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The purpose of this paper is to introduce the concept of soft fuzzy proximity. Firstly, we give the definitions of soft fuzzy proximity
and Katsaras soft fuzzy proximity, and also we investigate the relations between the soft fuzzy proximity and slightly modified
version of Katsaras soft fuzzy proximity. Secondly, we induce a soft fuzzy topology from a given soft fuzzy proximity by using soft
fuzzy closure operator.Then, we obtain the initial soft fuzzy proximity from a given family of soft fuzzy proximities. So, we describe
products in the category of soft fuzzy proximities. Finally, we show that a family of all soft fuzzy proximities on a given set constitutes
a complete lattice.

1. Introduction

In 1999, Molodtsov [1] proposed a completely new concept
called soft set theory to model uncertainty, which associates
a set with a set of parameters. Later, Maji et al. [2] introduced
the concept of fuzzy soft set which combines fuzzy sets and
soft sets. Soft set and fuzzy soft set theories have a rich
potential for applications in several directions. The algebraic
structure of soft set and fuzzy soft set theories dealing with
uncertainties has been studied by some authors [3–10]. The
topological structure of fuzzy soft sets based on the sense of
Šostak [11] has also been studied byAygünoğlu et al. [12].They
proved that the category of fuzzy soft topological spaces is a
topological category over SET3.

There are known some different approaches to the con-
cept of a fuzzy proximity in the literature. The first and the
most advanced one was developed on the whole by Katsaras
[13, 14], the second due to Artico and Moresco [15, 16].
Although these approaches proceed from different starting
points, both of them are consistent with Chang (or Lowen)
fuzzy topologies. Markin and Šostak [17] introduced the
different concept of a fuzzy proximitywhich is consistentwith
the notion of a fuzzy topology as it is defined in [11].They con-
sidered basic properties of these fuzzy proximities, described
how a fuzzy proximity generates a fuzzy topology (in the
sense of [11]), and discussed the interrelations between their

approaches and each of the two abovementioned approaches
to the concept of a fuzzy proximity. The notion of an 𝐿-
fuzzy preproximity spaces where 𝐿 is a strictly two-sided,
commutative quantale lattice having a strong negation was
introduced by Kim and Min [18] from a somewhat different
point from that in [17]. Double fuzzy preproximity was
introduced and studied by Zahran et al. [19]. Çetkin and
Aygün [20] gave the definition of a lattice valued double fuzzy
preproximity spaces as an extension of [18] and studied some
of its structural properties.

Despite the existence of all these approaches to the con-
cept of fuzzy proximity, we decide to generalize more natural
definition of fuzzy proximity to the soft theory. In this paper,
we give an approach to the concept of soft fuzzy proximity
which is the extension of the fuzzy proximities studied in
[17] to the soft theory. In the case of the parameter sets 𝐸
and 𝐾 that are both one-pointed sets, we obtain the results
given in [17]. Firstly, we define soft fuzzy proximity space
and Katsaras soft fuzzy proximity space and also investigate
the relations between these spaces. Secondly, we generate
a soft fuzzy topology from a given soft fuzzy proximity by
using the closure operator. Thirdly, we prove the existence
of the initial soft fuzzy proximity to describe products in
the category SFP of soft fuzzy proximity spaces and soft
proximally continuous maps. Finally, we show that a family
of all soft fuzzy proximities on a given set is a complete lattice.
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Figure 1: A fuzzy soft set 𝑓.

2. Preliminaries

Throughout this paper,𝑋 refers to an initial universe, 𝐸 is the
set of all parameters for 𝑋, and 𝐼𝑋 is the set of all fuzzy sets
on 𝑋 (where 𝐼 = [0, 1]). For 𝛼 ∈ 𝐼, 𝛼(𝑥) = 𝛼 for all 𝑥 ∈ 𝑋. A
fuzzy point in 𝐼𝑋 is a fuzzy set 𝑥𝛼, where 𝛼 ∈ (0, 1], such that
𝑥
𝛼
(𝑦) = 𝛼 when 𝑦 = 𝑥 and 𝑥𝛼(𝑦) = 0 otherwise. A family of

fuzzy points is denoted by 𝑃𝑡(𝑋).

Definition 1 (see [21]). 𝑓 is called a fuzzy soft set on𝑋, where
𝑓 is a mapping from 𝐸 into 𝐼𝑋; that is, 𝑓

𝑒
≜ 𝑓(𝑒) is a fuzzy set

on 𝑋, for each 𝑒 ∈ 𝐸. The family of all 𝐼-fuzzy soft sets on 𝑋
is denoted by (𝐼𝑋)𝐸 see (Figure 1).

Definition 2 (see [21]). Let 𝑓 and 𝑔 be two fuzzy soft sets on
𝑋; then

(1) we say that𝑓 is a fuzzy soft subset of𝑔 andwrite𝑓 ⊑ 𝑔
if 𝑓

𝑒
≤ 𝑔

𝑒
, for each 𝑒 ∈ 𝐸. 𝑓 and 𝑔 are called equal if

𝑓 ⊑ 𝑔 and 𝑔 ⊑ 𝑓;
(2) the union of 𝑓 and 𝑔 is a fuzzy soft set ℎ = 𝑓 ⊔ 𝑔,

where ℎ
𝑒
= 𝑓

𝑒
∨ 𝑔

𝑒
, for each 𝑒 ∈ 𝐸;

(3) the intersection of 𝑓 and 𝑔 on 𝑋 is a fuzzy soft set
ℎ = 𝑓 ⊓ 𝑔, where ℎ

𝑒
= 𝑓

𝑒
∧ 𝑔

𝑒
, for each 𝑒 ∈ 𝐸;

(4) the complement of a fuzzy soft set 𝑓 is denoted by 𝑓󸀠,
where𝑓󸀠

: 𝐸 → 𝐼
𝑋 is a mapping given by𝑓󸀠

𝑒
= 1−𝑓

𝑒
,

for each 𝑒 ∈ 𝐸;
(5) 𝑓 is called a null fuzzy soft set and denoted by 0

𝑋
, if

𝑓
𝑒
(𝑥) = 0, for each 𝑒 ∈ 𝐸, 𝑥 ∈ 𝑋;

(6) 𝑓 is called an absolute fuzzy soft set and denoted by
1
𝑋
, if 𝑓

𝑒
(𝑥) = 1, for each 𝑒 ∈ 𝐸, 𝑥 ∈ 𝑋.

Definition 3. A fuzzy soft point 𝑃 is a fuzzy soft set, where
𝑃 : 𝐸 → 𝑃𝑡(𝑋); 𝑃(𝑒) = 𝑥𝛼 for all 𝑒 ∈ 𝐸. In other words,
a fuzzy soft point can be considered as a collection of fuzzy
points with respect to the parameters. A fuzzy soft point 𝑃 is
said to belong to a fuzzy soft set 𝑔, denoted by 𝑃 ∈ 𝑔 if and
only if 𝑃 ⊑ 𝑔 or equivalently 𝛼 ≤ 𝑔

𝑒
(𝑥), for each 𝑒 ∈ 𝐸.

Definition 4 (see [4]). Let 𝜑 : 𝑋
1
→ 𝑋

2
and 𝜓 : 𝐸

1
→ 𝐸

2

be two functions, where 𝐸
1
and 𝐸

2
are parameter sets for the

crisp sets𝑋
1
and𝑋

2
, respectively.Then the pair 𝜑

𝜓
is called a

fuzzy soft mapping from 𝑋
1
to 𝑋

2
. Let 𝑓 and 𝑔 be two fuzzy

soft sets on𝑋
1
and𝑋

2
, respectively.

(1) The image of 𝑓 under the fuzzy soft mapping 𝜑
𝜓
,

denoted by 𝜑
𝜓
(𝑓), is the fuzzy soft set on 𝑋

2
defined

by

𝜑
𝜓
(𝑓)

𝑘
(𝑦)

=

{

{

{

⋁

𝜑(𝑥)=𝑦

⋁

𝜓(𝑎)=𝑘

𝑓
𝑎
(𝑥) , if 𝑥 ∈ 𝜑−1 (𝑦) , 𝑎 ∈ 𝜓−1

(𝑘) ,

0, otherwise.

∀𝑘 ∈ 𝐸
2
, 𝑦 ∈ 𝑋

2
.

(1)

(2) The preimage of 𝑔 under the fuzzy soft mapping 𝜑
𝜓
,

denoted by 𝜑−1
𝜓
(𝑔), is the fuzzy soft set on𝑋

1
defined

by

𝜑
−1

𝜓
(𝑔)

𝑒
(𝑥) = 𝑔

𝜓(𝑒)
(𝜑 (𝑥)) , ∀𝑒 ∈ 𝐸

1
, 𝑥 ∈ 𝑋

1
. (2)

If 𝜑 and 𝜓 are injective (surjective), then 𝜑
𝜓
is said to

be injective (surjective).
(3) Let 𝜑

𝜓
be a fuzzy soft mapping from 𝑋

1
to 𝑋

2
and

let 𝜑∗
𝜓
∗ be a fuzzy soft mapping from 𝑋

2
to 𝑋

3
. Then

the composition of these mappings from 𝑋
1
to 𝑋

3
is

defined as follows: 𝜑
𝜓
∘ 𝜑

∗

𝜓
∗ = (𝜑 ∘ 𝜑

∗
)
𝜓∘𝜓
∗ , where

𝜓 : 𝐸
1
→ 𝐸

2
and 𝜓∗

: 𝐸
2
→ 𝐸

3
.

(4) The image of the fuzzy soft point 𝑃 under the fuzzy
soft mapping 𝜑

𝜓
is defined as follows:

𝜑
𝜓(𝑃)𝑘 = 𝜑(𝑃)𝜓(𝑘)

= 𝜑 (𝑥
𝛼
) = 𝜑(𝑥)

𝛼
, for each 𝑘 ∈ 𝐸

2
.

(3)

For more details about fuzzy soft sets and fuzzy soft map-
pings, please refer to [2, 4, 12, 21–23].

The second parameter set belonging to the context of our
work is denoted by𝐾, which is the parameter set for the fuzzy
soft topological structures.

So throughout this study, let 𝐸 and 𝐾 be arbitrary
nonempty sets viewed on the sets of parameters.

Definition 5 (see [12]). A mapping 𝜏 : 𝐾 → 𝐼(𝐼
𝑋

)
𝐸

is called
an (𝐸, 𝐾)-soft fuzzy topology on𝑋 if it satisfies the following
conditions for each 𝑘 ∈ 𝐾:

(O1) 𝜏
𝑘
(0

𝑋
) = 𝜏

𝑘
(1

𝑋
) = 1;

(O2) 𝜏
𝑘
(𝑓 ⊓ 𝑔) ≥ 𝜏

𝑘
(𝑓) ∧ 𝜏

𝑘
(𝑔), for all 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸;

(O3) 𝜏
𝑘
(⨆

𝑖∈Γ
𝑓
𝑖
) ≥ ⋀

𝑖∈Γ
𝜏
𝑘
(𝑓

𝑖
), for all 𝑓

𝑖
∈ (𝐼

𝑋
)
𝐸, 𝑖 ∈ Δ.

Then the pair (𝑋, 𝜏) is called an (𝐸, 𝐾)-soft fuzzy topological
space.The value 𝜏

𝑘
(𝑓) is interpreted as the degree of openness

of a fuzzy soft set 𝑓 with respect to parameter 𝑘 ∈ 𝐾.
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Let 𝜏1 and 𝜏2 be (𝐸, 𝐾)-soft fuzzy topologies on 𝑋. We
say that 𝜏1 is finer than 𝜏2 (𝜏2 is coarser than 𝜏1), denoted by
𝜏
2
≤ 𝜏

1, if 𝜏2
𝑘
(𝑓) ≤ 𝜏

1

𝑘
(𝑓) for each 𝑘 ∈ 𝐾, 𝑓 ∈ (𝐼𝑋)𝐸.

Example 6 (see [12]). Let T be a fuzzy topology on 𝑋 in
Šostak’s sense; that is, T is a mapping from 𝐼𝑋 to 𝐼. Take
𝐾 = 𝐸 = 𝐼 and defineT : 𝐸 → 𝐼𝑋 asT(𝑒) ≜ {𝜇 : T(𝜇) ≥ 𝑒}
which is levelwise fuzzy topology of T in Chang’s sense, for
each 𝑒 ∈ 𝐼. However, it is well known that each Chang’s
fuzzy topology can be considered as Šostak fuzzy topology
by using fuzzifying method. Hence,T(𝑒) satisfies (O1), (O2),
and (O3).

According to this definition and by using the decompo-
sition theorem of fuzzy sets [24], if we know the resulting
soft fuzzy topology, then we can find the first fuzzy topology.
Therefore, we can say that a fuzzy topology can be uniquely
represented as a soft fuzzy topology.

Example 7. Let 𝐸 be a parameter set, let 𝐾 = N be the set
of natural numbers, and let 𝜏 : 𝐾 → 𝐼

(𝐼
𝑋

)
𝐸

be defined as
follows: for each 𝑘 ∈ 𝐾,

𝜏
𝑘
(𝑓) =

{{

{{

{

1, if 𝑓 = 0
𝑋
, 1

𝑋
,

1

𝑘
, otherwise.

(4)

It is easy to testify that 𝜏 is a soft fuzzy topology on𝑋.

Definition 8 (see [12]). Let (𝑋
1
, 𝜏

1
) be an (𝐸

1
, 𝐾

1
)-soft fuzzy

topological space and let (𝑋
2
, 𝜏

2
) be an (𝐸

2
, 𝐾

2
)-soft fuzzy

topological space. Let 𝜑 : 𝑋
1
→ 𝑋

2
, 𝜓 : 𝐸

1
→ 𝐸

2
and

𝜂 : 𝐾
1
→ 𝐾

2
be functions. Then the mapping 𝜑

𝜓,𝜂
from

(𝑋
1
, 𝜏

1
) into (𝑋

2
, 𝜏

2
) is called a soft fuzzy continuous map if

𝜏
1

𝑘
(𝜑

−1

𝜓
(𝑔)) ≥ 𝜏

2

𝜂(𝑘)
(𝑔) for all 𝑔 ∈ (𝐼𝑋2)𝐸2 , 𝑘 ∈ 𝐾

1
.

The category of soft fuzzy topological spaces and soft
fuzzy continuous mappings is denoted by SFTOP.

Definition 9 (see [25]). A mapC : 𝐾× (𝐼𝑋)𝐸 × 𝐼
0
→ (𝐼

𝑋
)
𝐸 is

called an (𝐸, 𝐾)-soft fuzzy closure operator on 𝑋 if and only
ifC satisfies the following conditions, for each 𝑘 ∈ 𝐾, 𝛼 ∈ 𝐼

0

(where 𝐼
0
= 𝐼 \ {0}) and 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸:

(C1) C(𝑘, 0
𝑋
, 𝛼) = 0

𝑋
;

(C2) C(𝑘, 𝑓, 𝛼) ⊒ 𝑓;

(C3) if 𝑓 ⊑ 𝑔, thenC(𝑘, 𝑓, 𝛼) ⊑ C(𝑘, 𝑔, 𝛼);

(C4) if 𝛼 ≤ 𝛽, thenC(𝑘, 𝑓, 𝛼) ⊑ C(𝑘, 𝑓, 𝛽);

(C5) C(𝑘, 𝑓 ⊔ 𝑔, 𝛼) = C(𝑘, 𝑓, 𝛼) ⊔C(𝑘, 𝑔, 𝛼).

Thepair (𝑋,C) is called an (𝐸,𝐾)-soft fuzzy closure space. An
(𝐸, 𝐾)-soft fuzzy closure space (𝑋,C) is called topological if
it provides

C (𝑘,C (𝑘, 𝑓, 𝛼) , 𝛼) = C (𝑘, 𝑓, 𝛼) , for each 𝑘 ∈ 𝐾,

𝛼 ∈ 𝐼
0
, 𝑓 ∈ (𝐼

𝑋
)
𝐸

.

(5)

Definition 10 (see [25]). Let (𝑋
1
,C1
) be an (𝐸

1
, 𝐾

1
)-soft fuzzy

closure space and, (𝑋
2
,C2
) be an (𝐸

2
, 𝐾

2
)-soft fuzzy closure

space. Let 𝜑 : 𝑋
1
→ 𝑋

2
, 𝜓 : 𝐸

1
→ 𝐸

2
and 𝜂 : 𝐾

1
→ 𝐾

2

be functions. Then, a map 𝜑
𝜓,𝜂

from 𝑋
1
to 𝑋

2
is called a soft

fuzzyC-map if

𝜑
𝜓
(C

1
(𝑘, 𝑓, 𝛼)) ⊑ C

2
(𝜂 (𝑘) , 𝜑

𝜓
(𝑓) , 𝛼) ,

for each 𝑘 ∈ 𝐾
1
, 𝑓 ∈ (𝐼

𝑋
1)

𝐸
1

, 𝛼 ∈ 𝐼
0
.

(6)

3. Soft Fuzzy Proximity

In this section, we define soft fuzzy proximity structures in
the sense of Šostak and Markin and Katsaras, respectively.
Then we investigate their relations from the categorical point
of view.

Definition 11. A mapping 𝛿 : 𝐾 → 𝐼
(𝐼
𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

is called an
(𝐸, 𝐾)-soft fuzzy proximity if it satisfies the following axioms
for each 𝑘 ∈ 𝐾:

(P1) 𝛿
𝑘
(0

𝑋
, 1

𝑋
) = 0;

(P2) 𝛿
𝑘
(𝑓, 𝑔) = 𝛿

𝑘
(𝑔, 𝑓), for all 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸;

(P3) 𝛿
𝑘
(𝑓, 𝑔⊔ℎ) = 𝛿

𝑘
(𝑓, 𝑔)∨𝛿

𝑘
(𝑓, ℎ), for all𝑓, 𝑔, ℎ ∈ (𝐼𝑋)𝐸;

(P4) 𝛿
𝑘
(𝑓, 𝑔) ≥ sup

𝑥∈𝑋
sup

𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥);

(P5) 𝛿
𝑘
(𝑓, 𝑔) ≥ inf{𝛿

𝑘
(𝑓, ℎ) ∨ 𝛿

𝑘
(𝑔, ℎ

󸀠
) : ℎ ∈ (𝐼

𝑋
)
𝐸
}.

A pair (𝑋, 𝛿) where 𝑋 is a set and 𝛿 is an (𝐸, 𝐾)-soft fuzzy
proximity on it is called an (𝐸, 𝐾)-soft fuzzy proximity space.
Also, we call 𝛿

𝑘
(𝑓, 𝑔) a gradation of nearness between the

fuzzy soft sets 𝑓 and 𝑔 according to the parameter 𝑘 ∈ 𝐾.
Here, for each 𝑘 ∈ 𝐾, 𝛿

𝑘
is a mapping from (𝐼𝑋)𝐸 × (𝐼𝑋)𝐸 into

𝐼.

Remark 12. It is easy to notice that if 𝛿 is an (𝐸, 𝐾)-soft fuzzy
proximity on𝑋, then 𝛿

𝑘
(𝑓, 0

𝑋
) = 0 for each𝑓 ∈ (𝐼𝑋)𝐸, 𝑘 ∈ 𝐾.

If 𝑓, 𝑔, ℎ ∈ (𝐼𝑋)𝐸 and 𝑔 ⊑ ℎ, then 𝛿
𝑘
(𝑓, 𝑔) ≤ 𝛿

𝑘
(𝑓, ℎ) for all

𝑘 ∈ 𝐾.

Definition 13. Let (𝑋
1
, 𝛿

1
) be an (𝐸

1
, 𝐾

1
)-soft fuzzy proximity

space and let (𝑋
2
, 𝛿

2
) be an (𝐸

2
, 𝐾

2
)-soft fuzzy proximity

space. Let 𝜑 : 𝑋
1
→ 𝑋

2
, 𝜓 : 𝐸

1
→ 𝐸

2
and 𝜂 : 𝐾

1
→ 𝐾

2
be

functions. Then the mapping 𝜑
𝜓,𝜂

from (𝑋
1
, 𝛿

1
) into (𝑋

2
, 𝛿

2
)

is called a soft proximally continuous if

𝛿
1

𝑘
(𝑓, 𝑔) ≤ 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓) , 𝜑

𝜓
(𝑔)) , for each 𝑘 ∈ 𝐾

1
,

𝑓, 𝑔 ∈ (𝐼
𝑋
1)

𝐸
1

.

(7)

Lemma 14. Let (𝑋
1
, 𝛿

1
) and (𝑋

2
, 𝛿

2
) be an (𝐸

1
, 𝐾

1
)-soft fuzzy

proximity space and an (𝐸
2
, 𝐾

2
)-soft fuzzy proximity space,

respectively. Let 𝜑
𝜓,𝜂

be a mapping from (𝑋
1
, 𝛿

1
) into (𝑋

2
, 𝛿

2
).

Then, 𝜑
𝜓,𝜂

is soft proximally continuous if and only if

𝛿
1

𝑘
(𝜑

−1

𝜓
(𝑢) , 𝜑

−1

𝜓
(V)) ≤ 𝛿2

𝜂(𝑘)
(𝑢, V) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ 𝐾
1
, 𝑢, V ∈ (𝐼𝑋2)

𝐸
2

.

(8)
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The category of soft fuzzy proximity spaces and soft proximally
continuous mappings will be denoted by SFP.

Definition 15. A mapping Δ : 𝐾 → 2
(𝐼
𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

is called a
Katsaras (𝐸, 𝐾)-soft fuzzy proximity on a set 𝑋 if for any
𝑓, 𝑔, ℎ ∈ (𝐼

𝑋
)
𝐸 and 𝑘 ∈ 𝐾, the next conditions are satisfied:

(K1) 𝑓Δ
𝑘
𝑔 if and only if 𝑔Δ

𝑘
𝑓;

(K2) (𝑓 ⊔ 𝑔)Δ
𝑘
ℎ if and only if 𝑓Δ

𝑘
ℎ or 𝑔Δ

𝑘
ℎ;

(K3) if 𝑓Δ
𝑘
𝑔, then 𝑓 ̸= 0

𝑋
and 𝑔 ̸= 0

𝑋
;

(K4) if 𝑓Δ
𝑘
𝑔, then 𝑓 ⊑ 𝑔󸀠;

(K5) if 𝑓Δ
𝑘
𝑔, then there exists 𝑑 ∈ (𝐼𝑋)𝐸 such that 𝑓Δ

𝑘
𝑑

and 𝑔Δ
𝑘
𝑑
󸀠.

(Here, Δ
𝑘
denotes the negation of Δ

𝑘
; we write 𝑓Δ

𝑘
𝑔 as the

synonym of (𝑓, 𝑔) ∈ Δ
𝑘
). A pair (𝑋, Δ) is called a Katsaras

(𝐸, 𝐾)-soft fuzzy proximity space, where for each 𝑘 ∈ 𝐾,Δ
𝑘
⊂

(𝐼
𝑋
)
𝐸
× (𝐼

𝑋
)
𝐸 is a relation on (𝐼𝑋)𝐸.

A mapping 𝜑
𝜓,𝜂
: (𝑋

1
, Δ

𝑋
1)→(𝑋

2
, Δ

𝑋
2) where (𝑋

1
, Δ

𝑋
1),

(𝑋
2
, Δ

𝑋
2) are Katsaras (𝐸

𝑖
, 𝐾

𝑖
)-soft fuzzy proximity spaces

(𝑖 ∈ {1, 2}), respectively, is called soft proximally continuous
if 𝑓Δ𝑋

1

𝑘
𝑔 implies 𝜑

𝜓
(𝑓)Δ

𝑋
2

𝜂(𝑘)
𝜑
𝜓
(𝑔).

The category of Katsaras soft fuzzy proximity spaces and
soft proximally continuous mappings will be denoted by
KSFP.

It is obvious that KSFP can be identified as the full
subcategory of SFP and additionally, the objects of this
category satisfy the following axiom:

(𝐾) 𝛿
𝑘
((𝐼

𝑋
)
𝐸

× (𝐼
𝑋
)
𝐸

) ⊂ 2 := {0, 1} , for each 𝑘 ∈ 𝐾.
(9)

Now, we give the generalization of pseudo-fuzzy proximity
which is considered by Katsaras as a more restricted concept
of a fuzzy proximity in his former papers [13, 14] to the
soft case. (We use the expression “pseudo-fuzzy” because
the “fuzziness” of this relation is rather a poor one: Katsaras
pseudo-fuzzy proximities are in a canonical one-to-one
correspondence with usual proximities [15]).

Definition 16. A mapping Δ : 𝐾 → 2
(𝐼
𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

satisfying
(K1), (K2), (K3), (K5), and the following strengthened version
of axiom (K4) is called a Katsaras (𝐸, 𝐾)-soft pseudo-fuzzy
proximity on𝑋: if for all 𝑘 ∈ 𝐾,

(𝐾4
󸀠
) 𝑓Δ

𝑘
𝑔, then 𝑓 ⊓ 𝑔 = 0

𝑋
. (10)

The corresponding full subcategory of KSFP will be denoted
by KSFP(4󸀠). Obviously KSFP(4󸀠) can be described as “inter-
section” of KSFP and SFP.

When studying fuzzy topologies (in the sense of (0, 1)) it
is often useful to apply the technique of representing a general
fuzzy topology T by means of a “continuous” decreasing
system {T

𝛼
: 𝛼 ∈ (0, 1)} of its level Chang fuzzy topologies

(see [26]). Our next aim is to obtain a similar result for soft
fuzzy proximities. For this purpose we will use a slightly
modified version of a Katsaras soft fuzzy proximity.

Definition 17. A mapping Δ𝛼
: 𝐾 → 2

(𝐼
𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

where 𝛼 ∈ 𝐼
is called an 𝛼-Katsaras (𝐸, 𝐾)-soft fuzzy proximity on 𝑋 if it
satisfies (K1), (K2), (K3), (K5), and the following axiom: for
all 𝑘 ∈ 𝐾, (where 𝛼

𝑋
(𝑒) = 𝛼 for each 𝑒 ∈ 𝐸)

(𝐾4
𝛼
) 𝑓Δ

𝛼

𝑘
𝑔 implies 𝑓 ⊓ 𝑔 ⊏ 𝛼

𝑋
. (11)

Proposition 18. Let (𝑋, 𝛿) be an (𝐸, 𝐾)-soft fuzzy proximity
space and 𝛼 ∈ 𝐼. For 𝑘 ∈ 𝐾 and 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸 let 𝑓Δ𝛼

𝑘
𝑔 if and

only if 𝛿
𝑘
(𝑓, 𝑔) ≥ 𝛼.ThenΔ𝛼 is an 𝛼-Katsaras (𝐸, 𝐾)-soft fuzzy

proximity on𝑋.

Proof. Thevalidity of axioms (K1), (K2), (K3), and (K5) forΔ𝛼

𝑘

is obvious. If 𝑓Δ𝛼

𝑘
𝑔, then sup

𝑥∈𝑋
sup

𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥) ≤ 𝛿

𝑘
(𝑓, 𝑔)

and hence (𝐾4
𝛼
) holds for Δ𝛼

𝑘
, too.

Let (𝑋, 𝛿) be an (𝐸, 𝐾)-soft fuzzy proximity space. For
𝑘 ∈ 𝐾 consider the system 𝐷𝑘

= {Δ
𝛼

𝑘
: 𝛼 ∈ (0, 1]} of 𝛼-

Katsaras soft fuzzy proximities Δ𝛼

𝑘
= {(𝑓, 𝑔) ∈ (𝐼

𝑋
)
𝐸
× (𝐼

𝑋
)
𝐸
:

𝛿
𝑘
(𝑓, 𝑔) ≥ 𝛼} on the set𝑋. It is easy to notice that this system

is nonincreasing; that is, 𝛼󸀠 < 𝛼 implies Δ𝛼
󸀠

𝑘
⊃ Δ

𝛼

𝑘
, and

it is lower semicontinuous in the following sense: for each
𝛼 ∈ (0, 1] it holds Δ𝛼

𝑘
= ⋂

𝛼<𝛼
󸀠 Δ

𝛼
󸀠

𝑘
.

Conversely, for each 𝑘 ∈ 𝐾 let a lower semicontinuous
nonincreasing system 𝐷𝑘

= {Δ
𝛼

𝑘
: 𝛼 ∈ (0, 1]} of Δ𝛼

𝛼-
Katsaras soft fuzzy proximities on a set 𝑋 be given. For each
𝑘 ∈ 𝐾, define a mapping 𝛿

𝑘
: (𝐼

𝑋
)
𝐸
× (𝐼

𝑋
)
𝐸
→ 𝐼 by the

equality 𝛿
𝑘
(𝑓, 𝑔) = sup{Δ𝛼

𝑘
∧ 𝛼 : 𝛼 ∈ (0, 1]}. Indeed, axioms

(P1), (P2), and (P3) are obvious. To show axiom (P4) assume
that 𝛿

𝑘
(𝑓, 𝑔) = 𝛼; then (𝑓, 𝑔) ∉ Δ𝛼+𝜀

𝑘
for each 𝜀 > 0 and hence

by (𝐾4
𝛼
)(𝑓 ⊓ 𝑔)

𝑒
(𝑥) < 𝛼 + 𝜀, for all 𝑒 ∈ 𝐸. Since 𝜀 > 0 is

arbitrary it follows that sup
𝑥∈𝑋

sup
𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥) ≤ 𝛿

𝑘
(𝑓, 𝑔).

To show axiom (P5) find 𝑑
𝜀
∈ (𝐼

𝑋
)
𝐸 such that 𝑓Δ𝛼+𝜀

𝑘
𝑑
𝜀

and 𝑔Δ𝛼+𝜀

𝑘
𝑑
󸀠

𝜀
. Then 𝛿

𝑘
(𝑓, 𝑑

𝜀
), 𝛿

𝑘
(𝑔, 𝑑

󸀠

𝜀
) < 𝛼 + 𝜀 and hence

𝛿
𝑘
(𝑓, 𝑔) > inf{𝛿

𝑘
(𝑓, 𝑑

𝜀
) ∨ 𝛿

𝑘
(𝑔, 𝑑

󸀠

𝜀
) : 𝑑

𝜀
∈ (𝐼

𝑋
)
𝐸
} − 𝜀. Since

𝜀 > 0 is arbitrary, the validity of axiom (P5) follows fromhere.
Notice also that the (𝐸, 𝐾)-soft fuzzy proximity 𝛿 has

exactly Δ𝛼 as its 𝛼-Katsaras (𝐸, 𝐾)-soft fuzzy proximity: for
each 𝑘 ∈ 𝐾, Δ𝛼

𝑘
= {(𝑓, 𝑔) : 𝛿

𝑘
(𝑓, 𝑔) ≥ 𝛼}. Indeed the inclusion

{(𝑓, 𝑔) : 𝛿
𝑘
(𝑓, 𝑔) ≥ 𝛼} ⊃ Δ

𝛼

𝑘
is obvious. To verify the inverse

inclusion assume that 𝛿
𝑘
(𝑓, 𝑔) ≥ 𝛼. Then (𝑓, 𝑔) ∈ Δ𝛼

󸀠

𝑘
for all

𝛼
󸀠
< 𝛼, and, hence, by lower semicontinuity of𝐷𝑘, 𝑓, 𝑔 ∈ Δ𝛼

𝑘
,

too.
The obtained results can be gathered in the following

statement.

Theorem 19. Let (𝑋, 𝛿) be an (𝐸, 𝐾)-soft fuzzy proximity
space and for each 𝑘 ∈ 𝐾, let Δ𝛼

𝑘
= {(𝑓, 𝑔) ∈ (𝐼

𝑋
)
𝐸
×

(𝐼
𝑋
)
𝐸
: 𝛿

𝑘
(𝑓, 𝑔) ≥ 𝛼}. Then 𝐷𝑘

= {Δ
𝛼

𝑘
: 𝛼 ∈ (0, 1]} is a

nonincreasing lower semicontinuous system of Δ𝛼
𝛼-Katsaras

soft fuzzy proximities. Conversely, for each 𝑘 ∈ 𝐾, given a
family of nonincreasing systems 𝐷𝑘

= {Δ
𝛼

𝑘
: 𝛼 ∈ (0, 1]} of

𝛼-Katsaras soft fuzzy proximities, by the formula 𝛿
𝑘
(𝑓, 𝑔) =

sup{Δ𝛼

𝑘
(𝑓, 𝑔) ∧ 𝛼 : 𝛼 ∈ (0, 1]}, we can define an (𝐸, 𝐾)-soft

fuzzy proximity 𝛿 on𝑋. Besides, if𝐷𝑘 is lower semicontinuous,
then Δ𝛼

𝑘
= {(𝑓, 𝑔) : 𝛿

𝑘
(𝑓, 𝑔) ≥ 𝛼}.
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Definition 20. Let 𝛿, 𝛿∗ be (𝐸, 𝐾)-soft fuzzy proximities on a
set 𝑋. We say that 𝛿 is stronger (or smaller) than 𝛿∗ denoted
by 𝛿 ≤ 𝛿∗, if 𝛿

𝑘
(𝑓) ≤ 𝛿

∗

𝑘
(𝑓) for each 𝑘 ∈ 𝐾, 𝑓 ∈ (𝐼𝑋)𝐸. In

this case we also say that 𝛿∗ is weaker (or larger) than 𝛿. It is
obvious that 𝛿

𝑘
≤ 𝛿

∗

𝑘
if and only if Δ𝛼

𝑘
⊂ Δ

∗𝛼

𝑘
for each 𝑘 ∈ 𝐾,

𝛼 ∈ (0, 1], where Δ𝛼 and Δ∗𝛼 are the corresponding level 𝛼-
Katsaras soft fuzzy proximities.

Different from the situation in crisp mathematics where
each category has a strictly determined class of morphisms,
in fuzzy mathematics it is sometimes desirable to introduce a
“measure of defectiveness” for “potential morphisms.” Below
we define the defect of soft proximal continuity for amapping
of soft fuzzy proximity spaces.

Definition 21. By the defect of soft proximal continuity of
a mapping 𝜑

𝜓,𝜂
from (𝑋

1
, 𝛿

1
) to (𝑋

2
, 𝛿

2
), where (𝑋

1
, 𝛿

1
) is

an (𝐸
1
, 𝐾

1
)-soft fuzzy proximity space and (𝑋

2
, 𝛿

2
) is an

(𝐸
2
, 𝐾

2
)-soft fuzzy proximity space, we call the number

pd(𝜑
𝜓,𝜂
) = sup

𝑘∈𝐾
1

sup
𝑓,𝑔∈(𝐼

𝑋
)
𝐸

(𝛿
1

𝑘
(𝑓, 𝑔) − 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓) , 𝜑

𝜓
(𝑔))) .

(12)

Obviously, 0 ≤ pd(𝜑
𝜓,𝜂
) ≤ 1 for each mapping 𝜑

𝜓,𝜂
. If 𝜑

𝜓,𝜂

is soft proximally continuous, then pd(𝜑
𝜓,𝜂
) = 0. If (𝑋

1
, 𝛿

1
)

and (𝑋
2
, 𝛿

2
) are Katsaras soft fuzzy proximity spaces and 𝜑

𝜓,𝜂

is not proximally continuous, then pd(𝜑
𝜓,𝜂
) = 1. However, in

case of general soft fuzzy proximity spaces pd(𝜑
𝜓,𝜂
) may be

any number in [0, 1].

Proposition 22. If 𝜑
𝜓,𝜂
: (𝑋

1
, 𝛿

1
) → (𝑋

2
, 𝛿

2
) and 𝜑∗

𝜓
∗
,𝜂
∗ :

(𝑋
2
, 𝛿

2
) → (𝑋

3
, 𝛿

3
) are mappings of (𝐸

𝑖
, 𝐾

𝑖
)-soft fuzzy

proximity spaces (𝑋
𝑖
, 𝛿

𝑖
), 𝑖 ∈ {1, 2, 3}, respectively, then

pd(𝜑∗
𝜓
∗
,𝜂
∗ ∘ 𝜑𝜓,𝜂

) ≤ pd(𝜑
𝜓,𝜂
) + pd(𝜑∗

𝜓
∗
,𝜂
∗).

Proof. Consider

pd(𝜑∗
𝜓
∗
,𝜂
∗ ∘ 𝜑𝜓,𝜂

)

= sup
𝑘∈𝐾
1

sup
𝑓,𝑔∈(𝐼

𝑋
1 )
𝐸
1

(𝛿
1

𝑘
(𝑓, 𝑔) − 𝛿

3

𝜂
∗
∘𝜂(𝑘)
((𝜑

∗
∘ 𝜑)

𝜓
∗
∘𝜓
(𝑓) ,

(𝜑
∗
∘ 𝜑)

𝜓
∗
∘𝜓
(𝑔)))

= sup
𝑘∈𝐾
1

sup
𝑓,𝑔∈(𝐼

𝑋
1 )
𝐸
1

(𝛿
1

𝑘
(𝑓, 𝑔)

− 𝛿
2

𝜂(𝑘)
(𝜑

𝜓
(𝑓) , 𝜑

𝜓
(𝑔))

+ 𝛿
2

𝜂(𝑘)
(𝜑

𝜓
(𝑓) , 𝜑

𝜓
(𝑔))

− 𝛿
3

𝜂
∗
∘𝜂(𝑘)
((𝜑

∗
∘ 𝜑)

𝜓
∗
∘𝜓
(𝑓) ,

(𝜑
∗
∘ 𝜑)

𝜓
∗
∘𝜓
(𝑔)))

≤ sup
𝑘∈𝐾
1

sup
𝑓,𝑔∈(𝐼

𝑋
)
𝐸

(𝛿
1

𝑘
(𝑓, 𝑔) − 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓) , 𝜑

𝜓
(𝑔)))

+ sup
𝑘∈𝐾
1

sup
ℎ,𝑑∈(𝐼

𝑋
2 )
𝐸
2

(𝛿
2

𝜂(𝑘)
(ℎ, 𝑑)−𝛿

3

𝜂
∗

(𝜂(𝑘))
(𝜑

∗

𝜓
∗ (ℎ) , 𝜑

∗

𝜓
∗ (𝑑)))

≤ sup
𝑘∈𝐾
1

sup
𝑓,𝑔∈(𝐼

𝑋
)
𝐸

(𝛿
1

𝑘
(𝑓, 𝑔) − 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓) , 𝜑

𝜓
(𝑔)))

+ sup
𝑙∈𝐾
2

sup
ℎ,𝑑∈(𝐼

𝑋
2 )
𝐸
2

(𝛿
2

𝑙
(ℎ, 𝑑) − 𝛿

3

𝜂
∗
(𝑙)
(𝜑

∗

𝜓
∗ (ℎ) , 𝜑

∗

𝜓
∗ (𝑑)))

= pd(𝜑
𝜓,𝜂
) + pd(𝜑∗

𝜓
∗
,𝜂
∗) . (13)

4. Soft Fuzzy Topologies Generated by
Soft Fuzzy Proximity

In this section, we generate a soft fuzzy topology from a given
soft fuzzy proximity by using the closure operator.

Let (𝑋, 𝛿) be an (𝐸, 𝐾)-soft fuzzy proximity space, 𝑓 ∈
(𝐼

𝑋
)
𝐸, and 𝛼 ∈ (0, 1]. The 𝛼-closure of the fuzzy soft set

𝑓 (or the closure of 𝑓 at the level 𝛼) with respect to the
parameter 𝑘 ∈ 𝐾 is defined by the equality C(𝑘, 𝑓, 𝛼) =

(⨆{𝑔 : 𝛿
𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
})

󸀠

⊔ 𝑓 = (⨅{𝑔
󸀠
: 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}) ⊔ 𝑓.

Lemma 23. Consider C(𝑘, 𝑓, 𝛼) = (⨆{𝑃 : 𝛿
𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ⊔

𝑓 (where 𝑃(𝑒) = 𝑥𝜆 and 𝑃∗(𝑒) = 𝑥𝜆
󸀠

).

Proof. To show C(𝑘, 𝑓, 𝛼) ⊑ (⨆{𝑃 : 𝛿
𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ⊔ 𝑓,

take 𝑒 ∈ 𝐸 and 𝑥𝜇 ∉ ⋁{𝑥𝜆 : 𝛿
𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
} and choose

𝜀 > 0 such that 𝑄(𝑒) = 𝑥𝜇−𝜀 ∉ ⋁{𝑥𝜆 : 𝛿
𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}. Then

𝛿
𝑘
(𝑄

∗
, 𝑓) ≤ 𝛼

󸀠, and hence (𝑥𝜇
󸀠

+𝜀
)

󸀠

≥ ⋀{𝑔
󸀠
(𝑒) : 𝛿

𝑘
(𝑓, 𝑔) ≤

𝛼
󸀠
}. Since obviously 𝑥𝜇 ∉ (𝑥𝜇

󸀠

+𝜀
)

󸀠

, we conclude that 𝑥𝜇 ∉
⋀{𝑔

󸀠
(𝑒) : 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}.

To show the inverse inequality take 𝑒 ∈ 𝐸 and 𝑄(𝑒) =
𝑥
𝜇
∈ (⋁{𝑥

𝜆
: 𝛿

𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ∨ 𝑓

𝑒
. Besides, without

loss of generality we may assume that ((⨆{𝑃 : 𝛿
𝑘
(𝑃

∗
, 𝑓) >

𝛼
󸀠
}) ⊔ 𝑓)

𝑒
(𝑥) > 𝜇, for all 𝑒 ∈ 𝐸, 𝑥 ∈ 𝑋 (and not only

((⨆{𝑃 : 𝛿
𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ⊔ 𝑓)

𝑒
(𝑥) ≥ 𝜇, for all e ∈ 𝐸, 𝑥 ∈ 𝑋

(andnot only ((⨆{𝑃 : 𝛿
𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ⊔ 𝑓)

𝑒
(𝑥) ≥ 𝜇) and that

𝑥
𝜇
∉ 𝑓. However this implies that 𝛿

𝑘
(𝑄

∗
, 𝑓) > 𝛼

󸀠. Hence,
if 𝛿

𝑘
(𝑔, 𝑓) ≤ 𝛼

󸀠for some 𝑔 ∈ (𝐼𝑋)𝐸, then 𝑔󸀠
𝑒
(𝑥) > 𝜇. Thus,

𝑥
𝜇
∈ 𝑔

󸀠
(𝑒) for each 𝑔 satisfying the inequality 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠

and hence 𝑥𝜇 ∈ ⋀{𝑔󸀠(𝑒) : 𝛿
𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}.

Proposition 24. Let (𝑋, 𝛿) be an (𝐸, 𝐾)-soft fuzzy proximity
space. Define the mappingC : 𝐾 × (𝐼𝑋)𝐸 × (0, 1] → (𝐼𝑋)𝐸 by

C (𝑘, 𝑓, 𝛼) = (⨆{𝑔 : 𝛿
𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
})

󸀠

⊔ 𝑓

= (⨅{𝑔
󸀠
: 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}) ⊔ 𝑓.

(14)

Then the mapping C is a topological (𝐸, 𝐾)-soft fuzzy closure
operator.

Proof. (C1) C(𝑘, 0
𝑋
, 𝛼) = (⨅{𝑔

󸀠
: 𝛿

𝑘
(0

𝑋
, 𝑔) ≤ 𝛼

󸀠
}) ⊔ 0

𝑋
=

0
𝑋
⊔ 0

𝑋
= 0

𝑋
.

(C2) It is obvious that 𝑓 ⊑ C(𝑘, 𝑓, 𝛼).
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(C3) Let 𝑓, ℎ ∈ (𝐼𝑋)𝐸 and 𝑓 ⊑ ℎ. Since C(𝑘, 𝑓, 𝛼) =
(⨅{𝑔

󸀠
: 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}) ⊔ 𝑓, C(𝑘, ℎ, 𝛼) = (⨅{𝑔󸀠 : 𝛿

𝑘
(ℎ, 𝑔) ≤

𝛼
󸀠
}) ⊔ ℎ and 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛿

𝑘
(ℎ, 𝑔), then we have C(𝑘, 𝑓, 𝛼) ⊑

C(𝑘, ℎ, 𝛼).
(C4) For 𝛼 ≤ 𝛽, since 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛽

󸀠
≤ 𝛼

󸀠, we have
C(𝑘, 𝑓, 𝛼) ⊑ C(𝑘, 𝑓, 𝛽).

(C5) Applying axiom (P3), we get C(𝑘, 𝑓 ⊔ 𝑔, 𝛼) =

(⨆{ℎ : 𝛿
𝑘
(𝑓 ⊔ 𝑔, ℎ) ≤ 𝛼

󸀠
})

󸀠

⊔ (𝑓 ⊔ 𝑔) = (⨆{ℎ : 𝛿
𝑘
(𝑓, ℎ) ∨

𝛿
𝑘
(𝑔, ℎ) ≤ 𝛼

󸀠
})

󸀠
⊔(𝑓⊔𝑔) = ((⨆{ℎ

1
: 𝛿

𝑘
(𝑓, ℎ

1
) ≤ 𝛼

󸀠
})⊓(⨆{ℎ

2
:

𝛿
𝑘
(𝑔, ℎ

2
) ≤ 𝛼

󸀠
}))

󸀠
⊔ (𝑓⊔𝑔) = ((⨆{ℎ

1
: 𝛿

𝑘
(𝑓, ℎ

1
) ≤ 𝛼

󸀠
})

󸀠

⊔𝑓)⊔

((⨆{ℎ
2
: 𝛿

𝑘
(𝑔, ℎ

2
) ≤ 𝛼

󸀠
})

󸀠

⊔ 𝑔) = C(𝑘, 𝑓, 𝛼) ⊔C(𝑘, 𝑔, 𝛼).
Hence,C is an (𝐸, 𝐾)-soft fuzzy closure operator.
Let 𝑘 ∈ 𝐾, 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸 and let 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠 be given.
By (P5), inf

ℎ∈(𝐼
𝑋
)
𝐸{𝛿

𝑘
(𝑓, ℎ) ∨ 𝛿

𝑘
(ℎ

󸀠
, 𝑔)} ≤ 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠. Then
for each 𝜀 > 0, there exists ℎ

𝜀
∈ (𝐼

𝑋
)
𝐸 such that 𝛿

𝑘
(𝑓, ℎ

𝜀
) ∨

𝛿
𝑘
(ℎ

󸀠

𝜀
, 𝑔) < 𝛼

󸀠
+𝜀. Hence 𝛿

𝑘
(𝑓, ℎ

𝜀
) < 𝛼

󸀠
+𝜀 and 𝛿

𝑘
(ℎ

󸀠

𝜀
, 𝑔) < 𝛼

󸀠
+

𝜀.This impliesC(𝑘, 𝑓, 𝛼−𝜀) ⊑ ℎ󸀠
𝜀
. Hence 𝛿

𝑘
(𝑔,C(𝑘, 𝑓, 𝛼−𝜀)) ≤

𝛿
𝑘
(ℎ

󸀠

𝜀
, 𝑔) < 𝛼

󸀠
+𝜀. Here 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠 implies 𝛿
𝑘
(𝑔,C(𝑘, 𝑓, 𝛼−

𝜀)) < 𝛼
󸀠
+ 𝜀, for all 𝜀 > 0. Then we have

C (𝑘, 𝑓, 𝛼) = (⨅{𝑔
󸀠
: 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}) ⊔ 𝑓

= (⨅{𝑔
󸀠
: 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}) ⊔C (𝑘, 𝑓, 𝛼)

⊒ (⨅{𝑔
󸀠
: 𝛿

𝑘
(C (𝑘, 𝑓, 𝛼 − 𝜀) , 𝑔) < 𝛼

󸀠
+ 𝜀})

⊔C (𝑘, 𝑓, 𝛼) .

(15)

If we take limit for 𝜀 → 0 in the last step of the inequality,
then we have C(𝑘, 𝑓, 𝛼) ⊒ C(𝑘,C(𝑘, 𝑓, 𝛼), 𝛼). Hence the
proof is complete.

Notation. Let 𝜎𝑘
𝛼
= {𝑓 ∈ (𝐼

𝑋
)
𝐸
: 𝑓 = C(𝑘, 𝑓, 𝛼)} and T𝑘

𝛼
=

{𝑓 : 𝑓
󸀠
∈ 𝜎

𝑘

𝛼
}. It is easy to verify that for each 𝑘 ∈ 𝐾,T𝑘

𝛼
is a

topology of fuzzy soft sets in the sense of Tanay andKandemir
[27].

Proposition 25. The (𝐸, 𝐾)-soft fuzzy closure operator C is
continuous along 𝐼 in the following sense:

𝑖𝑓 𝜀
𝑛
󳨀→ 0, 𝜀

𝑛
> 0,

𝑡ℎ𝑒𝑛 ⨆

𝑛

C (𝑘, 𝑓, 𝛼 − 𝜀
𝑛
) = C (𝑘, 𝑓, 𝛼) , ∀𝑘 ∈ 𝐾.

(16)

Proof. Since for each 𝑘 ∈ 𝐾,C(𝑘, 𝑓, 𝛼 − 𝜀
𝑛
) ⊑ C(𝑘, 𝑓, 𝛼).

It follows that⨆
𝑛
C(𝑘, 𝑓, 𝛼−𝜀

𝑛
) ⊑ C(𝑘, 𝑓, 𝛼), for all 𝑘 ∈ 𝐾.

To prove the converse inequality it is sufficient to show that
⨅

𝑛
(⨆{𝑔

𝑛
: 𝛿

𝑘
(𝑓, 𝑔

𝑛
) ≤ 𝛼

󸀠
+ 𝜀

𝑛
}) ⊑ ⨆{𝑔 : 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
}.

Assume, contrary, that there exist𝑥 ∈ 𝑋, 𝑒 ∈ 𝐸 and 𝛾 > 0 such
that ⨅

𝑛
(⨆{𝑔

𝑛
: 𝛿

𝑘
(𝑓, 𝑔

𝑛
) ≤ 𝛼

󸀠
+ 𝜀

𝑛
})

𝑒
(𝑥) > (⨆{𝑔 : 𝛿

𝑘
(𝑓, 𝑔) ≤

𝛼
󸀠
})

𝑒
(𝑥) + 𝛾. Then for each 𝑛 ∈ N one can find 𝑔

𝑛
such

that 𝛿
𝑘
(𝑓, 𝑔

𝑛
) ≤ 𝛼

󸀠
+ 𝜀

𝑛
and (𝑔

𝑛
)
𝑒
(𝑥) > (⨆{𝑔 : 𝛿

𝑘
(𝑓, 𝑔) ≤

𝛼
󸀠
})

𝑒
(𝑥)+𝛾. Now, denoting 𝑔0 = ⨅

𝑛
𝑔
𝑛
we have 𝛿

𝑘
(𝑓, 𝑔

0
) ≤ 𝛼

󸀠

and 𝑔0
𝑒
(𝑥) ≥ (⨆{𝑔 : 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛼

󸀠
})

𝑒
(𝑥) + 𝛾. The obtained

contradiction completes the proof.

Proposition 26. For each 𝛼 ∈ (0, 1] and 𝑘 ∈ 𝐾, 𝜎𝑘
𝛼
=

⋂
𝛼
󸀠
<𝛼
𝜎
𝑘

𝛼
󸀠 and henceT𝑘

𝛼
= ⋂

𝛼
󸀠
<𝛼

T𝑘

𝛼
󸀠 .

Proof. It is obvious that 𝛼󸀠 < 𝛼 implies C(𝑘, 𝑓, 𝛼󸀠) ⊑ C(𝑘,

𝑓, 𝛼) for each 𝑓 ∈ (𝐼𝑋)𝐸 and hence 𝜎𝑘
𝛼
⊆ 𝜎

𝑘

𝛼
󸀠 . Take now 𝑓 ∈

⋂
𝛼
󸀠
<𝛼
𝜎
𝑘

𝛼
󸀠 and consider a decreasing sequence 𝜀

𝑛
→ 0. Then

𝑓 = C(𝑘, 𝑓, 𝛼 − 𝜀
𝑛
) for each 𝑛 ∈ N. Applying Proposition 25,

we getC(𝑘, 𝑓, 𝛼) = ⨆
𝑛
C(𝑘, 𝑓, 𝛼 − 𝜀

𝑛
) = 𝑓; that is, 𝑓 ∈ 𝜎𝑘

𝛼
.

From this proposition, similarly as in Theorem 2.6 [17],
we have the following.

Theorem 27. The mapping 𝜏 : 𝐾 → 𝐼
(𝐼
𝑋

)
𝐸

defined by the
equality, for each 𝑘 ∈ 𝐾, 𝜏

𝑘
(𝑓) = ⋁

𝛼
(T𝑘

𝛼
(𝑓) ∧ 𝛼) is an (𝐸, 𝐾)-

soft fuzzy topology on𝑋. BesidesT𝑘

𝛼
= {𝑓 : 𝜏

𝑘
(𝑓) ≥ 𝛼}.

The (𝐸, 𝐾)-soft fuzzy topology constructed in Theorem 27
will be called generated by 𝛿 and, if necessary, will be denoted
by 𝜏

𝛿
.

Theorem 28. If a mapping 𝜑
𝜓,𝜂
: (𝑋

1
, 𝛿

1
) → (𝑋

2
, 𝛿

2
) is soft

proximally continuous, then the mapping 𝜑
𝜓,𝜂
: (𝑋

1
, 𝜏

𝛿
1) →

(𝑋
2
, 𝜏

𝛿
2) is soft fuzzy continuous.

Proof. Similarly to the proof of Theorem 2.7 in [17], it is
sufficient to verify the inequality 𝜑

𝜓
(C(𝑘, 𝑓, 𝛼)) ⊑ C(𝜂(𝑘),

𝜑
𝜓
(𝑓), 𝛼) for each 𝛼 ∈ (0, 1]. From Lemma 23 it follows that

𝜑
𝜓
(C(𝑘, 𝑓, 𝛼))

𝑒
2

= 𝜑
𝜓
(⨆{𝑃 : 𝛿

1

𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
} ⊔ 𝑓)

𝑒
2

=

(⨆{𝜑
𝜓
(𝑥

𝜆
) : 𝛿

1

𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ⊔ 𝜑

𝜓
(𝑓)

𝑒
2

= (⨆{(𝜑(𝑥))
𝜆
:

𝛿
1

𝑘
(𝑃

∗
, 𝑓) > 𝛼

󸀠
}) ⊔ 𝜑

𝜓
(𝑓). Since 𝜑

𝜓,𝜂
is soft proximally

continuous it is 𝛿1
𝑘
(𝑃

∗
, 𝑓) ≤ 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓), 𝜑

𝜓
(𝑃)

∗
) and hence

𝜑
𝜓
(C(𝑘, 𝑓, 𝛼))

𝑒
2

≤ ⋁{(𝜑(𝑥))
𝜆
: 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓), (𝜑(𝑃))

∗
) > 𝛼

󸀠
} ⊔

𝜑
𝜓
(𝑓)

𝑒
2

≤ ⋁{𝑄(𝑒
2
) : 𝛿

2

𝜂(𝑘)
(𝜑

𝜓
(𝑓), 𝑄

∗
) > 𝛼

󸀠
} ⊔ 𝜑

𝜓
(𝑓)

𝑒
2

=

C(𝜂(𝑘), 𝜑
𝜓
(𝑓), 𝛼)

𝑒
2

.
From Theorems 27 and 28 it follows that the procedure

assigning to each soft fuzzy proximity 𝛿 generated soft
fuzzy topology 𝜏

𝛿
and leaving morphisms unchanged can be

interpreted as a functor.

Corollary 29. By lettingΦ(𝑋, 𝛿) = (𝑋, 𝜏
𝛿
) for every soft fuzzy

proximity space (𝑋, 𝛿) and Φ(𝜑
𝜓,𝜂
) = 𝜑

𝜓,𝜂
: (𝑋

1
, 𝜏

𝛿
1) →

(𝑋
2
, 𝜏

𝛿
2) for every soft proximally continuous mappings 𝜑

𝜓,𝜂
:

(𝑋
1
, 𝛿

1
) → (𝑋

2
, 𝛿

2
), a functor Φ from the category SFP into

SFTOP of soft fuzzy topological spaces.

Proposition 30. If 𝛿, 𝛿∗ are (𝐸, 𝐾)-soft fuzzy proximities on
𝑋 and 𝛿 ≤ 𝛿∗, then 𝜏

𝛿
≥ 𝜏

𝛿
∗ .

Proof. It is easy and therefore omitted.

5. Initial Soft Fuzzy Proximity

The main aim of this section is to describe products in the
category SFP.This description is based on the construction of
initial soft fuzzy topologies given below, which has an interest
of its own.

Definition 31. Let 𝑋 be a set, let 𝐸,𝐾 be the parameter sets,
let {(𝑋

𝛾
, 𝛿

𝛾
)}

𝛾∈Γ
be a family of (𝐸

𝛾
, 𝐾

𝛾
)-soft fuzzy proximity



Abstract and Applied Analysis 7

spaces, and let (𝜑
𝜓,𝜂
)
𝛾
: 𝑋 → (𝑋

𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ be a family

of mappings. The weakest soft fuzzy proximity 𝛿 on 𝑋 for
which all mappings (𝜑

𝜓,𝜂
)
𝛾
: (𝑋, 𝛿) → (𝑋

𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ, are

soft proximally continuous, is called the initial soft fuzzy
proximity for this family of mappings.

The existence of the initial soft fuzzy proximity is pro-
vided by the next theorem, containing also its effective
characterizations.

Theorem 32. Let 𝑋 be a set, let 𝐸,𝐾 be the parameter sets,
let {(𝑋

𝛾
, 𝛿

𝛾
)}

𝛾∈Γ
be a family of (𝐸

𝛾
, 𝐾

𝛾
)-soft fuzzy proximity

spaces, and let (𝜑
𝜓,𝜂
)
𝛾
: 𝑋 → (𝑋

𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ be a family of

mappings. Then the equality

𝛿
𝑘
(𝑓, 𝑔)

= ⋀

{

{

{

⋁

𝑖,𝑗

⋀

𝛾

𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
) , (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) |

𝑓 =

𝑛

⨆

𝑖=1

𝑓
𝑖
, 𝑔 =

𝑛

⨆

𝑖=1

𝑔
𝑖
, 𝑛 ∈ N

}

}

}

,

(17)

where 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸 and 𝑘 ∈ 𝐾 defines the initial for this family
of mappings (𝐸, 𝐾)-soft fuzzy proximity 𝛿 : 𝐾 → 𝐼(𝐼

𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

.

Proof. Notice first that for each 𝑘 ∈ 𝐾, 𝛿
𝑘
(𝑓, 𝑔) ≥ 𝛽 (where

𝛽 ∈ 𝐼) if and only if for any finite covers 𝑓 = ⨆𝑛

𝑖=1
𝑓
𝑖
,

𝑔 = ⨆
𝑙

𝑗=1
𝑔
𝑗
(𝑓

𝑖
, 𝑔

𝑗
∈ (𝐼

𝑋
)
𝐸
) of 𝑓 and 𝑔, respectively,

there exist 𝑖
0
∈ {1, . . . , 𝑛} and 𝑗

0
∈ {1, . . . , 𝑙} such that

𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
0

), (𝜑
𝜓
)
𝛾
(𝑔

𝑗
0

)) ≥ 𝛽 for all 𝛾 ∈ Γ. Besides,
without loss of generality we can assume that 𝑛 = 𝑙.

Passing to the proof we shall first establish that 𝛿 thus
defined is indeed an (𝐸, 𝐾)-soft fuzzy proximity. It is obvious
that for each 𝑘 ∈ 𝐾,𝛿

𝑘
(0

𝑋
, 1

𝑋
) = 0 and𝛿

𝑘
(𝑓, 𝑔) = 𝛿

𝑘
(𝑔, 𝑓). To

show that 𝛿 satisfies the third axiom notice first that 𝑔⊔ℎ ⊒ 𝑔
and 𝑔 ⊔ ℎ ⊒ ℎ imply the inequality 𝛿

𝑘
(𝑓, 𝑔 ⊔ ℎ) ≥ 𝛿

𝑘
(𝑓, 𝑔) ∨

𝛿
𝑘
(𝑓, ℎ). Assume that 𝛿

𝑘
(𝑓, 𝑔 ⊔ ℎ) > 𝛽 > 𝛿

𝑘
(𝑓, 𝑔) ∨ 𝛿

𝑘
(𝑓, ℎ)

and find covers 𝑓 = ⨆𝑛

𝑖=1
𝑓
𝑖
, 𝑓 = ⨆𝑙

𝑖=1
𝑓

∗

𝑖
, 𝑔 = ⨆𝑛

𝑖=1
𝑔
𝑖
,

ℎ = ⨆
𝑙

𝑖=1
ℎ
𝑖
such that sup

𝑖,𝑗
inf

𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
), (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) ∨

sup
𝑖,𝑗
inf

𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

∗

𝑖
), (𝜑

𝜓
)
𝛾
(ℎ

𝑗
)) < 𝛽.

Besides, without loss of generality, we may assume that
𝑓
𝑖
= 𝑓

∗

𝑖
(otherwise take the cover 𝑓 = ⨆

𝑖,𝑗
𝑓
𝑖𝑗
, where 𝑓

𝑖𝑗
=

𝑓
𝑖
⊓ 𝑓

∗

𝑗
).

Over designating the fuzzy soft sets constituting the
covers, for each 𝑗 ∈ {1, . . . , 𝑛} let 𝑔

𝑛+1
= ℎ

𝑗
. Then 𝑔 ⊔ ℎ =

⨆
2𝑛

𝑗=1
𝑔
𝑗
and thus from the above inequality we get

sup
𝑖,𝑗∈{1,...,𝑛}

inf
𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
) , (𝜑

𝜓
)
𝛾
(𝑔

𝑗
))

∨ sup
𝑖,𝑗∈{1,...,𝑛}

inf
𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
) , (𝜑

𝜓
)
𝛾
(ℎ

𝑗
))

< 𝛽

< sup
𝑖∈{1,..,𝑛},𝑗∈{1,...,2𝑛}

inf
𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
) , (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) .

(18)

From the right side of the inequality it follows that
there exist 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 2𝑛} such that
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
), (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) > 𝛽 for all 𝛾 ∈ Γ. Considering the

two possible cases, 1 ≤ 𝑗 ≤ 𝑛 and 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛, we easily
obtain contradiction with the left side of the inequality.

To show the fourth axiom assume that 𝛿
𝑘
(𝑓, 𝑔) <

sup
𝑥
sup

𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥) for some 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸 and find

covers 𝑓 = ⨆𝑛

𝑖=1
𝑓
𝑖
, 𝑔 = ⨆𝑛

𝑖=1
𝑔
𝑖
and 𝛾 ∈ Γ such that

𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
), (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) < sup

𝑥
sup

𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥) for all

𝑖, 𝑗. It follows from here that 𝛿𝛾
𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓), (𝜑

𝜓
)
𝛾
(𝑔)) <

sup
𝑥
sup

𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥). However, this is impossible, because

𝛿
𝛾 is an (𝐸

𝛾
, 𝐾

𝛾
)-soft fuzzy proximity.

To establish the last axiom fix 𝛽 > 0 and consider the set
Σ
𝑘

𝛽
of all pairs (𝑓, 𝑔) ∈ (𝐼𝑋)𝐸 × (𝐼𝑋)𝐸 such that 𝛿

𝑘
(𝑓, 𝑔) < 𝛽

and inf{𝛿
𝑘
(𝑓, ℎ) ∨ 𝛿

𝑘
(𝑔, ℎ

󸀠
) : ℎ ∈ (𝐼

𝑋
)
𝐸
} ≥ 𝛽. The validity of

(P5) will follow from the fact that for each 𝑘 ∈ 𝐾, Σ𝑘
𝛽
is empty,

in which we are going to establish.
Assume, contrary, that there exists (𝑓, 𝑔) ∈ Σ𝑘

𝛽
and

notice first that in this case 𝛿𝛾
𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓), (𝜑

𝜓
)
𝛾
(𝑔)) ≥ 𝛽

for each 𝛾 ∈ Γ. Indeed, take 𝑑 ∈ (𝐼𝑋𝛾)𝐸𝛾 and let ℎ =
(𝜑

𝜓
)
−1

𝛾
(𝑑). If 𝛿

𝑘
(𝑓, ℎ) ≥ 𝛽, then 𝛿𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓), (𝜑

𝜓
)
𝛾
(ℎ)) ≥ 𝛽

and hence 𝛿𝛾
𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓), 𝑑) ≥ 𝛽. Similarly, if 𝛿

𝑘
(𝑔, ℎ

󸀠
) ≥

𝛽, then 𝛿𝛾
𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑔), 𝑑

󸀠
) ≥ 𝛽. Recalling the definition

of Σ𝑘
𝛽
and applying axiom (P5) to 𝛿𝛾 we conclude that

𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓), (𝜑

𝜓
)
𝛾
(𝑔)) ≥ 𝛽.

For each (𝑓, 𝑔) ∈ Σ𝑘
𝛽
there exist numbers 𝑛, 𝑙 ∈ N and

covers 𝑓 = ⨆𝑛

𝑖=1
𝑓
𝑖
and 𝑔 = ⨆𝑙

𝑗=1
𝑔
𝑗
such that for each pair

(𝑖, 𝑗) ∈ {1, . . . , 𝑛} × {1, . . . , 𝑙} one can find 𝛾 ∈ Γ for which
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
), (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) < 𝛽. Besides, we can assume the

fuzzy soft sets 𝑓, 𝑔 and their covers are chosen in such a way
that the corresponding sum 𝑛+1 is the minimal one and that
𝑛 ≥ 2. Let ℎ = 𝑓

1
⊔ ⋅ ⋅ ⋅ ⊔ 𝑓

𝑛−1
. Then one of the following two

possibilities should be true:

(a) for every 𝑑 ∈ (𝐼𝑋)𝐸 either 𝛿
𝑘
(ℎ, 𝑑) > 𝛽 or 𝛿

𝑘
(𝑔, 𝑑

󸀠
) >

𝛽;
(b) for every 𝑑 ∈ (𝐼𝑋)𝐸 either 𝛿

𝑘
(𝑓

𝑛
, 𝑑) > 𝛽 or 𝛿

𝑘
(𝑔, 𝑑

󸀠
) >

𝛽.
Indeed, assume that neither (a) nor (b) holds. Then there are
𝑑
1
, 𝑑

2
∈ (𝐼

𝑋
)
𝐸 such that 𝛿

𝑘
(ℎ, 𝑑

1
) < 𝛽, 𝛿

𝑘
(𝑓

𝑛
, 𝑑

2
) < 𝛽,

𝛿
𝑘
(𝑔, 𝑑

󸀠

1
) < 𝛽, 𝛿

𝑘
(𝑔, 𝑑

󸀠

2
) < 𝛽. Letting 𝑑 = 𝑑

1
⊓ 𝑑

2
we get

𝛿
𝑘
(𝑓, 𝑑) ∨ 𝛿

𝑘
(𝑔, 𝑑

󸀠
) < 𝛽; however, this contradicts the fact

that (𝑓, 𝑔) ∈ Σ𝑘
𝛽
.

Suppose that (a) holds. Then since ℎ ⊑ 𝑓 and 𝛿
𝑘
(𝑓, 𝑔) <

𝛽 we conclude that 𝛿
𝑘
(ℎ, 𝑔) < 𝛽 and hence (ℎ, 𝑔) ∈ Σ𝑘

𝛽
.

However, this obviously contradicts the assumption of the
minimality of the sum 𝑛 + 𝑙. In a similar way the case (b) can
be excluded. Hence the set Σ𝑘

𝛽
is empty.

Thus, 𝛿 is an (𝐸, 𝐾)-soft fuzzy proximity on 𝑋. Besides,
from its definition it follows that 𝛿

𝑘
(𝑓, 𝑔) ≤ 𝛿

𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓),

(𝜑
𝜓
)
𝛾
(𝑔)) for all 𝛾 ∈ Γ, and therefore all mappings (𝜑

𝜓,𝜂
)
𝛾
:
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(𝑋, 𝛿) → (𝑋
𝛾
, 𝛿

𝛾
) are soft proximally continuous. Assume

that there exists another (𝐸, 𝐾)-soft fuzzy proximity 𝛿∗ on
𝑋 such that 𝛿∗ ≥ 𝛿 and all (𝜑

𝜓,𝜂
)
𝛾
: (𝑋, 𝛿

∗
) → (𝑋

𝛾
, 𝛿

𝛾
)

are soft proximally continuous. then there exist 𝑓, 𝑔 ∈

(𝐼
𝑋
)
𝐸, covers 𝑓 = ⨆𝑛

𝑖=1
𝑓
𝑖
, 𝑔 = ⨆𝑛

𝑖=1
𝑔
𝑖
, and 𝛾 ∈ Γ

such that 𝛿∗
𝑘
(𝑓, 𝑔) > 𝛿

𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
), (𝜑

𝜓
)
𝛾
(𝑔

𝑗
)) for all

𝑖, 𝑗 ∈ {1, . . . , 𝑛}. Since 𝛿∗ is an (𝐸, 𝐾)-soft fuzzy proximity,
𝛿
∗

𝑘
(𝑓

𝑖
0

, 𝑔
𝑗
0

) = 𝛿
∗

𝑘
(𝑓, 𝑔) for some 𝑖

0
, 𝑗

0
∈ {1, . . . , 𝑛} and hence

𝛿
∗

𝑘
(𝑓

𝑖
0

, 𝑔
𝑗
0

) > 𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
0

), (𝜑
𝜓
)
𝛾
(𝑔

𝑗
0

)). However, this is
impossible because (𝜑

𝜓,𝜂
)
𝛾
is soft proximally continuous.

Definition 33. By the product of (𝐸
𝛾
, 𝐾

𝛾
)-soft fuzzy proximity

spaces (𝑋
𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ, we call the pair (𝑋, 𝛿) = Π

𝛾
(𝑋

𝛾
, 𝛿

𝛾
)

where 𝑋 = Π
𝛾
𝑋

𝛾
, 𝐸 = Π

𝛾
𝐸

𝛾
and 𝐾 = Π

𝛾
𝐾

𝛾
are the product

sets and 𝛿 is the initial (𝐸, 𝐾)-soft fuzzy proximity for the
family of all projections 𝑝

𝛾
: 𝑋 → 𝑋

𝛾
, 𝑞

𝛾
: 𝐸 → 𝐸

𝛾
and

𝑟
𝛾
: 𝐾 → 𝐾

𝛾
, 𝛾 ∈ Γ.

From Theorem 32 it follows that the product (𝐸, 𝐾)-soft
fuzzy proximity 𝛿 : 𝐾 → 𝐼(𝐼

𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

can be defined by the
formula

𝛿
𝑘
(𝑓, 𝑔)

= ⋀

{

{

{

⋁

𝑖,𝑗

⋀

𝛾

𝛿
𝛾

𝑟
𝛾
(𝑘)
((𝑝

𝑞
)
𝛾
(𝑓

𝑖
) , (𝑝

𝑞
)
𝛾
(𝑔

𝑗
)) |

𝑓 =

𝑛

⨆

𝑖=1

𝑓
𝑖
, 𝑔 =

𝑛

⨆

𝑖=1

𝑔
𝑖
, 𝑛 ∈ N

}

}

}

.

(19)

It is easy to notice that the operation thus defined is indeed
the product in the category SFP.

Theorem 34. Let (𝜑
𝜓,𝜂
)
𝛾
: (𝑋, 𝛿) → (𝑋

𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ, be a

family of mappings and let 𝜑
𝜓,𝜂
: (𝑋, 𝛿) → Π

𝛾
(𝑋

𝛾
, 𝛿

𝛾
) be the

diagonal mappings. Then pd(𝜑
𝜓,𝜂
) = ⋁

𝛾
pd((𝜑

𝜓,𝜂
)
𝛾
).

Proof. Consider the following: 𝜑
𝜓,𝜂
: (𝑋, 𝛿) → Π

𝛾
(𝑋

𝛾
, 𝛿

𝛾
),

(𝑝
𝑞,𝑟
)
𝛾
: Π

𝛾
(𝑋

𝛾
, 𝛿

𝛾
) → (𝑋

𝛾
, 𝛿

𝛾
) and (𝜑

𝜓,𝜂
)
𝛾
: (𝑋, 𝛿) →

(𝑋
𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ.

Applying Definition 21 and noticing that pd((𝑝
𝑞,𝑟
)
𝛾
) = 0

we get pd((𝜑
𝜓,𝜂
)
𝛾
) ≤ pd(𝜑

𝜓,𝜂
) + pd((𝑝

𝑞,𝑟
)
𝛾
) = pd(𝜑

𝜓,𝜂
)

and hence ⋁
𝛾
pd((𝜑

𝜓,𝜂
)
𝛾
) ≤ pd(𝜑

𝜓,𝜂
). To show the converse

inequality assume that⋁
𝛾
pd((𝜑

𝜓,𝜂
)
𝛾
) < pd(𝜑

𝜓,𝜂
) and find 𝜀 >

0 such that sup
𝛾
sup

𝑘∈𝐾
sup

𝑓,𝑔∈(𝐼
𝑋
)
𝐸(𝛿

𝑘
(𝑓, 𝑔) − 𝛿

𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓),

(𝜑
𝜓
)
𝛾
(𝑔))) < (sup

𝑘∈𝐾
sup

𝑓,𝑔∈(𝐼
𝑋
)
𝐸(𝛿

𝑘
(𝑓, 𝑔)− (Π

𝛾
𝛿
𝛾
)
𝜂(𝑘)
(𝜑

𝜓
(𝑓),

𝜑
𝜓
(𝑔))) − 𝜀. Choose 𝑓, 𝑔 ∈ (𝐼

𝑋
)
𝐸 and 𝑘 ∈ 𝐾

realizing the right side of the inequality; then
𝛿
𝑘
(𝑓

∗
, 𝑔

∗
) − inf

𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

∗
), (𝜑

𝜓
)
𝛾
(𝑔

∗
)) < 𝛿

𝑘
(𝑓, 𝑔) −

(Π
𝛾
𝛿
𝛾
)
𝜂(𝑘)
(𝜑

𝜓
(𝑓), 𝜑

𝜓
(𝑔)) − 𝜀 for any 𝑓∗

, 𝑔
∗
∈ (𝐼

𝑋
)
𝐸, and

hence (Π
𝛾
𝛿
𝛾
)
𝜂(𝑘)
(𝜑

𝜓
(𝑓), 𝜑

𝜓
(𝑔)) < 𝛿

𝑘
(𝑓, 𝑔) − 𝛿

𝑘
(𝑓

∗
, 𝑔

∗
) +

inf
𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

∗
), (𝜑

𝜓
)
𝛾
(𝑔

∗
))−𝜀. Consider arbitrary covers

𝑓 = ⨆
𝑛

𝑖=1
𝑓
𝑖
, 𝑔 = ⨆𝑛

𝑖=1
𝑔
𝑖
and take 𝑓

𝑖
0

, 𝑔
𝑗
0

satisfying 𝛿
𝑘
(𝑓, 𝑔) =

𝛿
𝑘
(𝑓

𝑖
0

, 𝑔
𝑗
0

). Then letting 𝑓∗
= 𝑓

𝑖
0

, 𝑔∗ = 𝑔
𝑗
0

in the above

inequality we receive 𝛽 := (Π
𝛾
𝛿
𝛾
)
𝜂(𝑘)
(𝜑

𝜓
(𝑓), 𝜑

𝜓
(𝑔)) + 𝜀 <

inf
𝛾
𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

∗
), (𝜑

𝜓
)
𝛾
(𝑔

∗
)). Thus, for any covers

𝑓 = ⨆
𝑛

𝑖=1
𝑓
𝑖
, 𝑔 = ⨆𝑛

𝑖=1
𝑔
𝑖
there exist 𝑖

0
, 𝑗

0
such that

𝛿
𝛾

𝜂
𝛾
(𝑘)
((𝜑

𝜓
)
𝛾
(𝑓

𝑖
0

), (𝜑
𝜓
)
𝛾
(𝑔

𝑗
0

)) > 𝛽 for any 𝛾 ∈ Γ. Noticing
that 𝜑

𝜓
(𝑓) = ⨆

𝑛

𝑖=1
𝜑
𝜓
(𝑓

𝑖
), 𝜑

𝜓
(𝑔) = ⨆

𝑛

𝑖=1
𝜑
𝜓
(𝑔

𝑖
) and recalling

the definition of the product soft fuzzy proximity we
conclude that (Π

𝛾
𝛿
𝛾
)
𝜂(𝑘)
(𝜑

𝜓
(𝑓), 𝜑

𝜓
(𝑔)) ≥ 𝛽. The obtained

contradiction completes the proof.

Corollary 35. The diagonal 𝜑
𝜓,𝜂
:= Δ

𝛾
(𝜑

𝜓,𝜂
)
𝛾
: (𝑋, 𝛿) →

Π
𝛾
(𝑋

𝛾
, 𝛿

𝛾
) of a family of mappings (𝜑

𝜓,𝜂
)
𝛾
: (𝑋, 𝛿) →

(𝑋
𝛾
, 𝛿

𝛾
), 𝛾 ∈ Γ is soft proximally continuous if and only if each

(𝜑
𝜓,𝜂
)
𝛾
is soft proximally continuous.

Another useful application of initial soft fuzzy proximities
is given in the next theorem which describes lattice-theoretic
properties of the family of soft fuzzy proximities.

Theorem 36. The set 𝐷 of all (𝐸, 𝐾)-soft fuzzy proximities on
a given set𝑋 is a complete lattice with respect to the order ≤.

Proof. Let 𝛿∗ : 𝐾 → 𝐼
(𝐼
𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

be defined by for each
𝑘 ∈ 𝐾, 𝛿∗

𝑘
(𝑓, 𝑔) = 0 if and only if 𝑓 = 0

𝑋
or 𝑔 = 0

𝑋
and

𝛿
∗

𝑘
(𝑓, 𝑔) = 1 otherwise. Obviously 𝛿∗ is the largest (i.e., the

weakest) (𝐸, 𝐾)-soft fuzzy proximity on 𝑋; it will be called
antidiscrete. On the other hand let 𝛿0 : 𝐾 → 𝐼(𝐼

𝑋

)
𝐸

×(𝐼
𝑋

)
𝐸

be
defined by each 𝑘 ∈ 𝐾, 𝛿0

𝑘
(𝑓, 𝑔) = sup

𝑥
sup

𝑒∈𝐸
(𝑓 ⊓ 𝑔)

𝑒
(𝑥).

It is also an (𝐸, 𝐾)-soft fuzzy proximity on 𝑋. (Indeed, to
check up axiom (P5) which is the only unobvious one assume
that 𝛿0

𝑘
(𝑓, 𝑔) < inf{𝛿0

𝑘
(𝑓, ℎ) ∨ 𝛿

0

𝑘
(ℎ

󸀠
, 𝑔) : ℎ ∈ (𝐼

𝑋
)
𝐸
} for

some 𝑓, 𝑔 ∈ (𝐼𝑋)𝐸. Now taking ℎ = 𝑔 and noticing that
𝛿
0

𝑘
(𝑔

󸀠
, 𝑔) = 0 we obtain a contradiction). Besides, it is easy

to notice that 𝛿0 is the strongest (i.e., the smallest) (𝐸, 𝐾)-soft
fuzzy proximity on𝑋; it will be called discrete.

Consider any 𝐷
0
⊂ 𝐷 and let 𝜎 := Π

𝛾
𝛿
𝛾 be the initial

(𝐸, 𝐾)-soft fuzzy proximity on 𝑋 for the family of identical
mappings (id

𝑋id
𝐸
,id
𝐾

) : 𝑋 → (𝑋, 𝛿), 𝛿 ∈ 𝐷
0
. It is easy to

notice that 𝜎 is the greatest lower bound of 𝐷
0
and therefore

it will be denoted by inf 𝐷
0
. Since 𝐷 has the largest element

𝛿
∗, it follows now that 𝐷

0
has the least upper bound sup𝐷

0
,

too.

6. Conclusion

All over the globe, (fuzzy) soft set theory is a topic of interest
for many authors working in diverse areas due to its rich
potential for applications in several directions. So, we found
it reasonable to study the fuzzy soft topological structures
and also their mutual relationships from the categorical point
of view (see [12, 25, 28]). In this study, we considered soft
fuzzy proximities introduced in Definition 11, which gives
the nearness relation between fuzzy soft sets with respect
to the parameters, to be the proximal counterpart of soft
fuzzy topologies as they are defined in [12]. We investigate
basic properties of these fuzzy proximities and describe how
a soft fuzzy proximity generates a soft fuzzy topology. In
general topology and also in fuzzy topology, it is important
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to investigate the existence of the initial structures, since
the initial structure is the coarsest one which preserves the
construction. Based on this fact, we proved the existence of
the initial soft fuzzy proximity and by this way we described
products in the category SFP.
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