorithm, it requires the full conditional distributions
for each parameters and latent quantities. For saving space,
these technical details are omitted.

Simulated observations obtained from the posterior val-
ues can be used for statistical inference via straightforward
analysis procedure. For brevity, let {(Ξ(𝑚),Ω(𝑚), 𝜃(𝑚)) : 𝑚 =

1, . . . ,𝑀} be the random observations of (Ξ,Ω, 𝜃) generated
by the Gibbs sampler from 𝑝(Ξ,Ω, 𝜃 | Y). The joint
Bayesian estimate of 𝜃 and Ω can be obtained easily via the
corresponding sample means of the generated observations
as follows:

𝜃̂ =
𝑀

∑

𝑚=1

𝜃(𝑚)

𝑀
, Ω̂ =

𝑀

∑

𝑚=1

Ω(𝑚)

𝑀
. (9)

The consistent estimates of covariancematrix of (Ω, 𝜃) can be
obtained as follows:

Cov (𝜃̂) ≈

𝑀

∑

𝑚=1

(𝜃(𝑚) − 𝜃̂) (𝜃(𝑚) − 𝜃̂)
󸀠

(𝑀 − 1)
,

Cov (Ω̂) ≈

𝑀

∑

𝑚=1

(Ω(𝑚) − Ω̂) (Ω(𝑚) − Ω̂)
󸀠

(𝑀 − 1)
.

(10)

4. Model Selection and Bayesian Forecasting

Model selection is an important issue for Bayesian gener-
alized logistic analysis since it is of interest to determine
whether the latent variables are involved or whether the
significant effects exist among the competing covariates.
Consider the problem of comparing competing models 𝑀

1

and 𝑀
0
which are nested or nonnested. Let 𝑝(Y | 𝑀

1
)

and 𝑝(Y | 𝑀
0
) denote the marginal density of the data Y

under𝑀
1
and𝑀

0
, respectively. A popular choice for selecting

models (e.g., [16, 18]) is achieved via the following Bayes
factor:

BF
10

=
𝑝 (Y | 𝑀

1
)

𝑝 (Y | 𝑀
0
)

=
∫𝑝 (Y,Ξ,Ω | 𝜃,𝑀

1
) 𝑝 (𝜃 | 𝑀

1
) 𝑑𝜃𝑑Ξ𝑑Ω

∫𝑝 (Y,Ξ,Ω | 𝜃,𝑀
0
) 𝑝 (𝜃 | 𝑀

0
) 𝑑𝜃𝑑Ξ𝑑Ω

,

(11)
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Table 1: The evidence about Bayes factor against 𝑀
0
[18].

logBF10 BF10 Evidence againstM0

0 to 1 1 to 3 Not worth more than a bare mention
1 to 3 3 to 20 Positive
3 to 5 20 to 150 Strong
>5 >150 Very strong

where 𝑝(𝜃 | 𝑀
𝑘
) and 𝑝(Y,Ξ,Ω | 𝜃,𝑀

𝑘
) are the prior

density of 𝜃 and the joint probability density of (Y,Ξ,Ω)
given the values of 𝜃 under 𝑀

𝑘
, respectively. Kass and Rafter

[18] provide the following categories to furnish appropriate
guidelines in Table 1.

Computing BF
10

or log BF
10

involves the high-
dimensional integrations of likelihood with respect to
(Ξ,Ω, 𝜃) which is rather difficult. Various techniques are
explored to address this problem (see [7]). Among easy-
to-construct, we consider the path sampling method [20].
The core of path sampling is to construct a series of linked
models which link up the competing models.

Specifically, consider a class of densities indexed by a con-
tinuous parameter 𝑡 in [0, 1] such that 𝑡 = 0 corresponding to
𝑀
0
and 𝑡 = 1 to 𝑀

1
. Note that

𝑝 (Ξ,Ω, 𝜃 | Y, 𝑡) =
1

𝑚 (𝑡)
𝑝 (Y,Ξ,Ω, 𝜃 | 𝑡) , (12)

where 𝑚(𝑡) is the normalizing constant of 𝑝(Y,Ξ,Ω, 𝜃 | 𝑡)

given by

𝑚(𝑡) = 𝑚 (Y | 𝑡) = ∫𝑝 (Y,Ξ,Ω, 𝜃 | 𝑡) 𝑑Ξ𝑑Ω𝑑𝜃. (13)

A path using the parameter 𝑡 in [0, 1] is constructed so that
BF
10

= 𝑚(1)/𝑚(0). Taking logarithm and differentiating (13)
with respect to 𝑡 give

𝑑 log𝑚(𝑡)

𝑑𝑡

= ∫
𝑑

𝑑𝑡
log𝑝 (Y,Ξ,Ω, 𝜃 | 𝑡) 𝑝 (Ξ,Ω, 𝜃 | Y, 𝑡) 𝑑Ξ𝑑Ω𝑑𝜃

= 𝐸
Ξ,Ω,𝜃

U (Ξ,Ω, 𝜃,Y, 𝑡) ,

(14)

in which 𝐸
Ξ,Ω,𝜃

[U(Ξ,Ω, 𝜃,Y, 𝑡)] denotes the expectation with
respect to the distribution 𝑝(Ξ,Ω, 𝜃 | Y, 𝑡) and

U (Ξ,Ω, 𝜃,Y, 𝑡) =
𝑑 log𝑝 (Y,Ξ,Ω, 𝜃 | 𝑡)

𝑑𝑡
. (15)

Hence,

log BF
10

= log 𝑚(1)

𝑚 (0)
= ∫

1

0

𝐸
Ξ,Ω,𝜃

U (Ξ,Ω, 𝜃,Y, 𝑡) 𝑑𝑡

≅
1

2

𝑆

∑

𝑠=0

(U
𝑠+1

+ U
𝑠
) Δ𝑡
𝑠
,

(16)

where {𝑡
𝑠

: 𝑠 = 0, . . . , 𝑆 + 1} are the fixed grids such that
𝑡
0
= 0 < 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑠+1
= 1.0, Δ𝑡

𝑠
= 𝑡
𝑠+1

− 𝑡
𝑠
, and

U
𝑠
=

1

𝑀

𝑀

∑

𝑚=1

U (Ξ
(𝑚)

,Ω
(𝑚)

, 𝜃
(𝑚)

,Y, 𝑡
𝑠
) , (17)

in which {(Ξ(𝑚),Ω(𝑚), 𝜃(𝑚)) : 𝑚 = 1, . . . ,𝑀} are observa-
tions sampled from 𝑝(Ξ,Ω, 𝜃 | Y, 𝑡). The MCMC method
proposed for estimation produced can be directly applied
to simulate the above observations for computing BF

10
or

2log BF
10
.

With all the complete conditionals available for sam-
pling, a predictive or estimated values for a future y

𝑇+1

can be obtained, provided that X
𝑇+1

was available, which
offers a solution to the so-called forecasting problem. More
generally, the predictions of the future observations Y∗ =

{y
𝑇+1

, . . . , y
𝑇+𝑡0

} can be obtained in terms of the observed
data Y and the covariates {X

1
, . . . ,X

𝑇+𝑡0
}. As mentioned in

introduction, we treat Y∗ as missing data and augment them
withΩ∗ = {𝜉

0
, . . . , 𝜉

𝑇+𝑡0
}, andΞ∗ = {𝜗

1
, . . . , 𝜃

𝑇+𝑡0
} and dataY

in the posterior analysis. Gibbs sampler now is implemented
to sample observations from the posterior 𝑝(Y∗,Ξ∗,Ω∗, 𝜃 |

Y). Predictive values for Y∗are given by Y∗ = 𝐸[Y∗ | Y]

which can be solved by

Ŷ∗ = 𝐸 [Y∗ | Y] =

𝑀

∑

𝑚=1

Y∗(𝑚)

𝑀
, (18)

where {Y∗(𝑚) : 𝑚 = 1, . . . ,𝑀} are the random observations
generated by the Gibbs sampler with MH algorithm from
𝑝(Y∗,Ξ∗,Ω∗, 𝜃 | Y). Consistent estimates of covariance
matrix of (18) can be obtained via sample covariance matrix.

5. Results of Experiment

5.1. Simulation Study. A simulation study is presented to
assess the performance of our proposed procedure. The data
set is simulated from the model defined by (1), (2), and (3)
with𝑇 = 100,𝐾 = 4, and 𝑟 = 3.The true population values of
the unknown parameters are taken as 𝛽 = (−0.6, −0.7, 0.6)

󸀠,
Λ = (1.0, 1.2, 1.0, 1.8)

󸀠, 𝜙 = 0.5, 𝜎2 = 1.0, 𝜇∗
0

= 0.0, and
𝜎
2∗

0
= 1.0 in which elements with asterisk are treated as fixed

known parameters for model identification (see [6]). For 𝑖 =

1, . . . , 100, 𝑗 = 1, . . . , 4, we first sampled independently the
observations from the normal distribution 𝑁(0, I

3
) to form

the covariates x
𝑖𝑗
, where I

𝑘
is a 𝑘 × 𝑘 identity matrix, and

then generate 𝜉
𝑖
from model (3) with 𝜉

0
= 1.0. Based on

these settings, we generate the observations Y = {𝑦
𝑖𝑗

: 𝑖 =

1, . . . , 100, 𝑗 = 1, . . . , 4} from the binomial distribution Bin
(50, 𝑝

𝑖𝑗
) with 𝑛

𝑖𝑗
= 50. Priors inputs for the hyperparameters

in the prior distributions are taken as (I) 𝛽
0
= 0, Σ

0
= 1000I

3
,

Λ
0𝑘

= 0, 𝐻
0𝑘

= 1000, 𝛼
0

= 2.0, 𝜏
0

= 2.0, 𝛼
𝜀0𝑘

= 4.0, and
𝛽
𝜀0𝑘

= 4.0; (II) 𝛽
0
and Λ

0𝑘
are set to be equal to the true

values, respectively; Σ
0

= I
3
, 𝐻
0𝑘

= 1.0, 𝛼
0

= 4.0, 𝜏
0

= 4.0,
𝛼
𝜀0𝑘

= 9.0, and 𝛽
𝜀0𝑘

= 8.0. Note that prior (I) approaches
the noninformative prior and prior (II) gives the informative
prior.

At first, four parallel methods are conducted for different
starting values as a pilot study to obtain some idea about the
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Table 2: Statistical results of Gibbs under prior (I) and prior (II) with relevant parameters.

Para.
Priors

(I) (II)
BIAS RMS SD BIAS RMS SD

𝛽
0

0.0127 0.0456 0.0508 0.0228 0.0510 0.0467

𝛽
1

0.0267 0.0526 0.0469 0.0231 0.0533 0.0431

𝛽
2

−0.0202 0.0472 0.0490 −0.0246 0.0455 0.0451

𝜆
2

0.0510 0.0943 0.1114 0.0160 0.0839 0.0964

𝜆
3

0.0294 0.0971 0.1087 0.0154 0.0880 0.0961

𝜆
4

0.0178 0.0739 0.0822 −0.0063 0.0545 0.0714

𝜓
𝜀1

0.1617 0.1701 0.1017 0.0573 0.0923 0.0953

𝜓
𝜀2

0.1845 0.1928 0.1110 0.0591 0.0821 0.1015

𝜓
𝜀3

0.1791 0.1869 0.1096 0.0595 0.0851 0.1020

𝜓
𝜀4

0.1313 0.1412 0.0909 0.0255 0.0569 0.0829

𝜙 −0.0115 0.0694 0.0664 −0.0110 0.0692 0.0662

𝜎
2

−0.1013 0.1944 0.1905 −0.0345 0.1464 0.1725

EP
SR

Numbers of iterations
0

1

2

3

4

5

6
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8

1000 2000 3000 4000 5000 6000 7000 8000 900010000

1.2

Figure 2: EPSR values change with numbers of iterations under
prior (I).

number of the Gibbs sampler iterations in getting conver-
gence. ForMH algorithm, the acceptance rate is also adjusted
in posterior sampling to give about 40% [31]. Hence, in the
following analysis, experiment always takes such values for
the tuned parameters. Figure 2 gives the estimated potential
scaled reduction (EPSR) values [30] of the parameters against
the number of the iterations in Gibbs sampler under prior (I).

In Figure 2, it can be seen clearly that all these EPSR
values are less than 1.2 in about 2000 iterations. To be
conservative, we collect 5000 observations after 5000 “burn-
in” in computing the absolute bias (BIAS) and the root
mean squares (RMS) of the estimates and the true values in
100 replications. Results obtained from the Gibbs sampler
are summarized in Table 2, where SD denotes the standard
deviation of the estimates. Based on these results, it can
be seen that our proposal is rather accurate and effective.
It also shows that there are no significant differences of
estimates between prior (I) and prior (II). Therefore, the
proposal method is more robust against the choices of values
of hyperparameters. An interesting phenomenon is that the
estimates of variance parameters in unique errors under prior

(I) are more accurate than those under prior (II).This reflects
that it provides more information in estimation.

For model comparison, we consider the following com-
peting models to illustrate the performance of the Bayes
factor.

𝑀
1
is the aforementioned model given by (4). Consider

𝑀
0
: 𝑝 (𝑦

𝑖𝑗
| 𝜗
𝑖𝑗
) = 𝐶

𝑦𝑖𝑗

𝑛𝑖𝑗
exp {𝑦

𝑖𝑗
𝜗
𝑖𝑗
− 𝑛
𝑖𝑗
𝑏 (𝜗
𝑖𝑗
)} ,

𝜗
𝑖𝑗

= x𝑇
𝑖𝑗
𝛽 + 𝜆
𝑗
𝜉
𝑖
, 𝜉
𝑖
, iid𝑁(0, 𝜎

2
) .

(19)

Note that 𝑀
0
is nested to 𝑀

1
in the sense that all the

parameters in model 𝑀
0
are included in model 𝑀

1
. 𝑀
0

indicates that no temporal correlation exists among the
random effects. The linked model between 𝑀

1
and 𝑀

0
is

taken as

𝑀
𝑡
: 𝑝 (𝑦

𝑖𝑗
| 𝜗
𝑖𝑗
) = 𝐶

𝑦𝑖𝑗

𝑛𝑖𝑗
exp {𝑦

𝑖𝑗
𝜗
𝑖𝑗
− 𝑛
𝑖𝑗
𝑏 (𝜗
𝑖𝑗
)} ,

𝜗
𝑖𝑗

= x𝑇
𝑖𝑗
𝛽 + 𝜆
𝑗
𝜉
𝑖
, 𝜉
𝑖
= 𝑡𝜙𝜉
𝑖−1

+ 𝛿
𝑖
,

(20)

in which 𝑡 = 1 and 𝑡 = 0 correspond to 𝑀
1
and 𝑀

0
,

respectively. For computation, we choose 𝑆 = 20 in [0, 1]

and draw 5000 observations after 5000 burn-ins deleted from
the posterior distribution for each 𝑡

𝑠
to calculate the log BF

10
.

Figure 3 gives the histogram of the values of log BF
10

across
100 replications. The estimate of log BF

10
is 11.2222 with

standard deviation 6.6242. Based on the guidelines given by
Kass and Raftery [18], 𝑀

1
is selected with positive evidence.

To investigate the smoothing and forecasting of our
proposal, we regenerate a data set with sample size 100 and
treat the last 5 × 4 observations as unobserved. The Gibbs
sampler with MH algorithm is used to compute the first
ninety-five smoothing values and the last five forecasting
values of the latent variables 𝜉𝑠. Figure 4 gives the true values
and smoothing/forecasting values based on 5000 simulated
observations after deleting first 5000 observations. It can be
seen that it fits well between the estimated values and true
values.
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Figure 4: Comparison with true values (dashed line) and forecast-
ing values (pointed line).

5.2. Pika’s Data. An application is considered in relation to
a study of Guo et al., 2009 [32], to illustrate the developed
methodology. The data set is collected from Qinshui Forest
farm of Jincheng Coal Industry Group sited on the northwest
of Qinshui County of Jincheng City in Shanxi Province,
112∘19󸀠40󸀠󸀠–112∘19󸀠52 east longitude and 35∘48󸀠43󸀠󸀠–35∘48󸀠57
north latitude. Details about experiment design can be found
in Guo et al., 2009 [32]. The original data set is constituted
of the number of the living tree and pika within four plots in
fivemonths.The primary concern is to assess the relationship
between the survival rate of young plantation and the pika
population and model the optimal pika population per
hectare. The data set is reanalyzed by Xia et al. [33] to
investigate the correlations among the observed responses. In
these studies the latent variablesmodel is established through
AR(1) model (3) coupled with model (1) and (2), which
interprets the correlations among the outcomes resulting
from the time dependence.

Firstly, the following hypothesis is considered: 𝐻
0
: 𝜙 = 0.

If 𝐻
0
is true, the model becomes the common generalized

logistic model considered by Xia et al. [33]. Path sampling
is used to compute log BF

10
. The linked model is defined

similarly as (20). 𝑆 = 20 grids were chosen in [0, 1], and,
for each 𝑡

𝑠
(𝑠 = 1, . . . , 20), 10000 random observations were

drawn from the each posterior distributions and the first
5000 observations were deleted in view of the burn-in phase.
The logarithm of Bayes factor is 3.0143. It shows that there
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Figure 5: Comparison with the predictions for survival rate (solid
line) and the actual values (dashed line).

exists significant evidence against 𝐻
0
; hence, our proposal is

appropriate.
To assess the effect of forecasts of the proposal method-

ology, the original data set is divided into two parts: one
is formed by the previous sixteen observations in four
months within four plots and the other is made up of four
observations in the following fifth month. The proposal
algorithm computes the predictive values of the proportion
of the living tree in the fifth month based on the previous 20
observations. Figure 5 shows the forecasts and actual values
of the proportions of the living tree within four plots. It can
be seen that fitted values match the actual values closely.

6. Concluding Remarks

Logistic regression model is the most popular model used
to interpret the relationship between the responses and
covariates and to assess the effect of covariates on the
responsible probability. Bayesian analysis of logistic model
has received a lot of attention recently; see Johnson and
Albert [34] and Congdon [35]. For example, Choi et al.
[36] discussed a Bayesian statistical inference about missing
information on the basis of the logistic regression model.
They also used Gibbs sampler to get the estimates and the
posterior analysis of the posited model. Since their model
is not an AR(1) model, the underlying development is less
complicated. Recently, McCormic et al. [37] proposed an
online binary classification procedure based on the dynamic
logistic regression and dynamic model averaging. However,
their developments are restricted within a single response
𝑦
𝑡
, which do not need to explore the relationships among

the observed variables. Though Xia et al. [33] establish the
Bayesian analysis for generalized logistic model, the essential
difference lies in that their latent variables are identically and
independently distributed according to normal distribution
and, hence, can not capture the temporal correlation.

In the present paper, dynamic factor model is established
to characterize the temporal correlation among responses.
One contribution in this paper is the development of a feasi-
ble estimation procedure for obtaining the Bayesian estimates
of the parameters and latent factor scores. The hybrid Gibbs
sampler with MH algorithm was implemented to provide



Journal of Applied Mathematics 7

a convenient mechanism for implementing our method.
Another contribution is the development of test statistics
on the Bayes factor for testing hypothesis of the model.
Computation of the Bayes factor in the current complex
model is on the basis of path sampling. Further, Bayesian
forecasting procedure which takes advantages of the full
conditional distribution is presented. Results from empirical
studies indicate that these procedures can be usefully applied
to real studies.
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