Research Article

On Properties of Pseudointegrals Based on Pseudoaddition Decomposable Measures

Dong Qiu and Chongxia Lu
College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Nanan, Chongqing 400065, China
Correspondence should be addressed to Dong Qiu; dongqiumath@163.com

Received 4 May 2014; Revised 2 July 2014; Accepted 3 July 2014; Published 17 July 2014
Academic Editor: Soheil Salahshour
Copyright © 2014 D. Qiu and C. Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We mainly discussed pseudointegrals based on a pseudoaddition decomposable measure. Particularly, we give the definition of the pseudointegral for a measurable function based on a strict pseudoaddition decomposable measure by generalizing the definition of the pseudointegral of a bounded measurable function. Furthermore, we got several important properties of the pseudointegral of a measurable function based on a strict pseudoaddition decomposable measure.

1. Introduction

The classical measure theory is one of the most important theories in mathematics [1,2]. Although the additive measures are widely used, they do not allow modelling many phenomena involving interaction between criteria. For this reason, the fuzzy measure proposed by Sugeno is an extension of classical measure in which the additivity is replaced by a weaker condition, that is, monotonicity [3, 4]. Therefore, fuzzy measure and the corresponding integrals, for example, Choquet and Sugeno, are introduced [5-10].

So far, there have been many different fuzzy measures, such as the decomposable measure, the λ-additive measure, the belief measure, the possibility measure, and the plausibility measure. Among the fuzzy measures mentioned before, the decomposable measure was independently introduced by Dubois and Prade [11] and Weber [12]. Since the close relations with the classical measure theory, further developments of decomposable measures and related integrals have been extensive [13-18]. Decomposable measures include several well-known fuzzy measures such as the λ-additive measure and probability and possibility measures, and they provide a natural setting for relaxing probabilistic assumptions regarding the modeling of uncertainty [19, 20]. Decomposable measures and the corresponding integrals are very useful in decision theory and the theory of nonlinear differential and integral equations [21-24].

In many problems with uncertainty as in the theory of probabilistic metric spaces [20, 25, 26], multivalued logics [27,28], and general measures [1,4] often we work with many operations different from the usual addition and multiplication of reals. Some of them are triangular norms, triangular conorms, pseudoadditions, pseudomultiplications, and so forth [21, 29]. Based on the above-mentioned measures, pseudoanalysis as a generalization of the classical analysis is developed, where instead of the field of real numbers a semiring is taken on a real interval $[a, b] \subset[-\infty,+\infty]$ endowed with pseudoaddition \oplus and with pseudomultiplication \odot (see [13, 19, 30-33]). The families of the pseudooperations generated by a function g turn out to be solutions of wellknown nonlinear functional equations [22-24].

In this paper, we will discuss pseudointegrals based on pseudoaddition decomposable measures. In Section 2, we recall the concepts of the pseudoaddition \oplus and the pseudomultiplication \odot, which form a real semiring on the interval $[a, b] \subset[-\infty,+\infty]$ and the notion of the $\sigma-\oplus-$ decomposable measure. Then we will give the definition of the pseudointegral of a measurable function based on a strict pseudoaddition decomposable measure by generalizing the definition of the pseudointegral of a bounded measurable function. In Section 3, we will discuss several important properties of the pseudointegral of a measurable function based on the strict pseudoaddition decomposable measure.

2. Preliminaries

Let $[a, b]$ be a closed subinterval of \mathbb{R} (in some cases we will also take semiclosed subintervals). The total order on $[a, b]$ will be denoted by \preceq. This can be the usual order of the real line, but it can also be another order. We will denote by Δ maximum element on $[a, b]$ (usually Δ is either a or b) with respect to this total order.

Definition 1 (see [34]). Let $\left\{x_{n}\right\}$ be a sequence from $[a, b]$.
(1) If $x_{m} \preceq x_{n}$ whenever $n>m$, then we say that the sequence $\left\{x_{n}\right\}$ is an increasing sequence.
(2) If $x_{m} \prec x_{n}$ whenever $n>m$, then we say that the sequence $\left\{x_{n}\right\}$ is a strict increasing sequence.
(3) If $x_{n} \preceq x_{m}$ whenever $n>m$, then we say that the sequence $\left\{x_{n}\right\}$ is a decreasing sequence.
(4) If $x_{n} \prec x_{m}$ whenever $n>m$, then we say that the sequence $\left\{x_{n}\right\}$ is a strict decreasing sequence.

Let X be a nonempty set; we will denote by \mathcal{S}, \mathscr{A}, and \mathscr{B}_{X} algebra, σ-algebra, and Borel σ-algebra of subsets of a set X, respectively.

Denote by $\mathscr{F}(X)$ the set of all functionals from X to $[a, b]$. For each $\lambda \in[a, b]$ the constant functional in $\mathscr{F}(X)$ with value λ will also be denoted by λ. It will be clear from the context which usage is intended. A functional $f \in \mathscr{F}(X)$ is said to be finite if $f(x) \prec \Delta$ for all $x \in X$. The functional $f \in \mathscr{F}(X)$ is said to be bounded if there exists $\Omega<\Delta$, such that $f(x) \preceq \Omega$ for all $x \in X$. Denote by $\mathscr{B}(X)$ the set of all bounded functionals.

Let f and h be two functions defined on X and with values in $[a, b]$ and let \star be arbitrary binary operation on $[a, b]$. Then, we define for any $x \in X$

$$
\begin{equation*}
(f \star h)(x)=f(x) \star h(x) \tag{1}
\end{equation*}
$$

and for any $\lambda \in[a, b],(\lambda \star f)(x)=\lambda \star f(x)$. Let \mathscr{A} be a subset of $\mathscr{F}(X)$. If $f \star h \in \mathscr{A}$ for all $f, h \in \mathscr{A}$, then \mathscr{A} is \star closed. The total order \leq on $[a, b]$ induces a partial order \leq on $\mathscr{F}(X)$ defined pointwise by stipulating that $f \leq h$ if and only if $f(x) \preceq h(x)$ for all $x \in X$. Thus $(\mathscr{F}(X), \preceq)$ is a poset, and whenever we consider $\mathscr{F}(X)$ as a poset then it will always be with respect to this partial order. Let $\mathcal{S}[\lambda \prec f]=\{x \mid x \in$ $X, \lambda \prec f(x), f \in \mathscr{F}(X)\}$.

Definition 2 (see [35]). A binary operation $\oplus:[a, b] \times$ $[a, b] \rightarrow[a, b]$ is called a pseudoaddition, if it satisfies the following conditions, for all $x, y, z, w \in[a, b]$:
(1) $\mathbf{0} \oplus x=x$, where $\mathbf{0}$ is a zero element (usually $\mathbf{0}$ is either a or b) (boundary condition);
(2) $x \oplus z \preceq y \oplus w$ whenever $x \preceq y$ and $z \preceq w$ (monotonicity);
(3) $x \oplus y=y \oplus x$ (commutativity);
(4) $(x \oplus y) \oplus z=x \oplus(y \oplus z)$ (associativity).

A pseudoaddition \oplus is said to be continuous if it is a continuous function in $[a, b]^{2}$; a pseudoaddition \oplus is called
strict if \oplus is continuous and strictly monotone. The following are examples of pseudoadditions: $x \vee_{\oplus} y=y$ if and only if $x \leq y ; x \oplus y=g^{-1}(g(x)+g(y))$, where $g:[a, b] \rightarrow[0,1]$ is a strictly monotone and continuous generator surjective function and $x \leq y$ if and only if $g(x) \leq g(y)$. It is obvious that $\Delta \oplus x=\Delta$ for all $x \in[a, b]$.

Let $[a, b]_{+}=\{x \mid x \in[a, b], \mathbf{0} \leq x\}$. In this paper, we assume $[a, b]=[a, b]_{+}$.

Definition 3 (see [35]). A binary operation $\odot:[a, b] \times$ $[a, b] \rightarrow[a, b]$ is called a pseudomultiplication, if it satisfies the following conditions, for all $x, y, z, w \in[a, b]$:
(1) $\mathbf{1} \odot x=x$, where $\mathbf{1} \in[a, b]$ is a unit element (boundary condition);
(2) $x \odot z \preceq y \odot w$ whenever $x \preceq y$ and $z \preceq w$ (monotonicity);
(3) $x \odot y=y \odot x$ (commutativity);
(4) $(x \odot y) \odot z=x \odot(y \odot z)$ (associativity).

A pseudomultiplication \odot is said to be continuous if it is a continuous function in $[a, b]^{2}$. The following are examples of pseudomultiplications: $x \wedge_{\odot} y=x$ if and only if $x \leq y$; $x \odot_{g} y=g^{-1}(g(x) \cdot g(y))$, where $g:[a, b] \rightarrow[0,1]$ is a strictly monotone and continuous generator surjective function and $x \leq y$ if and only if $g(x) \leq g(y)$. It is obvious that $g(\mathbf{0})=0$.

We assume also that $\mathbf{0} \odot x=\mathbf{0}$ and that \odot is a distributive pseudomultiplication with respect to \oplus; that is,

$$
\begin{equation*}
x \odot(y \oplus z)=(x \odot y) \oplus(x \odot z) \tag{2}
\end{equation*}
$$

The structure $([a, b], \oplus, \odot)$ is called a real semiring.
Because of the associative property of the pseudoaddition \oplus, it can be extended by induction to n-ary operation by setting

$$
\begin{equation*}
\stackrel{n}{\oplus}{ }_{i=1}^{\oplus} x_{i}=\left(\underset{i=1}{\oplus} x_{i}\right) \oplus x_{n} . \tag{3}
\end{equation*}
$$

Due to monotonicity, for each sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}}$ of elements of $[a, b]$, the following limit can be considered:

$$
\begin{equation*}
\oplus_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} \oplus_{i=1}^{n} x_{i} \tag{4}
\end{equation*}
$$

Definition 4 (see [36]). Let A be a nonempty set and \oplus a pseudoaddition. A binary operation $d_{\oplus}: A \times A \rightarrow[a, b]$ is called a pseudometric on A, if it satisfies the following conditions, for all $x, y, z \in A$:
(1) $d_{\oplus}(x, y)=\mathbf{0}$ if and only if $x=y$;
(2) $d_{\oplus}(x, y)=d_{\oplus}(y, x)$;
(3) there exists $\lambda \in[a, b]$ such that

$$
\begin{equation*}
d_{\oplus}(x, y) \leq \lambda \odot\left(d_{\oplus}(x, z) \oplus d_{\oplus}(z, y)\right) \tag{5}
\end{equation*}
$$

where \odot is a distributive pseudomultiplication with respect to \oplus.

Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence from $[a, b]$. The sequence $\left\{x_{n}\right\}_{n \geq 1}$ is said to be convergent, if for any $\mathbf{0}<\varepsilon$, there exists positive integer $N(\varepsilon)$, such that $d_{\oplus}\left(x_{n}, x\right) \prec \varepsilon$ for all $n \geq N(\varepsilon)$, denoted by $x=\lim _{n \rightarrow \infty} x_{n}$, and x is said to be the limit of the sequence $\left\{x_{n}\right\}_{n \geq 1}$;

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} x_{n}=\bigvee_{n=1}^{\infty}\left(\underset{\substack{\wedge_{\odot} \\ k \geq n}}{x_{k}}\right) \tag{6}
\end{equation*}
$$

is said to be the lower limit of the sequence $\left\{x_{n}\right\}_{n \geq 1}$;

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} x_{n}=\bigwedge_{\substack{\odot}}^{\infty}\left(\underset{\substack{v_{\oplus} \\ k \geq n}}{v_{k}}\right) \tag{7}
\end{equation*}
$$

is said to be the upper limit of the sequence $\left\{x_{n}\right\}_{n \geq 1}$. It is obvious that $\underline{\lim }_{n \rightarrow \infty} x_{n} \leq \overline{\lim }_{n \rightarrow \infty} x_{n}$. Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence from $\mathscr{F}(X)$. The sequence $\left\{f_{n}\right\}_{n \geq 1}$ is said to be convergent, if for any $0<\varepsilon$, and for each point $x_{0} \in X$, there exists positive integer $N\left(\varepsilon, x_{0}\right)$, such that $d_{\oplus}\left(f_{n}\left(x_{0}\right), f\left(x_{0}\right)\right)<$ ε for all $n \geq N\left(\varepsilon, x_{0}\right)$, denoted by $f=\lim _{n \rightarrow \infty} f_{n}$, and f is said to be the limit functional of the functionals sequence $\left\{f_{n}\right\}_{n \geq 1}$.

Let \mathscr{A} be a subset of $\mathscr{F}(X)$. The poset \mathscr{A} is said to be upper complete if $\lim _{n \rightarrow \infty} f_{n} \in \mathscr{A}$ for each increasing sequence $\left\{f_{n}\right\}_{n \geq 1}$ from \mathscr{A}; the poset \mathscr{A} is said to be lower complete if $\lim _{n \rightarrow \infty} f_{n} \in \mathscr{A}$ for each decreasing sequence $\left\{f_{n}\right\}_{n \geq 1}$ from \mathscr{A}; the poset \mathscr{A} is said to be complete if $\lim _{n \rightarrow \infty} f_{n} \in \mathscr{A}$ for each sequence $\left\{f_{n}\right\}_{n \geq 1}$ from \mathscr{A}, where the limit of the sequence of functionals $\left\{f_{n}\right\}_{n \geq 1}$ is given by $\left(\lim _{n \rightarrow \infty} f_{n}\right)(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)$ for all $x \in X$.

For any continuous pseudoaddition \oplus and $x, y \in[a, b]$ with $x \leq y$, there exists at least one point $z \in[a, b]$ such that $y=x \oplus z$. If pseudoaddition \oplus is strict, then there exists only one point $z \in[a, b]$ such that $y=x \oplus z$ for all $x, y \in[a, b]$ with $x<\Delta$. Thus we have the following concepts.

Definition 5 (see [34]). For any continuous pseudoaddition \oplus and $x, y \in[a, b]$ with $x \leq y$, the paracomplement set $y-{ }_{\oplus} x$ is a nonempty set of all points z such that $y=x \oplus z$.

Example 6. Let the total order \leq on $[0,1]$ be the usual order of the real line and let the pseudoaddition \oplus be the usual multiplication of the real numbers. It is obvious that zero element is 1 . If $x=0$, then $y=0$ and $y{ }_{-\oplus} x=[0,1]$. If $x \neq 0$, then for any $0 \leq y<x$, we have $y-{ }_{\oplus} x=\{y / x\} \subseteq[0,1]$.

Definition 7 (see [34]). For any continuous pseudoaddition \oplus, if $f, h \in \mathscr{F}(X)$, then define the paracomplement set $\left|f-_{\oplus} h\right|$ as the set of all those functionals φ such that

$$
\varphi(x)= \begin{cases}f(x)-_{\oplus} h(x), & \text { if } h(x) \leq f(x), \tag{8}\\ h(x)-_{\oplus} f(x), & \text { if } f(x)<h(x),\end{cases}
$$

for all $x \in X$.
Definition 8 (see [34]). For any strict pseudoaddition \oplus and $x, y \in[a, b]$ with $x \leq y$, the complement $y{ }_{-}^{\prime} x$ is defined as

$$
y-{ }_{\oplus}^{\prime} x= \begin{cases}z \in[a, b], & \text { such that } y=x \oplus z, \text { if } x<\Delta \tag{9}\\ 0, & \text { otherwise. }\end{cases}
$$

Definition 9 (see [34]). For any strict pseudoaddition \oplus, if $f, h \in \mathscr{F}(X)$, then define the complement functional $\left|f-_{\oplus}^{\prime} h\right|$ pointwise as

$$
\left|f-_{\oplus}^{\prime} h\right|(x)= \begin{cases}f(x)-{ }_{\oplus}^{\prime} h(x), & \text { if } h(x) \leq f(x) \tag{10}\\ h(x)-{ }_{\oplus}^{\prime} f(x), & \text { if } f(x)<h(x)\end{cases}
$$

for all $x \in X$.
Definition 10 (see [34]). For any pseudoaddition \oplus, a nonempty subset \mathscr{K} of $\mathscr{F}(X)$ is said to be a functional space with respect to \oplus, denoted by (\mathscr{K}, \oplus), if $(\lambda \odot f) \oplus(\mu \odot h) \in \mathscr{K}$ for all $f, h \in \mathscr{K}$ and $\lambda, \mu \in[a, b]$, where \odot is a distributive pseudomultiplication with respect to \oplus.

It is clear that $(\mathscr{F}(X), \oplus)$ is the greatest functional space with respect to any pseudoaddition \oplus. Thus the functional space (\mathscr{K}, \oplus) with $\mathscr{K} \subseteq \mathscr{F}(X)$ is also called a subspace of ($\mathscr{F}(X), \oplus)$. If (\mathscr{K}, \oplus) is a functional space with respect to \oplus, then we just write \mathscr{K} instead of (\mathscr{K}, \oplus) whenever \oplus can be determined from the context.

Definition 11 (see [34]). For each subset \mathscr{A} of $\mathscr{F}(X)$ the upper closure of \mathscr{A}, denoted by $\widehat{\mathscr{A}}$, is the set of all elements of $\mathscr{F}(X)$ having the form $\lim _{n \rightarrow \infty} f_{n}$ for some increasing sequence $\left\{f_{n}\right\}_{n \geq 1}$ from \mathscr{A}.

It follows from Definition 11 that $\mathscr{A} \subseteq \widehat{\mathscr{A}}$ and $\mathscr{A}=\widehat{\mathscr{A}}$ if and only if \mathscr{A} is upper complete.

Definition 12 (see [34]). For any continuous pseudoaddition \oplus, a subspace (\mathscr{K}, \oplus) will be called paracomplemented if $\left|f-_{\oplus} h\right| \subseteq \mathscr{K}$ for all $f, h \in \mathscr{K}$; for any strict pseudoaddition \oplus, a subspace (\mathscr{K}, \oplus) will be called complemented if $\left|f-_{\oplus}^{1} h\right| \in \mathscr{K}$ for all $f, h \in \mathscr{K}$.

Definition 13 (see [34]). For any continuous pseudoaddition \oplus, a paracomplemented subspace (\mathscr{K}, \oplus) is regular if it contains 1 and is closed under \vee_{\oplus}; for any strict pseudoaddition \oplus, a complemented subspace (\mathscr{K}, \oplus) is normal if it contains 1 and is closed under \vee_{\oplus}.

Note that $\left(f \vee_{\oplus} h\right) \oplus\left(f \wedge_{\odot} h\right)=f \oplus h$ for all $f, h \in \mathscr{F}(X)$ and thus a paracomplemented subspace of $\mathscr{F}(X)$ is \wedge_{\odot}-closed if and only if it is \vee_{\oplus}-closed. It is obvious that regular and normal are closed under \wedge_{\odot}.

Definition 14 (see [37]). The pseudocharacteristic function of a set $E \subseteq X$ is defined with

$$
I_{E}(x)= \begin{cases}\mathbf{0}, & x \notin E \tag{11}\\ \mathbf{1}, & x \in E\end{cases}
$$

where $\mathbf{0}$ is zero element for \oplus and $\mathbf{1}$ is unit element for \odot.
Definition 15 (see [21]). A functional $\varphi \in \mathscr{F}(X)$ is said to be elementary if it has the following representation:

$$
\begin{equation*}
\varphi=\stackrel{n}{\oplus} \stackrel{n}{\oplus} \lambda_{i} \odot I_{E_{i}}, \tag{12}
\end{equation*}
$$

for each $\lambda_{i} \in[a, b]$ and $E_{i} \in \mathscr{A}$ pairwise disjoint and with $X=\bigcup_{i=1}^{n} E_{i}$, and the set of such elementary functionals will be denoted by $\mathscr{E}(X)$. It is obvious that $I_{E} \in \mathscr{E}(X)$, for all $E \subseteq X$.

Definition 16 (see [21]). A set function $m: \mathscr{A} \rightarrow[a, b]$ (or semiclosed interval) is called a σ - \oplus-decomposable measure if it satisfies the following conditions:
(1) $m(\emptyset)=\mathbf{0}$;
(2) $m(E) \leq m(F)$ for all $E, F \in \mathscr{A}$ with $E \subset F$;
(3) $m(E \cup F)=m(E) \oplus m(F)$ for all $E, F \in \mathscr{A}$ and $E \cap F=\emptyset$;
(4) $m\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\oplus_{i=1}^{\infty} m\left(E_{i}\right)$ for any sequence $\left\{E_{i}\right\}_{i \geq 1}$ of pairwise disjoint sets from \mathscr{A}.

A pair (X, \mathscr{A}) consisting of a nonempty set X and a σ-algebra of subsets of X is called a measurable space. A functional $f: X \rightarrow[a, b]$ is said to be a measurable functional if $f^{-1}\left(\mathscr{B}_{[a, b]}\right) \subseteq \mathscr{A}$. Let $\mathscr{M}(\mathscr{A})$ be the set of all measurable mappings from (X, \mathscr{A}) to $\left([a, b], \mathscr{B}_{[a, b]}\right)$; that is,

$$
\begin{equation*}
\mathscr{M}(\mathscr{A})=\left\{f \in \mathscr{F}(X) \mid f^{-1}\left(\mathscr{B}_{[a, b]}\right) \subseteq \mathscr{A}\right\} . \tag{13}
\end{equation*}
$$

Then $\mathscr{E}(\mathcal{S})$ will denote the set of those elements $f \in \mathscr{E}(X)$ for which $f^{-1}(\lambda)=\{x \in X \mid f(x)=\lambda\} \in \mathcal{S}$ for each $\lambda \in f(X)$. In particular, this means that $\mathscr{E}(\mathscr{A})=\mathscr{M}(\mathscr{A}) \cap \mathscr{E}(X)$. Denote by $\mathscr{B}(\mathscr{A})$ the set of all bounded measurable functionals.

Definition 17 (see [38]). Let \oplus be a continuous pseudoaddition and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus$-decomposable measure. Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of measurable functionals of a.e. pseudofinite on X. If there exists a measurable functional f of a.e. pseudofinite on X, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m \mathcal{S}\left[\sigma \leq d_{\oplus}\left(f_{n}, f\right)\right]=\mathbf{0} \tag{14}
\end{equation*}
$$

for arbitrary $\mathbf{0}<\sigma \prec \Delta$, then the functionals sequence $\left\{f_{n}\right\}_{n \geq 1}$ is said to be convergent to f with respect to \oplus-measure, denoted by $f_{n} \Rightarrow f$. If the functionals sequence $\left\{f_{n}\right\}_{n \geq 1}$ does not converge to f with respect to \oplus-measure, denote by $f_{n} \nRightarrow f$.

Definition 18 (see [35]). Let \oplus be a continuous pseudoaddition and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus$-decomposable measure.
(i) If $m(X) \prec \Delta$, then the pseudointegral of an elementary measurable function $\varphi: X \rightarrow[a, b]$ is defined by

$$
\begin{equation*}
\int_{X}^{\oplus} \varphi \odot d m=\stackrel{n}{\oplus}{ }_{i=1}^{\oplus} \lambda_{i} \odot m\left(E_{i}\right), \tag{15}
\end{equation*}
$$

for $\lambda_{i} \in[a, b]$ and $E_{i} \in \mathscr{A}$ pairwise disjoint and with $X=\bigcup_{i=1}^{n} E_{i}$.
(ii) If $m(X)<\Delta$ and $\left\{\varphi_{n}\right\}$ is the sequence of elementary measurable functions such that, for each $x \in X$,

$$
\begin{equation*}
d_{\oplus}\left(\varphi_{n}(x), f(x)\right) \longrightarrow \mathbf{0} \quad \text { uniformly as } n \longrightarrow \infty \tag{16}
\end{equation*}
$$

where a sequence of elementary functions $\left\{\varphi_{n}\right\}$ from the previous definition is constructed in [34], then the pseudointegral of a bounded measurable function f : $X \rightarrow[a, b]$ is defined by

$$
\begin{equation*}
\int_{X}^{\oplus} f \odot d m=\lim _{n \rightarrow \infty} \int_{X}^{\oplus} \varphi_{n} \odot d m \tag{17}
\end{equation*}
$$

If there exists an increasing sequence of sets $\left\{E_{n}\right\} \subset \mathscr{A}$ with $m\left(E_{n}\right) \prec \Delta, n=1,2, \ldots$, such that $X=\bigcup_{n=1}^{\infty} E_{n}$, then we say that X is σ-finite set of \oplus-measure and $\left\{E_{n}\right\}$ is a \oplus-measure finite and monotone cover of X. The sequence of bounded measurable functionals $[f]_{n}$ is given by

$$
[f]_{n}(x)= \begin{cases}f(x), & \text { if } f(x) \preceq \mu_{n} \tag{18}\\ \mu_{n}, & \text { if } \mu_{n} \prec f(x)\end{cases}
$$

$\mathbf{0} \prec \mu_{1} \prec \mu_{2} \prec \cdots<\mu_{n} \prec \cdots, \mu_{n} \oplus \mu_{n}=\mu_{2 n}$ and $\lim _{n \rightarrow \infty} \mu_{n}=\Delta$. It is obvious that $\left\{[f]_{n}\right\}$ is an increasing functionals sequence.

Definition 19. Let \oplus be a strict pseudoaddition and $m: \mathscr{A} \rightarrow$ $[a, b]$ a σ - \oplus-decomposable measure. If X is σ-finite of \oplus measure and $\left\{E_{n}\right\}$ is a \oplus-measure finite and monotone cover of X, then the pseudointegral of a measurable function f : $X \rightarrow[a, b]$ is defined by

$$
\begin{equation*}
\int_{X}^{\oplus} f \odot d m=\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[f]_{n} \odot d m \tag{19}
\end{equation*}
$$

3. Main Results

Lemma 20 (see [21]). Let \oplus be a continuous pseudoaddition and $m: \mathscr{A} \rightarrow[a, b]$ a σ - \oplus-decomposable measure. If $m(X) \prec$ Δ, then for all $f, h \in \mathscr{B}(\mathscr{A})$, we have
(1) $\int_{X}^{\oplus}\left(f \vee_{\oplus} h\right) \odot d m=\int_{X}^{\oplus} f \odot d m \vee_{\oplus} \int_{X}^{\oplus} h \odot d m ;$
(2) $\int_{X}^{\oplus}\left(f \wedge_{\odot} h\right) \odot d m=\int_{X}^{\oplus} f \odot d m \wedge_{\odot} \int_{X}^{\oplus} h \odot d m$;
(3) If $f \oplus h \in \mathscr{B}(\mathscr{A})$, then

$$
\begin{equation*}
\int_{X}^{\oplus}(f \oplus h) \odot d m=\int_{X}^{\oplus} f \odot d m \oplus \int_{X}^{\oplus} h \odot d m \tag{20}
\end{equation*}
$$

(4) $f \leq h \Rightarrow \int_{X}^{\oplus} f \odot d m \leq \int_{X}^{\oplus} h \odot d m$;
(5) $\int_{X_{1} \cup X_{2}}^{\oplus} f \odot d m=\int_{X_{1}}^{\oplus} f \odot d m \oplus \int_{X_{2}}^{\oplus} f \odot d m$, where $X_{1}, X_{2} \in \mathscr{A}$ with $X_{1} \cup X_{2}=X$ and $X_{1} \cap X_{2}=\emptyset$;
(6) $\int_{E}^{\oplus} f \odot d m=\mathbf{0}$ whenever $E \in \mathscr{A}$ with $m(E)=\mathbf{0}$.

Theorem 21. Let \oplus be a strict pseudoaddition and $m: \mathscr{A} \rightarrow$ $[a, b]$ a σ - \oplus-decomposable measure. If X is σ-finite of \oplus measure and $f \in \mathscr{M}(\mathscr{A})$. Let $\left\{E_{n}^{(i)}\right\}(i=1,2)$ be two different \oplus-measure finite and monotone covers of X and let $\left\{k_{n}^{(j)}\right\}(j=1,2)$ be two different positive integer sequences with $\lim _{n \rightarrow \infty} k_{n}^{(j)}=+\infty$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m=\lim _{n \rightarrow \infty} \int_{E_{n}^{(2)}}^{\oplus}[f]_{k_{n}^{(2)}} \odot d m \tag{21}
\end{equation*}
$$

Proof. Let $s=\lim _{n \rightarrow \infty} \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m$. Since $\left\{\int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot\right.$ $d m\}$ is an increasing sequence, we have

$$
\begin{equation*}
\int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m \preceq s \tag{22}
\end{equation*}
$$

for every positive integer n. Let $F \in \mathscr{A}$ with $m(F) \prec \Delta$ and k is an arbitrary positive integer. If $k_{n}^{(1)}>k$, then we have

$$
\begin{align*}
\int_{F}^{\oplus} & {[f]_{k} \odot d m } \\
& =\int_{F \cap E_{n}^{(1)}}^{\oplus}[f]_{k} \odot d m \oplus \int_{F-E_{n}^{(1)}}^{\oplus}[f]_{k} \odot d m \\
& \leq \int_{F \cap E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m \oplus\left(\mu_{k} \odot m\left(F-E_{n}^{(1)}\right)\right) \tag{23}\\
& \leq \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m \oplus\left(\mu_{k} \odot m\left(F-E_{n}^{(1)}\right)\right) \\
& \leq s \oplus\left(\mu_{k} \odot m\left(F-E_{n}^{(1)}\right)\right) .
\end{align*}
$$

Since $\left\{F-E_{n}^{(1)}\right\}$ is a decreasing sequence and

$$
\begin{equation*}
\bigcap_{n=1}^{\infty}\left(F-E_{n}^{(1)}\right)=F-\bigcup_{n=1}^{\infty} E_{n}^{(1)}=F-X=\emptyset, \tag{24}
\end{equation*}
$$

by Theorem 3.3 in [38], we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(F-E_{n}^{(1)}\right)=m\left(\lim _{n \rightarrow \infty}\left(F-E_{n}^{(1)}\right)\right)=\mathbf{0} \tag{25}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\int_{F}^{\oplus}[f]_{k} \odot d m & \leq s \oplus\left(\mu_{k} \odot \lim _{n \rightarrow \infty} m\left(F-E_{n}^{(1)}\right)\right) \\
& =s=\lim _{n \rightarrow \infty} \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m . \tag{26}
\end{align*}
$$

In particular, let $F=E_{l}^{(2)}$ and $k=k_{l}^{(2)}$. Then we have

$$
\begin{equation*}
\int_{E_{l}^{(2)}}^{\oplus}[f]_{k_{l}^{(2)}} \odot d m \preceq \lim _{n \rightarrow \infty} \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m \tag{27}
\end{equation*}
$$

for every positive integer l. Hence, we get that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \int_{E_{l}^{(2)}}^{\oplus}[f]_{k_{l}^{(2)}} \odot d m \leq \lim _{n \rightarrow \infty} \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m \tag{28}
\end{equation*}
$$

On the contrary, using a similar argument, we can obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E_{n}^{(1)}}^{\oplus}[f]_{k_{n}^{(1)}} \odot d m \preceq \lim _{l \rightarrow \infty} \int_{E_{l}^{(2)}}^{\oplus}[f]_{k_{l}^{(2)}} \odot d m \tag{29}
\end{equation*}
$$

In Theorem 21, put $k_{n}^{(1)}=n$ and $k_{l}^{(2)}=l$. Then we can easily see that the pseudointegral in Definition 19 has a unique value. In particular, we can get some elementary properties of the pseudointegral in the following theorem.

Theorem 22. Let \oplus be a strict pseudoaddition and $m: \mathscr{A} \rightarrow$ $[a, b] a \sigma-\oplus$-decomposable measure. If there exists an increasing sequence of sets $\left\{E_{n}\right\} \subset \mathscr{A}$ with $m\left(E_{n}\right)<\Delta, n=1,2, \ldots$, such that $X=\bigcup_{n=1}^{\infty} E_{n}$, then for all $f, h \in \mathscr{M}(\mathscr{A})$, we have
(1) $\int_{X}^{\oplus}\left(f \vee_{\oplus} h\right) \odot d m=\int_{X}^{\oplus} f \odot d m \vee_{\oplus} \int_{X}^{\oplus} h \odot d m$;
(2) $\int_{X}^{\oplus}\left(f \wedge_{\odot} h\right) \odot d m=\int_{X}^{\oplus} f \odot d m \wedge_{\odot} \int_{X}^{\oplus} h \odot d m$;
(3) $\int_{X}^{\oplus}(f \oplus h) \odot d m=\int_{X}^{\oplus} f \odot d m \oplus \int_{X}^{\oplus} h \odot d m$;
(4) $f \leq h \Rightarrow \int_{X}^{\oplus} f \odot d m \preceq \int_{X}^{\oplus} h \odot d m$;
(5) $\int_{X_{1} \cup X_{2}}^{\oplus} f \odot d m=\int_{X_{1}}^{\oplus} f \odot d m \oplus \int_{X_{2}}^{\oplus} f \odot d m$, where $X_{1}, X_{2} \in \mathscr{A}$ with $X_{1} \cup X_{2}=X$ and $X_{1} \cap X_{2}=\emptyset$;
(6) $\int_{E}^{\oplus} f \odot d m=\mathbf{0}$ whenever $E \in \mathscr{A}$ with $m(E)=\mathbf{0}$.

Proof. For (1) and (2), we only prove (1) holds. By a similar proof, we can prove (2) holds. Since

$$
\begin{align*}
& {[f]_{n}(x)= \begin{cases}f(x), & \text { if } f(x) \leq \mu_{n}, \\
\mu_{n}, & \text { if } \mu_{n}<f(x),\end{cases} } \tag{30}\\
& {[h]_{n}(x)= \begin{cases}h(x), & \text { if } h(x) \leq \mu_{n}, \\
\mu_{n}, & \text { if } \mu_{n}<h(x)\end{cases} }
\end{align*}
$$

$n=1,2, \ldots$, we get that

$$
\left([f]_{n} \vee_{\oplus}[h]_{n}\right)(x)= \begin{cases}\left(f \vee_{\oplus} h\right)(x), & \text { if }\left(f \vee_{\oplus} h\right)(x) \leq \mu_{n} \tag{31}\\ \mu_{n}, & \text { if } \mu_{n}<\left(f \vee_{\oplus} h\right)(x)\end{cases}
$$

which implies that

$$
\begin{equation*}
\left[f \vee_{\oplus} h\right]_{n}=\left([f]_{n} \vee_{\oplus}[h]_{n}\right) \tag{32}
\end{equation*}
$$

Thus, by (1) of Lemma 20, we have

$$
\begin{align*}
& \int_{X}^{\oplus}\left(f \vee_{\oplus} h\right) \odot d m \\
& \quad=\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}\left[f \vee_{\oplus} h\right]_{n} \odot d m \\
& \quad=\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}\left([f]_{n} \vee_{\oplus}[h]_{n}\right) \odot d m \tag{33}\\
& \quad=\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[f]_{n} \odot d m \vee_{\oplus_{n}} \lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[h]_{n} \odot d m \\
& \quad=\int_{X}^{\oplus} f \odot d m \vee_{\oplus} \int_{X}^{\oplus} h \odot d m .
\end{align*}
$$

(3) Since

$$
\begin{align*}
& \quad[f \oplus h]_{n}(x)= \begin{cases}(f \oplus h)(x), & \text { if }(f \oplus h)(x) \leq \mu_{n}, \\
\mu_{n}, & \text { if } \mu_{n} \prec(f \oplus h)(x),\end{cases} \\
& = \begin{cases}\left.[f]_{n} \oplus[h]_{n}\right)(x) \\
(f \oplus h)(x), & \text { if }\left(f \vee_{\oplus} h\right)(x) \leq \mu_{n}, \\
\mu_{n} \oplus\left(f \wedge_{\odot} h\right)(x), & \text { if }\left(f \wedge_{\odot} h\right)(x) \leq \mu_{n} \prec\left(f \vee_{\oplus} h\right)(x), \\
\mu_{n} \oplus \mu_{n}=\mu_{2 n}, & \text { if } \mu_{n} \prec\left(f \wedge_{\odot} h\right)(x),\end{cases}
\end{align*}
$$

$n=1,2, \ldots$, we get that

$$
\begin{equation*}
[f \oplus h]_{n} \leq[f]_{n} \oplus[h]_{n} \leq[f \oplus h]_{2 n} . \tag{35}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
\int_{E_{n}}^{\oplus}[f \oplus h]_{n} \odot d m & \leq \int_{E_{n}}^{\oplus}\left([f]_{n} \oplus[h]_{n}\right) \odot d m \\
& \leq \int_{E_{n}}^{\oplus}[f \oplus h]_{2 n} \odot d m \tag{36}\\
& \leq \int_{E_{2 n}}^{\oplus}[f \oplus h]_{2 n} \odot d m .
\end{align*}
$$

By (3) of Lemma 20, we have

$$
\begin{equation*}
\int_{E_{n}}^{\oplus}\left([f]_{n} \oplus[h]_{n}\right) \odot d m=\int_{E_{n}}^{\oplus}[f]_{n} \odot d m \oplus \int_{E_{n}}^{\oplus}[h]_{n} \odot d m, \tag{37}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\int_{E_{n}}^{\oplus}[f \oplus h]_{n} \odot d m & \leq \int_{E_{n}}^{\oplus}[f]_{n} \odot d m \oplus \int_{E_{n}}^{\oplus}[h]_{n} \odot d m \\
& \leq \int_{E_{2 n}}^{\oplus}[f \oplus h]_{2 n} \odot d m . \tag{38}
\end{align*}
$$

Hence, we get that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[f \oplus h]_{n} \odot d m \\
& \quad \leq \lim _{n \rightarrow \infty}\left(\int_{E_{n}}^{\oplus}[f]_{n} \odot d m \oplus \int_{E_{n}}^{\oplus}[h]_{n} \odot d m\right) \\
& \quad=\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[f]_{n} \odot d m \oplus \lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[h]_{n} \odot d m \tag{39}\\
& \quad \leq \lim _{n \rightarrow \infty} \int_{E_{2 n}}^{\oplus}[f \oplus h]_{2 n} \odot d m,
\end{align*}
$$

which implies that

$$
\begin{aligned}
\int_{X}^{\oplus}(f \oplus h) \odot d m & \leq \int_{X}^{\oplus} f \odot d m \oplus \int_{X}^{\oplus} h \odot d m \\
& \leq \int_{X}^{\oplus}(f \oplus h) \odot d m
\end{aligned}
$$

that is,

$$
\begin{equation*}
\int_{X}^{\oplus}(f \oplus h) \odot d m=\int_{X}^{\oplus} f \odot d m \oplus \int_{X}^{\oplus} h \odot d m \tag{41}
\end{equation*}
$$

(4) If $f \leq h$, then $[f]_{n} \leq[h]_{n}, n=1,2, \ldots$.. Thus, by (4) of Lemma 20, we have

$$
\begin{equation*}
\int_{E_{n}}^{\oplus}[f]_{n} \odot d m \preceq \int_{E_{n}}^{\oplus}[h]_{n} \odot d m . \tag{42}
\end{equation*}
$$

Hence, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[f]_{n} \odot d m \preceq \lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[h]_{n} \odot d m \tag{43}
\end{equation*}
$$ that is,

$$
\begin{equation*}
\int_{X}^{\oplus} f \odot d m \preceq \int_{X}^{\oplus} h \odot d m ; \tag{44}
\end{equation*}
$$

(5) Since $X=\bigcup_{n=1}^{\infty} E_{n}$ with $m\left(E_{n}\right) \prec \Delta$, we have $X_{1}=$ $\bigcup_{n=1}^{\infty}\left(E_{n} \cap X_{1}\right)$ with $m\left(E_{n} \cap X_{1}\right)<\Delta$ and $X_{2}=\bigcup_{n=1}^{\infty}\left(E_{n} \cap X_{2}\right)$ with $m\left(E_{n} \cap X_{2}\right)<\Delta$. By (5) of Lemma 20, we have

$$
\begin{equation*}
\int_{E_{n}}^{\oplus}[f]_{n} \odot d m=\int_{E_{n} \cap X_{1}}^{\oplus}[f]_{n} \odot d m \oplus \int_{E_{n} \cap X_{2}}^{\oplus}[f]_{n} \odot d m, \tag{45}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\int_{X}^{\oplus} & f \odot d m \\
& =\lim _{n \rightarrow \infty} \int_{E_{n}}^{\oplus}[f]_{n} \odot d m \\
& =\lim _{n \rightarrow \infty} \int_{E_{n} \cap X_{1}}^{\oplus}[f]_{n} \odot d m \oplus \int_{E_{n} \cap X_{2}}^{\oplus}[f]_{n} \odot d m \tag{46}\\
& =\lim _{n \rightarrow \infty} \int_{E_{n} \cap X_{1}}^{\oplus}[f]_{n} \odot d m \oplus \lim _{n \rightarrow \infty} \int_{E_{n} \cap X_{2}}^{\oplus}[f]_{n} \odot d m \\
& =\int_{X_{1}}^{\oplus} f \odot d m \oplus \int_{X_{2}}^{\oplus} f \odot d m .
\end{align*}
$$

(6) Since $X=\bigcup_{n=1}^{\infty} E_{n}$, we have $E=\bigcup_{n=1}^{\infty}\left(E_{n} \cap E\right)$. By the monotonicity of $\sigma-\oplus$-decomposable measure m, we get that if $m(E)=\mathbf{0}$, then $m\left(E_{n} \cap E\right)=\mathbf{0}$. By (6) of Theorem 22, we have

$$
\begin{equation*}
\int_{E \cap E_{n}}^{\oplus}[f]_{n} \odot d m=\mathbf{0}, \tag{47}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\int_{E}^{\oplus} f \odot d m=\lim _{n \rightarrow \infty} \int_{E \cap E_{n}}^{\oplus}[f]_{n} \odot d m=\mathbf{0} \tag{48}
\end{equation*}
$$

Theorem 23. Let \oplus be a strict pseudoaddition and $m: \mathscr{A} \rightarrow$ $[a, b]$ a σ - \oplus-decomposable measure.
(1) If $f \in \mathscr{M}(\mathscr{A})$ and $E \in \mathscr{A}$ is a σ-finite set of \oplus-measure, then $\int_{E}^{\oplus} f \odot d m=\mathbf{0}$ if and only if $f=\mathbf{0}$ a.e. on E.
(2) If $f \in \mathscr{M}(\mathscr{A})$, then for any $E \in \mathscr{A}, \lim _{m E \rightarrow \mathbf{0}} \int_{E}^{\oplus} f \odot$ $d m=\mathbf{0}$.

Proof. (1) Suppose $\int_{E}^{\oplus} f \odot d m=\mathbf{0}$. For arbitrary $\mathbf{0}<\delta$, let $E_{\delta}=\{x \in E \mid \delta \leq f(x)\} \in \mathscr{A}$. Then we get that

$$
\begin{align*}
\delta \odot m\left(E_{\delta}\right) & \leq \int_{E_{\delta}}^{\oplus} f \odot d m \preceq \int_{E_{\delta}}^{\oplus} f \odot d m \oplus \int_{E-E_{\delta}}^{\oplus} f \odot d m \\
& =\int_{E}^{\oplus} f \odot d m=\mathbf{0} \tag{49}
\end{align*}
$$

Thus, we have $m\left(E_{\delta}\right)=\mathbf{0}$. Since $\mathbf{0} \prec \delta$ is arbitrary, we have $m(\mathcal{S}[\mathbf{0} \prec f] \cap E)=\mathbf{0}$.

Suppose $f=\mathbf{0}$ a.e. on E, that is, $m(E \cap \mathcal{S}[\mathbf{0} \prec f])=\mathbf{0}$. By (6) of Theorem 22, we have

$$
\begin{equation*}
\int_{E}^{\oplus} f \odot d m=\int_{E \cap \delta[0<f]}^{\oplus} f \odot d m \oplus \int_{E \cap \delta[f=\mathbf{0}]}^{\oplus} f \odot d m=\mathbf{0} \tag{50}
\end{equation*}
$$

(2) If there exists $\Omega \prec \Delta$, such that $f(x) \leq \Omega$ for all $x \in E$, then

$$
\begin{equation*}
\int_{E}^{\oplus} f \odot d m \preceq \Omega \odot m(E), \quad \text { i.e., } \lim _{m E \rightarrow \mathbf{0}} \int_{E}^{\oplus} f \odot d m=\mathbf{0} \tag{51}
\end{equation*}
$$

For any $f \in \mathscr{M}(\mathscr{A})$, we have

$$
\begin{equation*}
\int_{E}^{\oplus} f \odot d m=\lim _{n \rightarrow \infty} \int_{E}^{\oplus}[f]_{n} \odot d m \tag{52}
\end{equation*}
$$

which implies that

$$
\begin{align*}
\lim _{m E \rightarrow 0} \int_{E}^{\oplus} f \odot d m & =\lim _{m E \rightarrow 0} \lim _{n \rightarrow \infty} \int_{E}^{\oplus}[f]_{n} \odot d m \tag{53}\\
& =\lim _{n \rightarrow \infty} \lim _{m E \rightarrow 0} \int_{E}^{\oplus}[f]_{n} \odot d m=\mathbf{0} .
\end{align*}
$$

Lemma 24 (see [38]). Let \oplus be a strict pseudoaddition. The function $d_{\oplus}:[a, b]^{2} \rightarrow[a, b]$ given by

$$
d_{\oplus}(x, y)=\left|x-_{\oplus}^{\prime} y\right|= \begin{cases}y-{ }_{\oplus}^{\prime} x, & \text { if } x \leq y, \tag{54}\\ x-{ }_{\oplus}^{\prime} y, & \text { if } y<x,\end{cases}
$$

is a pseudometric on $[a, b]$ with $\lambda=\mathbf{1}$.
Theorem 25. Let \oplus be a strict pseudoaddition and X a σ-finite set of \oplus-measure. If $m: \mathscr{A} \rightarrow[a, b]$ is a $\sigma-\oplus$-decomposable measure, then for any $f, h \in \mathscr{M}(\mathscr{A})$,

$$
\begin{equation*}
\left|\int_{X}^{\oplus} f \odot d m-_{\oplus}^{\prime} \int_{X}^{\oplus} h \odot d m\right| \leq \int_{X}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m . \tag{55}
\end{equation*}
$$

Proof. Let $E=\{x \mid h(x) \preceq f(x), x \in X\}$ and $F=\{x \mid f(x) \prec$ $h(x), x \in X\}$. Then E and F are two \oplus-measure σ-finite sets of X. By (4) of Theorem 22, we have

$$
\begin{equation*}
\int_{E}^{\oplus} h \odot d m \leq \int_{E}^{\oplus} f \odot d m, \quad \int_{F}^{\oplus} f \odot d m \leq \int_{F}^{\oplus} h \odot d m . \tag{56}
\end{equation*}
$$

Thus, by (3) of Theorem 22, we have

$$
\begin{align*}
\int_{E}^{\oplus} f \odot d m & =\int_{E}^{\oplus}\left(\left|f-_{\oplus}^{\prime} h\right| \oplus h\right) \odot d m \\
& =\int_{E}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m \oplus \int_{E}^{\oplus} h \odot d m \tag{57}\\
\int_{F}^{\oplus} h \odot d m & =\int_{F}^{\oplus}\left(\left|f-_{\oplus}^{\prime} h\right| \oplus f\right) \odot d m \\
& =\int_{F}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m \oplus \int_{F}^{\oplus} f \odot d m
\end{align*}
$$

which implies that

$$
\begin{align*}
& \int_{F}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m \oplus \int_{X}^{\oplus} f \odot d m \\
& \quad=\int_{E}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m \oplus \int_{X}^{\oplus} h \odot d m . \tag{58}
\end{align*}
$$

If $\int_{X}^{\oplus} h \odot d m \leq \int_{X}^{\oplus} f \odot d m$, then we have

$$
\begin{align*}
\int_{X}^{\oplus} f \odot d m & =\left|\int_{X}^{\oplus} f \odot d m-_{\oplus}^{\prime} \int_{X}^{\oplus} h \odot d m\right| \oplus \int_{X}^{\oplus} h \odot d m \\
& \leq \int_{E}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m \oplus \int_{X}^{\oplus} h \odot d m \tag{59}\\
& \leq \int_{X}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m \oplus \int_{X}^{\oplus} h \odot d m
\end{align*}
$$

which implies that

$$
\begin{equation*}
\left|\int_{X}^{\oplus} f \odot d m-_{\oplus}^{\prime} \int_{X}^{\oplus} h \odot d m\right| \leq \int_{X}^{\oplus}\left|f-_{\oplus}^{\prime} h\right| \odot d m . \tag{60}
\end{equation*}
$$

Similarly, if $\int_{X}^{\oplus} f \odot d m \prec \int_{X}^{\oplus} h \odot d m$, we can also get this conclusion.

Theorem 26. Let \oplus be a strict pseudoaddition, and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If
(1) $\left\{f_{n}\right\} \subset \mathscr{M}(\mathscr{A})$;
(2) $f_{n} \leq F$ a.e. on $X, n=1,2, \ldots$, and $F \in \mathscr{M}(\mathscr{A})$;
(3) $f_{n} \Rightarrow f$,
then $f \in \mathscr{M}(\mathscr{A})$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m \tag{61}
\end{equation*}
$$

Proof. Since $f_{n} \Rightarrow f$ on X, by Theorem 3.8 in [38], there exists a subsequence $\left\{f_{n_{i}}\right\}$ of $\left\{f_{n}\right\}$ that a.e. converges to f on X. By Theorem 3.5 in [38], we have $f \in \mathscr{M}(\mathscr{A})$.
(I) Suppose $m(X) \prec \Delta$. By (2) of Theorem 23, for arbitrary $\mathbf{0} \prec \varepsilon=\varepsilon_{1} \oplus \varepsilon_{1}$, there exists $\mathbf{0} \prec \delta$ such that if $E \subset X$ with $m(E) \prec \delta$, we have

$$
\begin{equation*}
\int_{E}^{\oplus} F \odot d m \prec \varepsilon_{1} . \tag{62}
\end{equation*}
$$

Since $f_{n} \Rightarrow f$, there exists a natural number $N>0$, such that $m\left(\mathcal{S}\left[\sigma \leq\left|f-{ }_{\oplus}^{\prime} f_{n}\right|\right]\right)<\delta$ for all $n \geq N$, where $\varepsilon_{1}=\sigma \odot m(X)$. Thus, we get that

$$
\begin{equation*}
\int_{\mathcal{S}\left[\sigma \leq\left|f-_{\oplus}^{\prime} f_{n}\right|\right]}^{\oplus} F \odot d m \prec \varepsilon_{1} . \tag{63}
\end{equation*}
$$

Hence, by Theorem 25, we have

$$
\begin{align*}
&\left|\int_{X}^{\oplus} f \odot d m-{ }_{\oplus}^{\prime} \int_{X}^{\oplus} f_{n} \odot d m\right| \\
& \leq \int_{X}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \\
& \quad \int_{\mathcal{S}\left[\sigma \leq\left|f-_{\oplus}^{\prime} f_{n}\right|\right]}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \\
& \oplus \int_{\mathcal{S}\left[\left|f-_{\oplus}^{\prime} f_{n}\right|<\sigma\right]}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \tag{64}\\
& \leq \int_{\mathcal{S}\left[\sigma \leq\left|f-_{\oplus}^{\prime} f_{n}\right|\right]}^{\oplus} F \odot d m \\
& \oplus\left(\sigma \odot m\left(\mathcal{S}\left[\left|f-_{\oplus}^{\prime} f_{n}\right| \prec \sigma\right]\right)\right) \\
&<\varepsilon_{1} \oplus(\sigma \odot m(X))=\varepsilon_{1} \oplus \varepsilon_{1}=\varepsilon .
\end{align*}
$$

By Lemma 24, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m \tag{65}
\end{equation*}
$$

(II) Suppose $m(X)=\Delta$. For arbitrary $0<\varepsilon=\varepsilon_{1} \oplus \varepsilon_{1}$, there exists $E_{k} \subseteq X$ with $m\left(E_{k}\right) \prec \Delta$, such that

$$
\begin{equation*}
\int_{X}^{\oplus} F \odot d m \prec \int_{E_{k}}^{\oplus}[F]_{k} \odot d m \oplus \varepsilon_{1} . \tag{66}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
\int_{E_{k}}^{\oplus} & {[F]_{k} \odot d m \oplus \int_{X-E_{k}}^{\oplus} F \odot d m } \\
& \leq \int_{E_{k}}^{\oplus} F \odot d m \oplus \int_{X-E_{k}}^{\oplus} F \odot d m \tag{67}\\
& =\int_{X}^{\oplus} F \odot d m \prec \int_{E_{k}}^{\oplus}[F]_{k} \odot d m \oplus \varepsilon_{1} ;
\end{align*}
$$

that is, $\int_{X-E_{k}}^{\oplus} F \odot d m \prec \varepsilon_{1}$. Since the measurable functionals sequence $\left\{\left|f-_{\oplus}^{\prime} f_{n}\right|\right\}$ satisfies
(i) $\left|f-_{\oplus}^{\prime} f_{n}\right| \leq F$ a.e. on E_{k};
(ii) $\left|f-_{\oplus}^{\prime} f_{n}\right| \Rightarrow \mathbf{0}$ on E_{k},
by (I), we get that there exists a natural number $N>0$, such that

$$
\begin{equation*}
\int_{E_{k}}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \prec \varepsilon_{1}, \tag{68}
\end{equation*}
$$

for all $n>N$. Hence, by Theorem 25, we have

$$
\begin{align*}
& \left|\int_{X}^{\oplus} f \odot d m-_{\oplus}^{\prime} \int_{X}^{\oplus} f_{n} \odot d m\right| \\
& \quad \leq \int_{X}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \\
& \quad=\int_{X-E_{k}}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \oplus \int_{E_{k}}^{\oplus}\left|f-_{\oplus}^{\prime} f_{n}\right| \odot d m \tag{69}\\
& \quad \leq \int_{X-E_{k}}^{\oplus} F \odot d m \oplus \varepsilon_{1} \prec \varepsilon_{1} \oplus \varepsilon_{1}=\varepsilon .
\end{align*}
$$

Consequently, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m \tag{70}
\end{equation*}
$$

Corollary 27. If the condition (3) of Theorem 26 is replaced by $f_{n} \rightarrow f$ a.e. on X, then the conclusion of Theorem 26 holds.

Proof. Since $f_{n} \rightarrow f$ a.e. on X, by Theorem 3.5 in [38], we have $f \in \mathscr{M}(\mathscr{A})$.
(I) Suppose $m(X) \prec \Delta$. By Theorem 3.9 in [38], if $f_{n} \rightarrow$ f a.e. on X, then $f_{n} \Rightarrow f$. By Theorem 26 (I), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m \tag{71}
\end{equation*}
$$

(II) Suppose $m(X)=\Delta$. Since X is σ-finite set of $\oplus-$ measure, there exists an increasing sequence of sets $\left\{E_{n}\right\} \subset \mathscr{A}$ with $m\left(E_{n}\right) \prec \Delta, n=1,2, \ldots$, such that $X=\bigcup_{n=1}^{\infty} E_{n}$. For any $E_{k}, k=1,2, \ldots$, the sequence of measurable functionals $\left\{\left|f-_{\oplus}^{\prime} f_{n}\right|\right\}$ satisfies
(i) $\left|f-_{\oplus}^{\prime} f_{n}\right| \leq F$ a.e. on $E_{k}, k=1,2, \ldots$;
(ii) $\left|f-_{\oplus}^{\prime} f_{n}\right| \rightarrow \mathbf{0}$ a.e. on $E_{k}, k=1,2, \ldots$.

By Theorem 3.9 in [38], we have
(ii) ${ }^{\prime}\left|f-_{\oplus}^{\prime} f_{n}\right| \Rightarrow \mathbf{0}$ on $E_{k}, k=1,2, \ldots$.

By (I) and proof of Theorem 26 (II), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m \tag{72}
\end{equation*}
$$

Lemma 28. Let \oplus be a strict pseudoaddition, and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If $\left\{x_{n}\right\}$ is a monotone sequence, then the sequence $\left\{x_{n}\right\}$ is convergence.

Proof. If $\left\{x_{n}\right\}$ is an increasing sequence, then

$$
\begin{align*}
& \underline{\lim _{n \rightarrow \infty}} x_{n}=\underset{\substack{\oplus \\
n=1}}{\infty}\left(\underset{\substack{\wedge_{\odot}}}{ } x_{k}\right)=\underset{\substack{\infty \\
n=1}}{\infty} x_{n}, \\
& \left.\varlimsup_{n \rightarrow \infty} x_{n}=\underset{\substack{\wedge_{\odot} \\
n=1}}{\infty} \underset{k \geq n}{\vee_{\oplus}} x_{k}\right)=\underset{\substack{\bigvee_{\oplus=1}^{\infty}}}{\infty} x_{n} . \tag{73}
\end{align*}
$$

If $\left\{x_{n}\right\}$ is a decreasing sequence, then

$$
\begin{align*}
& \underline{n \rightarrow \infty} \lim _{n} x_{n}=\underset{n=1}{\vee_{\oplus}^{\infty}}\left(\underset{k \geq n}{\wedge_{\odot}} x_{k}\right)=\underset{\substack{\wedge_{\odot} \\
n=1}}{\infty} x_{n}, \\
& \left.{\underset{n i m}{\lim }}_{n \rightarrow \infty} x_{n}=\underset{\substack{\wedge_{\odot} \\
n=1}}{\substack{\vee_{\oplus} \\
k \geq n}} x_{k}\right)=\underset{\substack{\wedge_{\odot} \\
n=1}}{\infty} x_{n} . \tag{74}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\underline{\lim _{n \rightarrow \infty}} x_{n}=\varlimsup_{n \rightarrow \infty} x_{n} . \tag{75}
\end{equation*}
$$

By Theorem 3.2 in [38], we get that the sequence $\left\{x_{n}\right\}$ is convergent.

Theorem 29. Let \oplus be a strict pseudoaddition and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If $\left\{f_{n}\right\}$ is an increasing sequence of measurable functionals on X, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} \lim _{n \rightarrow \infty} f_{n} \odot d m \tag{76}
\end{equation*}
$$

Proof. Let $\left\{f_{n}\right\}$ be an increasing sequence of measurable functionals on X. By Lemma 28, we get that the sequence of measurable functionals $\left\{f_{n}\right\}$ is convergent. Let $f=$ $\lim _{n \rightarrow \infty} f_{n}$. By Theorem 3.5 in [38], we have $f \in \mathscr{M}(\mathscr{A})$ with $f_{n} \leq f$ on X. By (4) of Theorem 22, we get that

$$
\begin{equation*}
\int_{X}^{\oplus} f_{n} \odot d m \preceq \int_{X}^{\oplus} f \odot d m \tag{77}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m \preceq \int_{X}^{\oplus} f \odot d m \tag{78}
\end{equation*}
$$

On the contrary, since X is σ-finite set of \oplus-measure, there exists an increasing sequence of sets $\left\{E_{n}\right\} \subset \mathscr{A}$ with $m\left(E_{n}\right) \prec \Delta, n=1,2, \ldots$, such that $X=\bigcup_{n=1}^{\infty} E_{n}$. For any given integer $k>0,\left\{\left[f_{n}\right]_{k}\right\}_{n \geq k}$ is an increasing sequence of measurable functionals and $\left[f_{n}\right]_{k} \preceq f$ on X, for all $n \geq k$. Now we show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[f_{n}\right]_{k}=[f]_{k} . \tag{79}
\end{equation*}
$$

For arbitrary $x_{0} \in X$,
(i) if $f_{n}\left(x_{0}\right) \leq \mu_{k}$, that is, $\left[f_{n}\right]_{k}\left(x_{0}\right)=f_{n}\left(x_{0}\right)$ for all $n \geq k$, then $f\left(x_{0}\right) \preceq \mu_{k}$, that is, $[f]_{k}\left(x_{0}\right)=f\left(x_{0}\right)$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[f_{n}\right]_{k}\left(x_{0}\right)=[f]_{k}\left(x_{0}\right) ; \tag{80}
\end{equation*}
$$

(ii) if there exists $n_{0} \geq k$, such that $\mu_{k} \prec f_{n_{0}}\left(x_{0}\right)$, then $\mu_{k} \prec f_{n}\left(x_{0}\right)$; that is, $\left[f_{n}\right]_{k}\left(x_{0}\right)=\mu_{k}$ for all $n \geq n_{0}$; it follows that $\mu_{k} \preceq f\left(x_{0}\right)$; that is, $[f]_{k}\left(x_{0}\right)=\mu_{k}$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[f_{n}\right]_{k}\left(x_{0}\right)=[f]_{k}\left(x_{0}\right)=\mu_{k} \tag{81}
\end{equation*}
$$

Hence, by Corollary 27, we get that

$$
\begin{equation*}
\int_{E_{k}}^{\oplus}[f]_{k} \odot d m=\lim _{n \rightarrow \infty} \int_{E_{k}}^{\oplus}\left[f_{n}\right]_{k} \odot d m \preceq \lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m, \tag{82}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\int_{X}^{\oplus} f \odot d m=\lim _{k \rightarrow \infty} \int_{E_{k}}^{\oplus}[f]_{k} \odot d m \preceq \lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m \tag{83}
\end{equation*}
$$

Consequently, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m=\int_{X}^{\oplus} \lim _{n \rightarrow \infty} f_{n} \odot d m \tag{84}
\end{equation*}
$$

Theorem 30. Let \oplus be a strict pseudoaddition, and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If $\left\{f_{n}\right\}$ is a decreasing sequence offinite measurable functionals and pseudointegral of f_{1} is finite on X, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} \lim _{n \rightarrow \infty} f_{n} \odot d m \tag{85}
\end{equation*}
$$

Proof. Let $\left\{f_{n}\right\}$ be a decreasing sequence of measurable functionals on X. By Lemma 28, we get that the sequence of measurable functionals $\left\{f_{n}\right\}$ is convergent. Let $f=$ $\lim _{n \rightarrow \infty} f_{n}$. By Theorem 3.5 in [38], we have $f \in \mathscr{M}(\mathscr{A})$. Since $\left\{f_{1}-{ }_{\oplus}^{\prime} f_{n}\right\}$ is an increasing sequence of measurable functionals, by Theorem 29, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus}\left(f_{1}-\frac{\prime}{\oplus} f_{n}\right) \odot d m=\int_{X}^{\oplus} \lim _{n \rightarrow \infty}\left(f_{1}--_{\oplus}^{\prime} f_{n}\right) \odot d m \tag{86}
\end{equation*}
$$

Since $f_{1}=\left(f_{1}-{ }_{\oplus}^{\prime} f_{n}\right) \oplus f_{n}$ and \oplus is continuous, we have

$$
\begin{equation*}
f_{1}=\lim _{n \rightarrow \infty}\left(f_{1}-{ }_{\oplus}^{\prime} f_{n}\right) \oplus \lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty}\left(f_{1}-{ }_{\oplus}^{\prime} f_{n}\right) \oplus f \tag{87}
\end{equation*}
$$

Since $f_{1}=\left(f_{1}-_{\oplus}^{\prime} f\right) \oplus f<\Delta$ and \oplus is strict, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(f_{1}-_{\oplus}^{\prime} f_{n}\right)=f_{1}-_{\oplus}^{\prime} f \tag{88}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus}\left(f_{1}-_{\oplus}^{\prime} f_{n}\right) \odot d m=\int_{X}^{\oplus}\left(f_{1}-_{\oplus}^{\prime} f\right) \odot d m . \tag{89}
\end{equation*}
$$

By (3) of Theorem 22, we have

$$
\begin{align*}
& \int_{X}^{\oplus} f_{1} \odot d m=\int_{X}^{\oplus}\left(f_{1}-_{\oplus}^{\prime} f_{n}\right) \odot d m \oplus \int_{X}^{\oplus} f_{n} \odot d m, \tag{90}\\
& \int_{X}^{\oplus} f_{1} \odot d m=\int_{X}^{\oplus}\left(f_{1}-_{\oplus}^{\prime} f\right) \odot d m \oplus \int_{X}^{\oplus} f \odot d m .
\end{align*}
$$

Thus, we get that

$$
\begin{align*}
& \int_{X}^{\oplus} f_{1} \odot d m \\
& \quad=\lim _{n \rightarrow \infty} \int_{X}^{\oplus}\left(f_{1}-_{\oplus}^{\prime} f_{n}\right) \odot d m \oplus \lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m \tag{91}\\
& \quad=\int_{X}^{\oplus}\left(f_{1}-_{\oplus}^{\prime} f\right) \odot d m \oplus \lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m .
\end{align*}
$$

Since $\int_{X}^{\oplus} f_{1} \odot d m \prec \Delta$ and \oplus is strict, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m=\int_{X}^{\oplus} f \odot d m=\int_{X}^{\oplus} \lim _{n \rightarrow \infty} f_{n} \odot d m \tag{92}
\end{equation*}
$$

Theorem 31. Let \oplus be a strict pseudoaddition, and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If $\left\{f_{n}\right\}$ is a sequence of measurable functionals on X, then

$$
\begin{equation*}
\int_{X}^{\oplus}\left(\underset{n=1}{\oplus} f_{n}\right) \odot d m \underset{n=1}{\oplus} \int_{X}^{\oplus} f_{n} \odot d m . \tag{93}
\end{equation*}
$$

Proof. Let $h_{n}=\oplus_{i=1}^{n} f_{i}, n=1,2, \ldots$. Then $\left\{h_{n}\right\}$ is an increasing sequence of measurable functionals on X. By Theorem 29, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} h_{n} \odot d m=\int_{X}^{\oplus} \lim _{n \rightarrow \infty} h_{n} \odot d m \tag{94}
\end{equation*}
$$

By (3) of Theorem 22, we have

$$
\begin{equation*}
\int_{X}^{\oplus} h_{n} \odot d m=\int_{X}^{\oplus} \stackrel{n}{\oplus} \underset{i=1}{\oplus} f_{i} \odot d m=\stackrel{n}{\oplus} \int_{i=1}^{\oplus} \int_{X} \odot d m ; \tag{95}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} h_{n} \odot d m=\stackrel{\infty}{n=1} \int_{X}^{\oplus} f_{n} \odot d m \tag{96}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} h_{n}=\oplus_{n=1}^{\infty} f_{n}$, we have

$$
\begin{equation*}
\int_{X}^{\oplus}\left(\underset{n=1}{\oplus} f_{n}\right) \odot d m \underset{n=1}{\oplus} \int_{X}^{\oplus} f_{n} \odot d m \tag{97}
\end{equation*}
$$

Theorem 32. Let \oplus be a strict pseudoaddition, and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If f is a measurable functional on X,

$$
\begin{equation*}
\int_{X}^{\oplus} f \odot d m=\stackrel{\infty}{n=1} \int_{E_{n}}^{\oplus} f \odot d m \tag{98}
\end{equation*}
$$

for any sequence $\left\{E_{n}\right\}$ of pairwise disjoint sets from \mathscr{A} with $X=$ $\bigcup_{n=1}^{\infty} E_{n}$.

Proof. A functionals sequence $[f]_{n}$ is given by

$$
f_{n}(x)=\left\{\begin{array}{ll}
f(x), & \text { if } x \in E_{n}, \tag{99}\\
\mathbf{0}, & \text { if } x \in X-E_{n},
\end{array} \quad n=1,2, \ldots,\right.
$$

then $f=\oplus_{n=1}^{\infty} f_{n}$ and

$$
\begin{equation*}
\int_{X}^{\oplus} f_{n} \odot d m=\int_{E_{n}}^{\oplus} f_{n} \odot d m \oplus \int_{X-E_{n}}^{\oplus} f_{n} \odot d m=\int_{E_{n}}^{\oplus} f \odot d m \tag{100}
\end{equation*}
$$

By Theorem 31, we have

$$
\begin{equation*}
\int_{X}^{\oplus} \underset{n=1}{\oplus} f_{n} \odot d m=\underset{n=1}{\infty} \int_{X}^{\oplus} f_{n} \odot d m \tag{101}
\end{equation*}
$$

Hence, we obtain that

$$
\begin{equation*}
\int_{X}^{\oplus} f \odot d m=\underset{n=1}{\infty} \int_{E_{n}}^{\oplus} f \odot d m \tag{102}
\end{equation*}
$$

Theorem 33. Let \oplus be a strict pseudoaddition, and let X be a σ-finite set of \oplus-measure and $m: \mathscr{A} \rightarrow[a, b]$ a $\sigma-\oplus-$ decomposable measure. If $\left\{f_{n}\right\}$ is a sequence of measurable functionals on X, then

$$
\begin{equation*}
\int_{X}^{\oplus} \underline{\lim }_{n \rightarrow \infty} f_{n} \odot d m \leq \varliminf_{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m \tag{103}
\end{equation*}
$$

Proof. Let $h_{n}=\wedge_{\odot}^{\infty}{ }_{k=n} f_{k}, n=1,2, \ldots$. Then $\left\{h_{n}\right\}$ is an increasing sequence of measurable functionals on X. By proof of Theorem 29, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h_{n}=\underset{\substack{\vee_{\oplus=1}^{\infty}}}{n=1} \underset{n}{ } \underset{\substack{\vee_{\oplus}} \wedge_{\bullet}^{\infty} \wedge_{\odot}}{\infty} f_{k}=\underset{n \rightarrow \infty}{\lim } f_{n} . \tag{104}
\end{equation*}
$$

By Theorem 29, we have

$$
\begin{equation*}
\int_{X}^{\oplus} \lim _{n \rightarrow \infty} h_{n} \odot d m=\lim _{n \rightarrow \infty} \int_{X}^{\oplus} h_{n} \odot d m \tag{105}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\int_{X}^{\oplus} \underline{\lim }_{n \rightarrow \infty} f_{n} \odot d m=\lim _{n \rightarrow \infty} \int_{X}^{\oplus} h_{n} \odot d m \tag{106}
\end{equation*}
$$

By (4) of Theorem 22 and $h_{n} \leq f_{k}$ for all $k \geq n$, we have

$$
\begin{equation*}
\int_{X}^{\oplus} h_{n} \odot d m \preceq \int_{X}^{\oplus} f_{k} \odot d m \tag{107}
\end{equation*}
$$

for all $k \geq n$, which implies that

$$
\begin{equation*}
\int_{X}^{\oplus} h_{n} \odot d m \underset{k=n}{\leq \bigwedge_{\odot}^{\infty}} \int_{X}^{\oplus} f_{k} \odot d m \tag{108}
\end{equation*}
$$

By (4) of Theorem 22 and the monotonicity of $\left\{h_{n}\right\}$, we have $\left\{\int_{X}^{\oplus} h_{n} \odot d m\right\}$ is an increasing sequence. Thus, by proof of Theorem 29, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X}^{\oplus} h_{n} \odot d m=\underset{n=1}{\vee_{\oplus}^{\infty}} \int_{X}^{\oplus} h_{n} \odot d m \tag{109}
\end{equation*}
$$

Hence, we obtain that

$$
\begin{equation*}
\int_{X}^{\oplus} \underline{\lim }_{n \rightarrow \infty} f_{n} \odot d m \underset{\substack{\vee_{\oplus} \\ n=1 k=n}}{\infty} \int_{X}^{\infty} \int_{X}^{\oplus} f_{k} \odot d m=\underline{\lim }_{n \rightarrow \infty} \int_{X}^{\oplus} f_{n} \odot d m \tag{110}
\end{equation*}
$$

Example 34. Let the total order \leq on $[0,+\infty)$ be the usual order of the real line and the pseudoaddition \oplus is defined by

$$
x \oplus y= \begin{cases}\frac{x+y}{2}, & \text { if } x, y \in(0, \infty) \tag{111}\\ \max \{x, y\}, & \text { if } x=0 \text { or } y=0\end{cases}
$$

and the pseudomultiplication \odot is the usual multiplication of the real numbers. It is obvious that zero element is 0 and unit element is 1 . Let the decomposable measure m be Lebesgue measure on $[0,1]$. We know that the pseudointegral is

$$
\begin{equation*}
\int_{[0,1]}^{\oplus} f \odot d m=\frac{1}{2} \int_{0}^{1} f(x) d x \tag{112}
\end{equation*}
$$

for each $f \in \mathscr{M}(\mathscr{A}([0,1]))$, where the right hand side is the Lebesgue integral. Let

$$
f_{n}(x)= \begin{cases}n, & \frac{1}{2 n} \leq x \leq \frac{1}{n} \tag{113}\\ 0, & \frac{1}{n}<x \leq 1 \text { or } 0 \leq x<\frac{1}{2 n}\end{cases}
$$

Then, we get that

$$
\begin{align*}
\int_{[0,1]}^{\oplus} f_{n} \odot d m= & \int_{[0,1 / 2 n]}^{\oplus} 0 \odot d m \oplus \int_{[1 / 2 n, 1 / n]}^{\oplus} n \odot d m \tag{114}\\
& \oplus \int_{[1 / n, 1]}^{\oplus} 0 \odot d m=\frac{1}{4}
\end{align*}
$$

that is, $\underline{\lim }_{n \rightarrow \infty} \int_{[0,1]}^{\oplus} f_{n} \odot d m=1 / 4$ and $\underline{\lim }_{n \rightarrow \infty} f_{n}=0$, which implies that $\int_{[0,1]}^{\oplus} \underline{\lim }_{n \rightarrow \infty} f_{n} \odot d m=0$. Hence, we obtain that

$$
\begin{equation*}
\int_{[0,1]}^{\oplus} \underline{\lim }_{n \rightarrow \infty} f_{n} \odot d m \leq \underline{\lim }_{n \rightarrow \infty} \int_{[0,1]}^{\oplus} f_{n} \odot d m \tag{115}
\end{equation*}
$$

4. Conclusions

In this paper, we mainly discussed pseudointegral based on pseudoaddition decomposable measure. Particularly, we have given the definition of the pseudointegral of a measurable function based on a strict pseudoaddition decomposable measure by generalizing the definition of the pseudointegral of a bounded measurable function. Furthermore, we have derived several important properties of the pseudointegral of a measurable function based on strict pseudoaddition decomposable measure. Finally, we have obtained that some theorems on the integral and the limit can be exchanged.

Recently, pseudoanalysis has obtained rapid development in the mechanical, chemical, biological, medical, and computer fields and has solved some uncertainty problems of knowledge. Pseudoanalysis theory has important applications in the field of computer image processing [39, 40]; for example, it can analyze and grasp the variation range of the image gray value, solve the relationship between the grey value and image color change, and take appropriate grey value to achieve better image processing effect. With the development of computer technology, pseudoanalysis will also get more and more widely used in computer science. We also hope that our results in this paper may lead to significant, new, and innovative results in other related fields.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 11201512), the Natural Science Foundation Project of CQ CSTC (cstc2012jjA00001), and the Science and Technology Project of Chongqing Municipal Education Committee of China (Grant no. KJ1400426).

References

[1] P. R. Halmos and C. C. Moore, Measure Theory, Springer, New York, NY, USA, 1970.
[2] H. L. Royden, Real Analysis, Macmillan, New York, NY, USA, 1988.
[3] Z. Y. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, NY, USA, 1992.
[4] Z. Wang and G. J. Klir, Generalized Measure Theory, Springer, Boston, Mass, USA, 2009.
[5] H. Agahi and M. A. Yaghoobi, "A Minkowski type inequlity for fuzzy integrals," Journal of Uncertain Systems, vol. 4, no. 3, pp. 187-194, 2010.
[6] M. Kaluszka, A. Okolewski, and M. Boczek, "On Chebyshev type inequalities for generalized Sugeno integrals," Fuzzy Sets and Systems, vol. 244, pp. 51-62, 2014.
[7] R. Mesiar and Y. Ouyang, "General Chebyshev type inequalities for Sugeno integrals," Fuzzy Sets and Systems, vol. 160, no. 1, pp. 58-64, 2009.
[8] Y. Ouyang and J. Fang, "Sugeno integral of monotone functions based on Lebesgue measure," Computers \& Mathematics with Applications, vol. 56, no. 2, pp. 367-374, 2008.
[9] R. S. Wang, "Some inequalities and convergence theorems for Choquet integrals," Journal of Applied Mathematics and Computing, vol. 35, no. 1-2, pp. 305-321, 2011.
[10] L. Wu, J. Sun, X. Ye, and L. Zhu, "Hölder type inequality for Sugeno integral," Fuzzy Sets and Systems, vol. 161, no. 17, pp. 2237-2347, 2010.
[11] D. Dubois and H. Prade, "A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information," International Journal of General Systems, vol. 8, no. 1, pp. 43-61, 1982.
[12] S. Weber, " \perp-decomposable measures and integrals for Archimedean t-conorms \perp," Journal of Mathematical Analysis and Applications, vol. 101, no. 1, pp. 114-138, 1984.
[13] D. Denneberg, Non-Additive Measure and Integral, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
[14] E. Pap, "An integral generated by a decomposable measure," Zbornik Radova Prirodno-Matematichkog Fakulteta, vol. 20, no. 1, pp. 135-144, 1990.
[15] D. Qiu, W. Zhang, and C. Li, "On decomposable measures constructed by using stationary fuzzy pseudo-ultrametrics," International Journal of General Systems, vol. 42, no. 4, pp. 395404, 2013.
[16] D. Qiu, W. Q. Zhang, and C. Li, "Extension of a class of decomposable measures using fuzzy pseudometrics," Fuzzy Sets and Systems, vol. 222, pp. 33-44, 2013.
[17] D. Qiu and W. Zhang, "On decomposable measures induced by metrics," Journal of Applied Mathematics, vol. 2012, Article ID 701206, 8 pages, 2012.
[18] Y. H. Shen, "On the probabilistic Hausdorff distance and a class of probabilistic decomposable measures," Information Sciences, vol. 263, pp. 126-140, 2014.
[19] I. Gilboa, "Additivizations of nonadditive measures," Mathematics of Operations Research, vol. 14, no. 1, pp. 1-17, 1989.
[20] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, NorthHolland, Amsterdam, Netherlands, 1983.
[21] E. Pap, "Decomposable measures and nonlinear equations," Fuzzy Sets and Systems, vol. 92, no. 2, pp. 205-221, 1997.
[22] E. Pap, "Applications of the generated pseudo-analysis to nonlinear partial differential equations," Contemporary Mathematics, vol. 377, pp. 239-259, 2005.
[23] E. Pap, "Pseudo-analysis approach to nonlinear partial differential equations," Acta Polytechnica Hungarica, vol. 5, no. 1, pp. 31-45, 2008.
[24] D. Vivona and I. Štajner-Papuga, "Pseudo-linear superposition principle for the Monge-Ampère equation based on generated pseudo-operations," Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 1427-1437, 2008.
[25] M. S. Bakry and H. M. Abu-Donia, "Fixed-point theorems for a probabilistic 2-metric spaces," Journal of King Saud UniversityScience, vol. 22, no. 4, pp. 217-221, 2010.
[26] L. Ćirić, "Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces," Nonlinear Analysis: Theory, Methods and Applications, vol. 72, no. 3-4, pp. 20092018, 2010.
[27] P. Cintula and P. Hájek, "Triangular norm based predicate fuzzy logics," Fuzzy Sets and Systems, vol. 161, no. 3, pp. 311-346, 2010.
[28] K. Lin, M. Wu, K. Hung, and Y. Kuo, "Developing a T_{ω} (the weakest t -norm) fuzzy GERT for evaluating uncertain process reliability in semiconductor manufacturing," Applied Soft Computing Journal, vol. 11, no. 8, pp. 5165-5180, 2011.
[29] E. Pap, "Applications of decomposable measures on nonlinear difference equations," Novi Sad Journal of Mathematics, vol. 31, no. 2, pp. 89-98, 2001.
[30] E. Pap, " g-Calculus, Univerzitet U Novom Sadu," Zbornik Radova Prirodno-Matematičkog Fakulteta: Serija za Matematiku, vol. 23, pp. 145-156, 1993.
[31] E. Pap, Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
[32] E. Pap, "Pseudo-analysis as a mathematical base for soft computing," Soft Computing, vol. 1, no. 2, pp. 61-68, 1997.
[33] M. Sugeno and T. Murofushi, "Pseudo-additive measures and integrals," Journal of Mathematical Analysis and Applications, vol. 122, no. 1, pp. 197-222, 1987.
[34] D. Qiu and C. Lu, "On nonlinear functional spaces based on pseudo-additions," International Journal of Computer Mathematics. In press.
[35] R. Mesiar and E. Pap, "Idempotent integral as limit of g integrals," Fuzzy Sets and Systems, vol. 102, no. 3, pp. 385-392, 1999.
[36] E. Pap, M. Štrboja, and I. Rudas, "Pseudo- L^{p} space and convergence," Fuzzy Sets and Systems. An International Journal in Information Science and Engineering, vol. 238, pp. 113-128, 2014.
[37] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap, and M. Štrboja, "General Chebyshev type inequalities for universal integral," Information Sciences, vol. 187, pp. 171-178, 2012.
[38] D. Qiu and C. Lu, "On measurable functional spaces based on pseudo-addition decomposable measures," The Scientific World Journal. In press.
[39] E. Pap and N. Ralević, "Pseudo-Laplace transform," Nonlinear Analysis, vol. 33, no. 5, pp. 533-550, 1998.
[40] E. Pap, "Pseudo-additive measures and their aplications," in Handbook of Measure Theory, E. Pap, Ed., pp. 1403-1465, Elsevier, Amsterdam, The Netherlands, 2002.

