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We mainly discussed pseudointegrals based on a pseudoaddition decomposable measure. Particularly, we give the definition of the
pseudointegral for a measurable function based on a strict pseudoaddition decomposable measure by generalizing the definition
of the pseudointegral of a bounded measurable function. Furthermore, we got several important properties of the pseudointegral
of a measurable function based on a strict pseudoaddition decomposable measure.

1. Introduction

The classical measure theory is one of the most important
theories in mathematics [1, 2]. Although the additive mea-
sures are widely used, they do not allow modelling many
phenomena involving interaction between criteria. For this
reason, the fuzzymeasure proposed by Sugeno is an extension
of classical measure in which the additivity is replaced by
a weaker condition, that is, monotonicity [3, 4]. Therefore,
fuzzy measure and the corresponding integrals, for example,
Choquet and Sugeno, are introduced [5–10].

So far, there have been many different fuzzy measures,
such as the decomposable measure, the 𝜆-additive measure,
the belief measure, the possibility measure, and the plausibil-
ity measure. Among the fuzzy measures mentioned before,
the decomposable measure was independently introduced by
Dubois and Prade [11] and Weber [12]. Since the close rela-
tions with the classical measure theory, further developments
of decomposable measures and related integrals have been
extensive [13–18]. Decomposable measures include several
well-known fuzzy measures such as the 𝜆-additive measure
and probability and possibility measures, and they provide a
natural setting for relaxing probabilistic assumptions regard-
ing the modeling of uncertainty [19, 20]. Decomposable
measures and the corresponding integrals are very useful in
decision theory and the theory of nonlinear differential and
integral equations [21–24].

In many problems with uncertainty as in the theory of
probabilistic metric spaces [20, 25, 26], multivalued logics
[27, 28], and general measures [1, 4] often wework withmany
operations different from the usual addition and multiplica-
tion of reals. Some of them are triangular norms, triangular
conorms, pseudoadditions, pseudomultiplications, and so
forth [21, 29]. Based on the above-mentioned measures,
pseudoanalysis as a generalization of the classical analysis is
developed, where instead of the field of real numbers a semir-
ing is taken on a real interval [𝑎, 𝑏] ⊂ [−∞, +∞] endowed
with pseudoaddition ⊕ and with pseudomultiplication ⊙

(see [13, 19, 30–33]). The families of the pseudooperations
generated by a function 𝑔 turn out to be solutions of well-
known nonlinear functional equations [22–24].

In this paper, we will discuss pseudointegrals based
on pseudoaddition decomposable measures. In Section 2,
we recall the concepts of the pseudoaddition ⊕ and the
pseudomultiplication ⊙, which form a real semiring on the
interval [𝑎, 𝑏] ⊂ [−∞, +∞] and the notion of the 𝜎-⊕-
decomposable measure. Then we will give the definition of
the pseudointegral of a measurable function based on a strict
pseudoaddition decomposable measure by generalizing the
definition of the pseudointegral of a bounded measurable
function. In Section 3, we will discuss several important
properties of the pseudointegral of a measurable function
based on the strict pseudoaddition decomposable measure.
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2. Preliminaries

Let [𝑎, 𝑏] be a closed subinterval of R (in some cases we will
also take semiclosed subintervals). The total order on [𝑎, 𝑏]

will be denoted by ⪯. This can be the usual order of the real
line, but it can also be another order. We will denote by Δ

maximum element on [𝑎, 𝑏] (usually Δ is either 𝑎 or 𝑏) with
respect to this total order.

Definition 1 (see [34]). Let {𝑥
𝑛
} be a sequence from [𝑎, 𝑏].

(1) If 𝑥
𝑚

⪯ 𝑥
𝑛
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is an increasing sequence.

(2) If 𝑥
𝑚

≺ 𝑥
𝑛
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is a strict increasing sequence.

(3) If 𝑥
𝑛

⪯ 𝑥
𝑚
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is a decreasing sequence.

(4) If 𝑥
𝑛

≺ 𝑥
𝑚
whenever 𝑛 > 𝑚, then we say that the

sequence {𝑥
𝑛
} is a strict decreasing sequence.

Let𝑋 be a nonempty set; wewill denote byS,A, andB
𝑋

algebra, 𝜎-algebra, and Borel 𝜎-algebra of subsets of a set 𝑋,
respectively.

Denote byF(𝑋) the set of all functionals from𝑋 to [𝑎, 𝑏].
For each 𝜆 ∈ [𝑎, 𝑏] the constant functional in F(𝑋) with
value 𝜆 will also be denoted by 𝜆. It will be clear from the
context which usage is intended. A functional 𝑓 ∈ F(𝑋) is
said to be finite if 𝑓(𝑥) ≺ Δ for all 𝑥 ∈ 𝑋. The functional
𝑓 ∈ F(𝑋) is said to be bounded if there exists Ω ≺ Δ, such
that 𝑓(𝑥) ⪯ Ω for all 𝑥 ∈ 𝑋. Denote by B(𝑋) the set of all
bounded functionals.

Let𝑓 and ℎ be two functions defined on𝑋 andwith values
in [𝑎, 𝑏] and let ⋆ be arbitrary binary operation on [𝑎, 𝑏].
Then, we define for any 𝑥 ∈ 𝑋

(𝑓 ⋆ ℎ) (𝑥) = 𝑓 (𝑥) ⋆ ℎ (𝑥) , (1)

and for any 𝜆 ∈ [𝑎, 𝑏], (𝜆 ⋆ 𝑓)(𝑥) = 𝜆 ⋆ 𝑓(𝑥). Let A be a
subset of F(𝑋). If 𝑓 ⋆ ℎ ∈ A for all 𝑓, ℎ ∈ A, then A is ⋆-
closed.The total order ⪯ on [𝑎, 𝑏] induces a partial order ⪯ on
F(𝑋) defined pointwise by stipulating that 𝑓 ⪯ ℎ if and only
if 𝑓(𝑥) ⪯ ℎ(𝑥) for all 𝑥 ∈ 𝑋. Thus (F(𝑋), ⪯) is a poset, and
whenever we considerF(𝑋) as a poset then it will always be
with respect to this partial order. Let S[𝜆 ≺ 𝑓] = {𝑥 | 𝑥 ∈

𝑋, 𝜆 ≺ 𝑓(𝑥), 𝑓 ∈ F(𝑋)}.

Definition 2 (see [35]). A binary operation ⊕ : [𝑎, 𝑏] ×

[𝑎, 𝑏] → [𝑎, 𝑏] is called a pseudoaddition, if it satisfies the
following conditions, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ [𝑎, 𝑏]:

(1) 0⊕𝑥 = 𝑥, where 0 is a zero element (usually 0 is either
𝑎 or 𝑏) (boundary condition);

(2) 𝑥 ⊕ 𝑧 ⪯ 𝑦 ⊕ 𝑤 whenever 𝑥 ⪯ 𝑦 and 𝑧 ⪯ 𝑤 (monoton-
icity);

(3) 𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥 (commutativity);
(4) (𝑥 ⊕ 𝑦) ⊕ 𝑧 = 𝑥 ⊕ (𝑦 ⊕ 𝑧) (associativity).

A pseudoaddition ⊕ is said to be continuous if it is a
continuous function in [𝑎, 𝑏]

2; a pseudoaddition ⊕ is called

strict if ⊕ is continuous and strictly monotone.The following
are examples of pseudoadditions: 𝑥 ∨

⊕
𝑦 = 𝑦 if and only if

𝑥 ⪯ 𝑦; 𝑥 ⊕ 𝑦 = 𝑔
−1

(𝑔(𝑥) + 𝑔(𝑦)), where 𝑔 : [𝑎, 𝑏] → [0, 1]

is a strictly monotone and continuous generator surjective
function and 𝑥 ⪯ 𝑦 if and only if 𝑔(𝑥) ≤ 𝑔(𝑦). It is obvious
that Δ ⊕ 𝑥 = Δ for all 𝑥 ∈ [𝑎, 𝑏].

Let [𝑎, 𝑏]
+

= {𝑥 | 𝑥 ∈ [𝑎, 𝑏], 0 ⪯ 𝑥}. In this paper, we
assume [𝑎, 𝑏] = [𝑎, 𝑏]

+
.

Definition 3 (see [35]). A binary operation ⊙ : [𝑎, 𝑏] ×

[𝑎, 𝑏] → [𝑎, 𝑏] is called a pseudomultiplication, if it satisfies
the following conditions, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ [𝑎, 𝑏]:

(1) 1⊙𝑥 = 𝑥, where 1 ∈ [𝑎, 𝑏] is a unit element (boundary
condition);

(2) 𝑥 ⊙ 𝑧 ⪯ 𝑦 ⊙ 𝑤 whenever 𝑥 ⪯ 𝑦 and 𝑧 ⪯ 𝑤

(monotonicity);
(3) 𝑥 ⊙ 𝑦 = 𝑦 ⊙ 𝑥 (commutativity);
(4) (𝑥 ⊙ 𝑦) ⊙ 𝑧 = 𝑥 ⊙ (𝑦 ⊙ 𝑧) (associativity).

A pseudomultiplication ⊙ is said to be continuous if it is
a continuous function in [𝑎, 𝑏]

2. The following are examples
of pseudomultiplications: 𝑥 ∧

⊙
𝑦 = 𝑥 if and only if 𝑥 ⪯ 𝑦;

𝑥⊙
𝑔
𝑦 = 𝑔

−1

(𝑔(𝑥)⋅𝑔(𝑦)), where 𝑔 : [𝑎, 𝑏] → [0, 1] is a strictly
monotone and continuous generator surjective function and
𝑥 ⪯ 𝑦 if and only if 𝑔(𝑥) ≤ 𝑔(𝑦). It is obvious that 𝑔(0) = 0.

We assume also that 0 ⊙ 𝑥 = 0 and that ⊙ is a distributive
pseudomultiplication with respect to ⊕; that is,

𝑥 ⊙ (𝑦 ⊕ 𝑧) = (𝑥 ⊙ 𝑦) ⊕ (𝑥 ⊙ 𝑧) . (2)

The structure ([𝑎, 𝑏], ⊕, ⊙) is called a real semiring.
Because of the associative property of the pseudoaddition

⊕, it can be extended by induction to 𝑛-ary operation by
setting

𝑛

⊕
𝑖=1

𝑥
𝑖

= (
𝑛−1

⊕
𝑖=1

𝑥
𝑖
) ⊕ 𝑥
𝑛
. (3)

Due tomonotonicity, for each sequence {𝑥
𝑖
}
𝑖∈N of elements of

[𝑎, 𝑏], the following limit can be considered:

∞

⊕
𝑖=1

𝑥
𝑖

= lim
𝑛→∞

𝑛

⊕
𝑖=1

𝑥
𝑖
. (4)

Definition 4 (see [36]). Let𝐴 be a nonempty set and⊕ a pseu-
doaddition. A binary operation 𝑑

⊕
: 𝐴 × 𝐴 → [𝑎, 𝑏] is called

a pseudometric on 𝐴, if it satisfies the following conditions,
for all 𝑥, 𝑦, 𝑧 ∈ 𝐴:

(1) 𝑑
⊕

(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑
⊕

(𝑥, 𝑦) = 𝑑
⊕

(𝑦, 𝑥);
(3) there exists 𝜆 ∈ [𝑎, 𝑏] such that

𝑑
⊕

(𝑥, 𝑦) ⪯ 𝜆 ⊙ (𝑑
⊕

(𝑥, 𝑧) ⊕ 𝑑
⊕

(𝑧, 𝑦)) , (5)

where ⊙ is a distributive pseudomultiplication with respect to
⊕.



Abstract and Applied Analysis 3

Let {𝑥
𝑛
}
𝑛≥1

be a sequence from [𝑎, 𝑏]. The sequence
{𝑥
𝑛
}
𝑛≥1

is said to be convergent, if for any 0 ≺ 𝜀, there exists
positive integer 𝑁(𝜀), such that 𝑑

⊕
(𝑥
𝑛
, 𝑥) ≺ 𝜀 for all 𝑛 ≥ 𝑁(𝜀),

denoted by 𝑥 = lim
𝑛→∞

𝑥
𝑛
, and 𝑥 is said to be the limit of the

sequence {𝑥
𝑛
}
𝑛≥1

;

lim
𝑛→∞

𝑥
𝑛

=
∞

∨
⊕

𝑛=1

(∧
⊙

𝑘≥𝑛

𝑥
𝑘
) (6)

is said to be the lower limit of the sequence {𝑥
𝑛
}
𝑛≥1

;

lim
𝑛→∞

𝑥
𝑛

=
∞

∧
⊙

𝑛=1

(∨
⊕

𝑘≥𝑛

𝑥
𝑘
) (7)

is said to be the upper limit of the sequence {𝑥
𝑛
}
𝑛≥1

. It is
obvious that lim

𝑛→∞
𝑥
𝑛

⪯ lim
𝑛→∞

𝑥
𝑛
. Let {𝑓

𝑛
}
𝑛≥1

be a
sequence from F(𝑋). The sequence {𝑓

𝑛
}
𝑛≥1

is said to be
convergent, if for any 0 ≺ 𝜀, and for each point 𝑥

0
∈ 𝑋, there

exists positive integer 𝑁(𝜀, 𝑥
0
), such that 𝑑

⊕
(𝑓
𝑛
(𝑥
0
), 𝑓(𝑥

0
)) ≺

𝜀 for all 𝑛 ≥ 𝑁(𝜀, 𝑥
0
), denoted by 𝑓 = lim

𝑛→∞
𝑓
𝑛
, and 𝑓

is said to be the limit functional of the functionals sequence
{𝑓
𝑛
}
𝑛≥1

.
LetA be a subset ofF(𝑋).TheposetA is said to be upper

complete if lim
𝑛→∞

𝑓
𝑛

∈ A for each increasing sequence
{𝑓
𝑛
}
𝑛≥1

from A; the poset A is said to be lower complete if
lim
𝑛→∞

𝑓
𝑛

∈ A for each decreasing sequence {𝑓
𝑛
}
𝑛≥1

from
A; the poset A is said to be complete if lim

𝑛→∞
𝑓
𝑛

∈ A
for each sequence {𝑓

𝑛
}
𝑛≥1

from A, where the limit of the
sequence of functionals {𝑓

𝑛
}
𝑛≥1

is given by (lim
𝑛→∞

𝑓
𝑛
)(𝑥) =

lim
𝑛→∞

𝑓
𝑛
(𝑥) for all 𝑥 ∈ 𝑋.

For any continuous pseudoaddition ⊕ and 𝑥, 𝑦 ∈ [𝑎, 𝑏]

with 𝑥 ⪯ 𝑦, there exists at least one point 𝑧 ∈ [𝑎, 𝑏] such that
𝑦 = 𝑥 ⊕ 𝑧. If pseudoaddition ⊕ is strict, then there exists only
one point 𝑧 ∈ [𝑎, 𝑏] such that 𝑦 = 𝑥 ⊕ 𝑧 for all 𝑥, 𝑦 ∈ [𝑎, 𝑏]

with 𝑥 ≺ Δ. Thus we have the following concepts.

Definition 5 (see [34]). For any continuous pseudoaddition ⊕

and 𝑥, 𝑦 ∈ [𝑎, 𝑏] with 𝑥 ⪯ 𝑦, the paracomplement set 𝑦−
⊕

𝑥 is
a nonempty set of all points 𝑧 such that 𝑦 = 𝑥 ⊕ 𝑧.

Example 6. Let the total order ⪯ on [0, 1] be the usual order
of the real line and let the pseudoaddition ⊕ be the usual
multiplication of the real numbers. It is obvious that zero
element is 1. If 𝑥 = 0, then 𝑦 = 0 and 𝑦−

⊕
𝑥 = [0, 1]. If 𝑥 ̸= 0,

then for any 0 ≤ 𝑦 < 𝑥, we have 𝑦−
⊕

𝑥 = {𝑦/𝑥} ⊆ [0, 1].

Definition 7 (see [34]). For any continuous pseudoaddition
⊕, if𝑓, ℎ ∈ F(𝑋), then define the paracomplement set |𝑓−

⊕
ℎ|

as the set of all those functionals 𝜑 such that

𝜑 (𝑥) = {
𝑓 (𝑥) −

⊕
ℎ (𝑥) , if ℎ (𝑥) ⪯ 𝑓 (𝑥) ,

ℎ (𝑥) −
⊕

𝑓 (𝑥) , if 𝑓 (𝑥) ≺ ℎ (𝑥) ,
(8)

for all 𝑥 ∈ 𝑋.

Definition 8 (see [34]). For any strict pseudoaddition ⊕ and
𝑥, 𝑦 ∈ [𝑎, 𝑏] with 𝑥 ⪯ 𝑦, the complement 𝑦−



⊕
𝑥 is defined as

𝑦−


⊕
𝑥 = {

𝑧 ∈ [𝑎, 𝑏] , such that 𝑦 = 𝑥 ⊕ 𝑧, if 𝑥 ≺ Δ,

0, otherwise.
(9)

Definition 9 (see [34]). For any strict pseudoaddition ⊕, if
𝑓, ℎ ∈ F(𝑋), then define the complement functional |𝑓−



⊕
ℎ|

pointwise as


𝑓−


⊕
ℎ


(𝑥) = {

𝑓 (𝑥) −


⊕
ℎ (𝑥) , if ℎ (𝑥) ⪯ 𝑓 (𝑥) ,

ℎ (𝑥) −


⊕
𝑓 (𝑥) , if 𝑓 (𝑥) ≺ ℎ (𝑥) ,

(10)

for all 𝑥 ∈ 𝑋.

Definition 10 (see [34]). For any pseudoaddition ⊕, a non-
empty subsetK ofF(𝑋) is said to be a functional space with
respect to ⊕, denoted by (K, ⊕), if (𝜆 ⊙ 𝑓) ⊕ (𝜇 ⊙ ℎ) ∈ K
for all 𝑓, ℎ ∈ K and 𝜆, 𝜇 ∈ [𝑎, 𝑏], where ⊙ is a distributive
pseudomultiplication with respect to ⊕.

It is clear that (F(𝑋), ⊕) is the greatest functional space
with respect to any pseudoaddition ⊕. Thus the functional
space (K, ⊕) with K ⊆ F(𝑋) is also called a subspace of
(F(𝑋), ⊕). If (K, ⊕) is a functional space with respect to ⊕,
then we just write K instead of (K, ⊕) whenever ⊕ can be
determined from the context.

Definition 11 (see [34]). For each subsetA ofF(𝑋) the upper
closure ofA, denoted by Â, is the set of all elements ofF(𝑋)

having the form lim
𝑛→∞

𝑓
𝑛
for some increasing sequence

{𝑓
𝑛
}
𝑛≥1

fromA.

It follows from Definition 11 that A ⊆ Â and A = Â if
and only ifA is upper complete.

Definition 12 (see [34]). For any continuous pseudoaddition
⊕, a subspace (K, ⊕) will be called paracomplemented if
|𝑓−
⊕

ℎ| ⊆ K for all 𝑓, ℎ ∈ K; for any strict pseudoaddition ⊕,
a subspace (K, ⊕)will be called complemented if |𝑓−



⊕
ℎ| ∈ K

for all 𝑓, ℎ ∈ K.

Definition 13 (see [34]). For any continuous pseudoaddition
⊕, a paracomplemented subspace (K, ⊕) is regular if it con-
tains 1 and is closed under ∨

⊕
; for any strict pseudoaddition

⊕, a complemented subspace (K, ⊕) is normal if it contains 1
and is closed under ∨

⊕
.

Note that (𝑓∨
⊕

ℎ) ⊕ (𝑓∧
⊙

ℎ) = 𝑓 ⊕ ℎ for all 𝑓, ℎ ∈ F(𝑋)

and thus a paracomplemented subspace ofF(𝑋) is∧
⊙
-closed

if and only if it is ∨
⊕
-closed. It is obvious that regular and

normal are closed under ∧
⊙
.

Definition 14 (see [37]). The pseudocharacteristic function of
a set 𝐸 ⊆ 𝑋 is defined with

𝐼
𝐸

(𝑥) = {
0, 𝑥 ∉ 𝐸,

1, 𝑥 ∈ 𝐸,
(11)

where 0 is zero element for ⊕ and 1 is unit element for ⊙.

Definition 15 (see [21]). A functional 𝜑 ∈ F(𝑋) is said to be
elementary if it has the following representation:

𝜑 =
𝑛

⊕
𝑖=1

𝜆
𝑖

⊙ 𝐼
𝐸𝑖

, (12)
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for each 𝜆
𝑖

∈ [𝑎, 𝑏] and 𝐸
𝑖

∈ A pairwise disjoint and with
𝑋 = ⋃

𝑛

𝑖=1
𝐸
𝑖
, and the set of such elementary functionals will

be denoted by E(𝑋). It is obvious that 𝐼
𝐸

∈ E(𝑋), for all
𝐸 ⊆ 𝑋.

Definition 16 (see [21]). A set function 𝑚 : A → [𝑎, 𝑏] (or
semiclosed interval) is called a 𝜎-⊕-decomposable measure if
it satisfies the following conditions:

(1) 𝑚(0) = 0;
(2) 𝑚(𝐸) ⪯ 𝑚(𝐹) for all 𝐸, 𝐹 ∈ A with 𝐸 ⊂ 𝐹;
(3) 𝑚(𝐸∪𝐹) = 𝑚(𝐸)⊕𝑚(𝐹) for all𝐸, 𝐹 ∈ A and𝐸∩𝐹 = 0;
(4) 𝑚(⋃

∞

𝑖=1
𝐸
𝑖
) = ⊕

∞

𝑖=1
𝑚(𝐸
𝑖
) for any sequence {𝐸

𝑖
}
𝑖≥1

of
pairwise disjoint sets fromA.

A pair (𝑋,A) consisting of a nonempty set 𝑋 and a
𝜎-algebra of subsets of 𝑋 is called a measurable space. A
functional 𝑓 : 𝑋 → [𝑎, 𝑏] is said to be a measurable
functional if 𝑓

−1

(B
[𝑎,𝑏]

) ⊆ A. Let M(A) be the set of all
measurable mappings from (𝑋,A) to ([𝑎, 𝑏],B

[𝑎,𝑏]
); that is,

M (A) = {𝑓 ∈ F (𝑋) | 𝑓
−1

(B
[𝑎,𝑏]

) ⊆ A} . (13)

ThenE(S)will denote the set of those elements𝑓 ∈ E(𝑋) for
which 𝑓

−1

(𝜆) = {𝑥 ∈ 𝑋 | 𝑓(𝑥) = 𝜆} ∈ S for each 𝜆 ∈ 𝑓(𝑋).
In particular, thismeans thatE(A) = M(A)∩E(𝑋). Denote
byB(A) the set of all bounded measurable functionals.

Definition 17 (see [38]). Let ⊕ be a continuous pseudoaddi-
tion and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-decomposable measure.
Let {𝑓

𝑛
}
𝑛≥1

be a sequence of measurable functionals of a.e.
pseudofinite on 𝑋. If there exists a measurable functional 𝑓

of a.e. pseudofinite on 𝑋, such that

lim
𝑛→∞

𝑚S [𝜎 ⪯ 𝑑
⊕

(𝑓
𝑛
, 𝑓)] = 0, (14)

for arbitrary 0 ≺ 𝜎 ≺ Δ, then the functionals sequence {𝑓
𝑛
}
𝑛≥1

is said to be convergent to 𝑓 with respect to ⊕-measure,
denoted by 𝑓

𝑛
⇒ 𝑓. If the functionals sequence {𝑓

𝑛
}
𝑛≥1

does not converge to 𝑓 with respect to ⊕-measure, denote by
𝑓
𝑛

 𝑓.

Definition 18 (see [35]). Let ⊕ be a continuous pseudoaddi-
tion and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-decomposable measure.

(i) If 𝑚(𝑋) ≺ Δ, then the pseudointegral of an elemen-
tary measurable function 𝜑 : 𝑋 → [𝑎, 𝑏] is defined
by

∫

⊕

𝑋

𝜑 ⊙ 𝑑𝑚 =
𝑛

⊕
𝑖=1

𝜆
𝑖

⊙ 𝑚 (𝐸
𝑖
) , (15)

for 𝜆
𝑖

∈ [𝑎, 𝑏] and 𝐸
𝑖

∈ A pairwise disjoint and with
𝑋 = ⋃

𝑛

𝑖=1
𝐸
𝑖
.

(ii) If 𝑚(𝑋) ≺ Δ and {𝜑
𝑛
} is the sequence of elementary

measurable functions such that, for each 𝑥 ∈ 𝑋,

𝑑
⊕

(𝜑
𝑛

(𝑥) , 𝑓 (𝑥)) → 0 uniformly as 𝑛 → ∞, (16)

where a sequence of elementary functions {𝜑
𝑛
} from

the previous definition is constructed in [34], then the
pseudointegral of a bounded measurable function 𝑓 :

𝑋 → [𝑎, 𝑏] is defined by

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

𝜑
𝑛

⊙ 𝑑𝑚. (17)

If there exists an increasing sequence of sets {𝐸
𝑛
} ⊂ A

with 𝑚(𝐸
𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such that 𝑋 = ⋃

∞

𝑛=1
𝐸
𝑛
, then we

say that𝑋 is 𝜎-finite set of⊕-measure and {𝐸
𝑛
} is a ⊕-measure

finite and monotone cover of 𝑋. The sequence of bounded
measurable functionals [𝑓]

𝑛
is given by

[𝑓]
𝑛

(𝑥) = {
𝑓 (𝑥) , if 𝑓 (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ 𝑓 (𝑥) ,

(18)

0 ≺ 𝜇
1

≺ 𝜇
2

≺ ⋅ ⋅ ⋅ ≺ 𝜇
𝑛

≺ ⋅ ⋅ ⋅ , 𝜇
𝑛

⊕ 𝜇
𝑛

= 𝜇
2𝑛

and
lim
𝑛→∞

𝜇
𝑛

= Δ. It is obvious that {[𝑓]
𝑛
} is an increasing

functionals sequence.

Definition 19. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a 𝜎-⊕-decomposable measure. If 𝑋 is 𝜎-finite of ⊕-
measure and {𝐸

𝑛
} is a ⊕-measure finite and monotone cover

of 𝑋, then the pseudointegral of a measurable function 𝑓 :

𝑋 → [𝑎, 𝑏] is defined by

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚. (19)

3. Main Results

Lemma 20 (see [21]). Let ⊕ be a continuous pseudoaddition
and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-decomposable measure. If 𝑚(𝑋) ≺

Δ, then for all 𝑓, ℎ ∈ B(A), we have

(1) ∫
⊕

𝑋

(𝑓∨
⊕

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∨
⊕

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(2) ∫
⊕

𝑋

(𝑓∧
⊙

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∧
⊙

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;
(3) If 𝑓 ⊕ ℎ ∈ B(A), then

∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚; (20)

(4) 𝑓 ⪯ ℎ ⇒ ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⪯ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(5) ∫
⊕

𝑋1∪𝑋2

𝑓 ⊙ 𝑑𝑚 = ∫
⊕

𝑋1

𝑓 ⊙ 𝑑𝑚 ⊕ ∫
⊕

𝑋2

𝑓 ⊙ 𝑑𝑚, where
𝑋
1
, 𝑋
2

∈ A with 𝑋
1

∪ 𝑋
2

= 𝑋 and 𝑋
1

∩ 𝑋
2

= 0;

(6) ∫
⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0 whenever 𝐸 ∈ A with 𝑚(𝐸) = 0.

Theorem 21. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a 𝜎-⊕-decomposable measure. If 𝑋 is 𝜎-finite of ⊕-
measure and 𝑓 ∈ M(A). Let {𝐸

(𝑖)

𝑛
} (𝑖 = 1, 2) be two

different ⊕-measure finite and monotone covers of 𝑋 and let
{𝑘
(𝑗)

𝑛
} (𝑗 = 1, 2) be two different positive integer sequences with

lim
𝑛→∞

𝑘
(𝑗)

𝑛
= +∞. Then

lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸
(2)

𝑛

[𝑓]
𝑘
(2)

𝑛

⊙ 𝑑𝑚. (21)
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Proof. Let 𝑠 = lim
𝑛→∞

∫
⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚. Since {∫
⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙

𝑑𝑚} is an increasing sequence, we have

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⪯ 𝑠, (22)

for every positive integer 𝑛. Let 𝐹 ∈ A with 𝑚(𝐹) ≺ Δ and 𝑘

is an arbitrary positive integer. If 𝑘
(1)

𝑛
> 𝑘, then we have

∫

⊕

𝐹

[𝑓]
𝑘

⊙ 𝑑𝑚

= ∫

⊕

𝐹∩𝐸
(1)

𝑛

[𝑓]
𝑘

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐹−𝐸
(1)

𝑛

[𝑓]
𝑘

⊙ 𝑑𝑚

⪯ ∫

⊕

𝐹∩𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⊕ (𝜇
𝑘

⊙ 𝑚 (𝐹 − 𝐸
(1)

𝑛
))

⪯ ∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⊕ (𝜇
𝑘

⊙ 𝑚 (𝐹 − 𝐸
(1)

𝑛
))

⪯ 𝑠 ⊕ (𝜇
𝑘

⊙ 𝑚 (𝐹 − 𝐸
(1)

𝑛
)) .

(23)

Since {𝐹 − 𝐸
(1)

𝑛
} is a decreasing sequence and

∞

⋂

𝑛=1

(𝐹 − 𝐸
(1)

𝑛
) = 𝐹 −

∞

⋃

𝑛=1

𝐸
(1)

𝑛
= 𝐹 − 𝑋 = 0, (24)

byTheorem 3.3 in [38], we have

lim
𝑛→∞

𝑚 (𝐹 − 𝐸
(1)

𝑛
) = 𝑚 ( lim

𝑛→∞

(𝐹 − 𝐸
(1)

𝑛
)) = 0, (25)

which implies that

∫

⊕

𝐹

[𝑓]
𝑘

⊙ 𝑑𝑚 ⪯ 𝑠 ⊕ (𝜇
𝑘

⊙ lim
𝑛→∞

𝑚 (𝐹 − 𝐸
(1)

𝑛
))

= 𝑠 = lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚.

(26)

In particular, let 𝐹 = 𝐸
(2)

𝑙
and 𝑘 = 𝑘

(2)

𝑙
. Then we have

∫

⊕

𝐸
(2)

𝑙

[𝑓]
𝑘
(2)

𝑙

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚, (27)

for every positive integer 𝑙. Hence, we get that

lim
𝑙→∞

∫

⊕

𝐸
(2)

𝑙

[𝑓]
𝑘
(2)

𝑙

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚. (28)

On the contrary, using a similar argument, we can obtain

lim
𝑛→∞

∫

⊕

𝐸
(1)

𝑛

[𝑓]
𝑘
(1)

𝑛

⊙ 𝑑𝑚 ⪯ lim
𝑙→∞

∫

⊕

𝐸
(2)

𝑙

[𝑓]
𝑘
(2)

𝑙

⊙ 𝑑𝑚. (29)

In Theorem 21, put 𝑘
(1)

𝑛
= 𝑛 and 𝑘

(2)

𝑙
= 𝑙. Then we

can easily see that the pseudointegral in Definition 19 has
a unique value. In particular, we can get some elementary
properties of the pseudointegral in the following theorem.

Theorem 22. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a𝜎-⊕-decomposablemeasure. If there exists an increasing
sequence of sets {𝐸

𝑛
} ⊂ A with 𝑚(𝐸

𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such

that 𝑋 = ⋃
∞

𝑛=1
𝐸
𝑛
, then for all 𝑓, ℎ ∈ M(A), we have

(1) ∫
⊕

𝑋

(𝑓∨
⊕

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∨
⊕

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(2) ∫
⊕

𝑋

(𝑓∧
⊙

ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚∧
⊙

∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(3) ∫
⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 = ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(4) 𝑓 ⪯ ℎ ⇒ ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⪯ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚;

(5) ∫
⊕

𝑋1∪𝑋2

𝑓 ⊙ 𝑑𝑚 = ∫
⊕

𝑋1

𝑓 ⊙ 𝑑𝑚 ⊕ ∫
⊕

𝑋2

𝑓 ⊙ 𝑑𝑚, where
𝑋
1
, 𝑋
2

∈ A with 𝑋
1

∪ 𝑋
2

= 𝑋 and 𝑋
1

∩ 𝑋
2

= 0;

(6) ∫
⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0 whenever 𝐸 ∈ A with 𝑚(𝐸) = 0.

Proof. For (1) and (2), we only prove (1) holds. By a similar
proof, we can prove (2) holds. Since

[𝑓]
𝑛

(𝑥) = {
𝑓 (𝑥) , if 𝑓 (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ 𝑓 (𝑥) ,

[ℎ]
𝑛

(𝑥) = {
ℎ (𝑥) , if ℎ (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ ℎ (𝑥) ,

(30)

𝑛 = 1, 2, . . ., we get that

([𝑓]
𝑛
∨
⊕

[ℎ]
𝑛
) (𝑥) = {

(𝑓∨
⊕

ℎ) (𝑥) , if (𝑓∨
⊕

ℎ) (𝑥) ⪯ 𝜇
𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ (𝑓∨

⊕
ℎ) (𝑥) ,

(31)

which implies that

[𝑓∨
⊕

ℎ]
𝑛

= ([𝑓]
𝑛
∨
⊕

[ℎ]
𝑛
) . (32)

Thus, by (1) of Lemma 20, we have

∫

⊕

𝑋

(𝑓∨
⊕

ℎ) ⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓∨
⊕

ℎ]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

([𝑓]
𝑛
∨
⊕

[ℎ]
𝑛
) ⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚∨
⊕
lim
𝑛→∞

∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚

= ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚∨
⊕

∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚.

(33)
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(3) Since

[𝑓 ⊕ ℎ]
𝑛

(𝑥) = {
(𝑓 ⊕ ℎ) (𝑥) , if (𝑓 ⊕ ℎ) (𝑥) ⪯ 𝜇

𝑛
,

𝜇
𝑛
, if 𝜇

𝑛
≺ (𝑓 ⊕ ℎ) (𝑥) ,

([𝑓]
𝑛

⊕ [ℎ]
𝑛
) (𝑥)

=

{{

{{

{

(𝑓 ⊕ ℎ) (𝑥) , if (𝑓∨
⊕

ℎ) (𝑥) ⪯ 𝜇
𝑛
,

𝜇
𝑛

⊕ (𝑓∧
⊙

ℎ) (𝑥) , if (𝑓∧
⊙

ℎ) (𝑥) ⪯ 𝜇
𝑛

≺ (𝑓∨
⊕

ℎ) (𝑥) ,

𝜇
𝑛

⊕ 𝜇
𝑛

= 𝜇
2𝑛

, if 𝜇
𝑛

≺ (𝑓∧
⊙

ℎ) (𝑥) ,

(34)

𝑛 = 1, 2, . . ., we get that

[𝑓 ⊕ ℎ]
𝑛

⪯ [𝑓]
𝑛

⊕ [ℎ]
𝑛

⪯ [𝑓 ⊕ ℎ]
2𝑛

. (35)

Thus, we have

∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝑛

([𝑓]
𝑛

⊕ [ℎ]
𝑛
) ⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸2𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚.

(36)

By (3) of Lemma 20, we have

∫

⊕

𝐸𝑛

([𝑓]
𝑛

⊕ [ℎ]
𝑛
) ⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚,

(37)

which implies that

∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸2𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚.

(38)

Hence, we get that

lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓 ⊕ ℎ]
𝑛

⊙ 𝑑𝑚

⪯ lim
𝑛→∞

(∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚)

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ lim
𝑛→∞

∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚

⪯ lim
𝑛→∞

∫

⊕

𝐸2𝑛

[𝑓 ⊕ ℎ]
2𝑛

⊙ 𝑑𝑚,

(39)

which implies that

∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚

⪯ ∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚;

(40)

that is,

∫

⊕

𝑋

(𝑓 ⊕ ℎ) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚. (41)

(4) If 𝑓 ⪯ ℎ, then [𝑓]
𝑛

⪯ [ℎ]
𝑛
, 𝑛 = 1, 2, . . .. Thus, by (4) of

Lemma 20, we have

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚. (42)

Hence, we get that

lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝐸𝑛

[ℎ]
𝑛

⊙ 𝑑𝑚, (43)

that is,

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚; (44)

(5) Since 𝑋 = ⋃
∞

𝑛=1
𝐸
𝑛
with 𝑚(𝐸

𝑛
) ≺ Δ, we have 𝑋

1
=

⋃
∞

𝑛=1
(𝐸
𝑛

∩ 𝑋
1
) with 𝑚(𝐸

𝑛
∩ 𝑋
1
) ≺ Δ and 𝑋

2
= ⋃
∞

𝑛=1
(𝐸
𝑛

∩ 𝑋
2
)

with 𝑚(𝐸
𝑛

∩ 𝑋
2
) ≺ Δ. By (5) of Lemma 20, we have

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛∩𝑋1

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛∩𝑋2

[𝑓]
𝑛

⊙ 𝑑𝑚,

(45)

which implies that

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛∩𝑋1

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑛∩𝑋2

[𝑓]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝐸𝑛∩𝑋1

[𝑓]
𝑛

⊙ 𝑑𝑚 ⊕ lim
𝑛→∞

∫

⊕

𝐸𝑛∩𝑋2

[𝑓]
𝑛

⊙ 𝑑𝑚

= ∫

⊕

𝑋1

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋2

𝑓 ⊙ 𝑑𝑚.

(46)

(6) Since 𝑋 = ⋃
∞

𝑛=1
𝐸
𝑛
, we have 𝐸 = ⋃

∞

𝑛=1
(𝐸
𝑛

∩ 𝐸). By the
monotonicity of 𝜎-⊕-decomposable measure 𝑚, we get that if
𝑚(𝐸) = 0, then 𝑚(𝐸

𝑛
∩ 𝐸) = 0. By (6) ofTheorem 22, we have

∫

⊕

𝐸∩𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 = 0, (47)

which implies that

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸∩𝐸𝑛

[𝑓]
𝑛

⊙ 𝑑𝑚 = 0. (48)

Theorem 23. Let ⊕ be a strict pseudoaddition and 𝑚 : A →

[𝑎, 𝑏] a 𝜎-⊕-decomposable measure.
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(1) If 𝑓 ∈ M(A) and 𝐸 ∈ A is a 𝜎-finite set of ⊕-measure,
then ∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0 if and only if 𝑓 = 0 a.e. on 𝐸.

(2) If 𝑓 ∈ M(A), then for any 𝐸 ∈ A, lim
𝑚𝐸→ 0 ∫

⊕

𝐸

𝑓 ⊙

𝑑𝑚 = 0.

Proof. (1) Suppose ∫
⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0. For arbitrary 0 ≺ 𝛿, let
𝐸
𝛿

= {𝑥 ∈ 𝐸 | 𝛿 ⪯ 𝑓(𝑥)} ∈ A. Then we get that

𝛿 ⊙ 𝑚 (𝐸
𝛿
) ⪯ ∫

⊕

𝐸𝛿

𝑓 ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸𝛿

𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸−𝐸𝛿

𝑓 ⊙ 𝑑𝑚

= ∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0.

(49)

Thus, we have 𝑚(𝐸
𝛿
) = 0. Since 0 ≺ 𝛿 is arbitrary, we have

𝑚(S[0 ≺ 𝑓] ∩ 𝐸) = 0.
Suppose 𝑓 = 0 a.e. on 𝐸, that is, 𝑚(𝐸 ∩S[0 ≺ 𝑓]) = 0. By

(6) of Theorem 22, we have

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝐸∩S[0≺𝑓]
𝑓 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸∩S[𝑓=0]
𝑓 ⊙ 𝑑𝑚 = 0.

(50)

(2) If there exists Ω ≺ Δ, such that 𝑓(𝑥) ⪯ Ω for all 𝑥 ∈ 𝐸,
then

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 ⪯ Ω ⊙ 𝑚 (𝐸) , i.e., lim
𝑚𝐸→ 0

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = 0.

(51)

For any 𝑓 ∈ M(A), we have

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸

[𝑓]
𝑛

⊙ 𝑑𝑚, (52)

which implies that

lim
𝑚𝐸→0

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = lim
𝑚𝐸→0

lim
𝑛→∞

∫

⊕

𝐸

[𝑓]
𝑛

⊙ 𝑑𝑚

= lim
𝑛→∞

lim
𝑚𝐸→0

∫

⊕

𝐸

[𝑓]
𝑛

⊙ 𝑑𝑚 = 0.

(53)

Lemma 24 (see [38]). Let ⊕ be a strict pseudoaddition. The
function 𝑑

⊕
: [𝑎, 𝑏]

2

→ [𝑎, 𝑏] given by

𝑑
⊕

(𝑥, 𝑦) =

𝑥−


⊕
𝑦


= {

𝑦−


⊕
𝑥, if 𝑥 ⪯ 𝑦,

𝑥−


⊕
𝑦, if 𝑦 ≺ 𝑥,

(54)

is a pseudometric on [𝑎, 𝑏] with 𝜆 = 1.

Theorem 25. Let ⊕ be a strict pseudoaddition and 𝑋 a 𝜎-finite
set of ⊕-measure. If 𝑚 : A → [𝑎, 𝑏] is a 𝜎-⊕-decomposable
measure, then for any 𝑓, ℎ ∈ M(A),


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚


⪯ ∫

⊕

𝑋


𝑓−


⊕
ℎ


⊙ 𝑑𝑚. (55)

Proof. Let 𝐸 = {𝑥 | ℎ(𝑥) ⪯ 𝑓(𝑥), 𝑥 ∈ 𝑋} and 𝐹 = {𝑥 | 𝑓(𝑥) ≺

ℎ(𝑥), 𝑥 ∈ 𝑋}. Then 𝐸 and 𝐹 are two ⊕-measure 𝜎-finite sets
of 𝑋. By (4) of Theorem 22, we have

∫

⊕

𝐸

ℎ ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚, ∫

⊕

𝐹

𝑓 ⊙ 𝑑𝑚 ⪯ ∫

⊕

𝐹

ℎ ⊙ 𝑑𝑚.

(56)

Thus, by (3) of Theorem 22, we have

∫

⊕

𝐸

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝐸

(

𝑓−


⊕
ℎ


⊕ ℎ) ⊙ 𝑑𝑚

= ∫

⊕

𝐸


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸

ℎ ⊙ 𝑑𝑚,

∫

⊕

𝐹

ℎ ⊙ 𝑑𝑚 = ∫

⊕

𝐹

(

𝑓−


⊕
ℎ


⊕ 𝑓) ⊙ 𝑑𝑚

= ∫

⊕

𝐹


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐹

𝑓 ⊙ 𝑑𝑚,

(57)

which implies that

∫

⊕

𝐹


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚

= ∫

⊕

𝐸


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚.

(58)

If ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚 ⪯ ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚, then we have

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 =


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚


⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚

⪯ ∫

⊕

𝑋


𝑓−


⊕
ℎ


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚,

(59)

which implies that


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

ℎ ⊙ 𝑑𝑚


⪯ ∫

⊕

𝑋


𝑓−


⊕
ℎ


⊙ 𝑑𝑚. (60)

Similarly, if ∫
⊕

𝑋

𝑓 ⊙ 𝑑𝑚 ≺ ∫
⊕

𝑋

ℎ ⊙ 𝑑𝑚, we can also get this
conclusion.

Theorem 26. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If

(1) {𝑓
𝑛
} ⊂ M(A);

(2) 𝑓
𝑛

⪯ 𝐹 a.e. on 𝑋, 𝑛 = 1, 2, . . ., and 𝐹 ∈ M(A);
(3) 𝑓
𝑛

⇒ 𝑓,

then 𝑓 ∈ M(A) and

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (61)
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Proof. Since 𝑓
𝑛

⇒ 𝑓 on 𝑋, by Theorem 3.8 in [38], there
exists a subsequence {𝑓

𝑛𝑖
} of {𝑓

𝑛
} that a.e. converges to 𝑓 on

𝑋. By Theorem 3.5 in [38], we have 𝑓 ∈ M(A).
(I) Suppose𝑚(𝑋) ≺ Δ. By (2) ofTheorem 23, for arbitrary

0 ≺ 𝜀 = 𝜀
1

⊕ 𝜀
1
, there exists 0 ≺ 𝛿 such that if 𝐸 ⊂ 𝑋 with

𝑚(𝐸) ≺ 𝛿, we have

∫

⊕

𝐸

𝐹 ⊙ 𝑑𝑚 ≺ 𝜀
1
. (62)

Since 𝑓
𝑛

⇒ 𝑓, there exists a natural number 𝑁 > 0, such that
𝑚(S[𝜎 ⪯ |𝑓−



⊕
𝑓
𝑛
|]) ≺ 𝛿 for all 𝑛 ≥ 𝑁, where 𝜀

1
= 𝜎 ⊙ 𝑚(𝑋).

Thus, we get that

∫

⊕

S[𝜎⪯|𝑓−⊕𝑓𝑛|]
𝐹 ⊙ 𝑑𝑚 ≺ 𝜀

1
. (63)

Hence, by Theorem 25, we have


∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚



⪯ ∫

⊕

𝑋


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

= ∫

⊕

S[𝜎⪯|𝑓−
⊕
𝑓𝑛|]


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

⊕ ∫

⊕

S[|𝑓−
⊕
𝑓𝑛|≺𝜎]


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

⪯ ∫

⊕

S[𝜎⪯|𝑓−⊕𝑓𝑛|]
𝐹 ⊙ 𝑑𝑚

⊕ (𝜎 ⊙ 𝑚 (S [

𝑓−


⊕
𝑓
𝑛


≺ 𝜎]))

≺ 𝜀
1

⊕ (𝜎 ⊙ 𝑚 (𝑋)) = 𝜀
1

⊕ 𝜀
1

= 𝜀.

(64)

By Lemma 24, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (65)

(II) Suppose 𝑚(𝑋) = Δ. For arbitrary 0 ≺ 𝜀 = 𝜀
1

⊕ 𝜀
1
,

there exists 𝐸
𝑘

⊆ 𝑋 with 𝑚(𝐸
𝑘
) ≺ Δ, such that

∫

⊕

𝑋

𝐹 ⊙ 𝑑𝑚 ≺ ∫

⊕

𝐸𝑘

[𝐹]
𝑘

⊙ 𝑑𝑚 ⊕ 𝜀
1
. (66)

Thus, we have

∫

⊕

𝐸𝑘

[𝐹]
𝑘

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚

⪯ ∫

⊕

𝐸𝑘

𝐹 ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚

= ∫

⊕

𝑋

𝐹 ⊙ 𝑑𝑚 ≺ ∫

⊕

𝐸𝑘

[𝐹]
𝑘

⊙ 𝑑𝑚 ⊕ 𝜀
1
;

(67)

that is, ∫
⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚 ≺ 𝜀
1
. Since the measurable functionals

sequence {|𝑓−


⊕
𝑓
𝑛
|} satisfies

(i) |𝑓−


⊕
𝑓
𝑛
| ⪯ 𝐹 a.e. on 𝐸

𝑘
;

(ii) |𝑓−


⊕
𝑓
𝑛
| ⇒ 0 on 𝐸

𝑘
,

by (I), we get that there exists a natural number 𝑁 > 0, such
that

∫

⊕

𝐸𝑘


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚 ≺ 𝜀

1
, (68)

for all 𝑛 > 𝑁. Hence, by Theorem 25, we have

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 −


⊕
∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚



⪯ ∫

⊕

𝑋


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

= ∫

⊕

𝑋−𝐸𝑘


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚 ⊕ ∫

⊕

𝐸𝑘


𝑓−


⊕
𝑓
𝑛


⊙ 𝑑𝑚

⪯ ∫

⊕

𝑋−𝐸𝑘

𝐹 ⊙ 𝑑𝑚 ⊕ 𝜀
1

≺ 𝜀
1

⊕ 𝜀
1

= 𝜀.

(69)

Consequently, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (70)

Corollary 27. If the condition (3) ofTheorem 26 is replaced by
𝑓
𝑛

→ 𝑓 a.e. on 𝑋, then the conclusion of Theorem 26 holds.

Proof. Since 𝑓
𝑛

→ 𝑓 a.e. on 𝑋, by Theorem 3.5 in [38], we
have 𝑓 ∈ M(A).

(I) Suppose 𝑚(𝑋) ≺ Δ. By Theorem 3.9 in [38], if 𝑓
𝑛

→

𝑓 a.e. on 𝑋, then 𝑓
𝑛

⇒ 𝑓. By Theorem 26 (I), we have

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (71)

(II) Suppose 𝑚(𝑋) = Δ. Since 𝑋 is 𝜎-finite set of ⊕-
measure, there exists an increasing sequence of sets {𝐸

𝑛
} ⊂ A

with 𝑚(𝐸
𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such that 𝑋 = ⋃

∞

𝑛=1
𝐸
𝑛
. For

any 𝐸
𝑘
, 𝑘 = 1, 2, . . ., the sequence of measurable functionals

{|𝑓−


⊕
𝑓
𝑛
|} satisfies

(i) |𝑓−


⊕
𝑓
𝑛
| ⪯ 𝐹 a.e. on 𝐸

𝑘
, 𝑘 = 1, 2, . . .;

(ii) |𝑓−


⊕
𝑓
𝑛
| → 0 a.e. on 𝐸

𝑘
, 𝑘 = 1, 2, . . ..

By Theorem 3.9 in [38], we have

(ii) |𝑓−


⊕
𝑓
𝑛
| ⇒ 0 on 𝐸

𝑘
, 𝑘 = 1, 2, . . ..

By (I) and proof of Theorem 26 (II), we have

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (72)
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Lemma 28. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑥

𝑛
} is a monotone sequence, then

the sequence {𝑥
𝑛
} is convergence.

Proof. If {𝑥
𝑛
} is an increasing sequence, then

lim
𝑛→∞

𝑥
𝑛

=
∞

∨
⊕

𝑛=1

(∧
⊙

𝑘≥𝑛

𝑥
𝑘
) =
∞

∨
⊕

𝑛=1

𝑥
𝑛
,

lim
𝑛→∞

𝑥
𝑛

=
∞

∧
⊙

𝑛=1

(∨
⊕

𝑘≥𝑛

𝑥
𝑘
) =
∞

∨
⊕

𝑛=1

𝑥
𝑛
.

(73)

If {𝑥
𝑛
} is a decreasing sequence, then

lim
𝑛→∞

𝑥
𝑛

=
∞

∨
⊕

𝑛=1

(∧
⊙

𝑘≥𝑛

𝑥
𝑘
) =
∞

∧
⊙

𝑛=1

𝑥
𝑛
,

lim
𝑛→∞

𝑥
𝑛

=
∞

∧
⊙

𝑛=1

(∨
⊕

𝑘≥𝑛

𝑥
𝑘
) =
∞

∧
⊙

𝑛=1

𝑥
𝑛
.

(74)

Thus, we have

lim
𝑛→∞

𝑥
𝑛

= lim
𝑛→∞

𝑥
𝑛
. (75)

By Theorem 3.2 in [38], we get that the sequence {𝑥
𝑛
} is

convergent.

Theorem 29. Let ⊕ be a strict pseudoaddition and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is an increasing sequence of

measurable functionals on 𝑋, then

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (76)

Proof. Let {𝑓
𝑛
} be an increasing sequence of measurable

functionals on 𝑋. By Lemma 28, we get that the sequence
of measurable functionals {𝑓

𝑛
} is convergent. Let 𝑓 =

lim
𝑛→∞

𝑓
𝑛
. ByTheorem 3.5 in [38], we have 𝑓 ∈ M(A) with

𝑓
𝑛

⪯ 𝑓 on 𝑋. By (4) of Theorem 22, we get that

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚, (77)

which implies that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚. (78)

On the contrary, since 𝑋 is 𝜎-finite set of ⊕-measure,
there exists an increasing sequence of sets {𝐸

𝑛
} ⊂ A with

𝑚(𝐸
𝑛
) ≺ Δ, 𝑛 = 1, 2, . . ., such that 𝑋 = ⋃

∞

𝑛=1
𝐸
𝑛
. For any

given integer 𝑘 > 0, {[𝑓
𝑛
]
𝑘
}
𝑛≥𝑘

is an increasing sequence of
measurable functionals and [𝑓

𝑛
]
𝑘

⪯ 𝑓 on 𝑋, for all 𝑛 ≥ 𝑘.
Now we show that

lim
𝑛→∞

[𝑓
𝑛
]
𝑘

= [𝑓]
𝑘
. (79)

For arbitrary 𝑥
0

∈ 𝑋,

(i) if 𝑓
𝑛
(𝑥
0
) ⪯ 𝜇
𝑘
, that is, [𝑓

𝑛
]
𝑘
(𝑥
0
) = 𝑓
𝑛
(𝑥
0
) for all 𝑛 ≥ 𝑘,

then 𝑓(𝑥
0
) ⪯ 𝜇
𝑘
, that is, [𝑓]

𝑘
(𝑥
0
) = 𝑓(𝑥

0
). Thus, we

have

lim
𝑛→∞

[𝑓
𝑛
]
𝑘

(𝑥
0
) = [𝑓]

𝑘
(𝑥
0
) ; (80)

(ii) if there exists 𝑛
0

≥ 𝑘, such that 𝜇
𝑘

≺ 𝑓
𝑛0

(𝑥
0
), then

𝜇
𝑘

≺ 𝑓
𝑛
(𝑥
0
); that is, [𝑓

𝑛
]
𝑘
(𝑥
0
) = 𝜇

𝑘
for all 𝑛 ≥ 𝑛

0
; it

follows that 𝜇
𝑘

⪯ 𝑓(𝑥
0
); that is, [𝑓]

𝑘
(𝑥
0
) = 𝜇
𝑘
. Thus,

we have

lim
𝑛→∞

[𝑓
𝑛
]
𝑘

(𝑥
0
) = [𝑓]

𝑘
(𝑥
0
) = 𝜇
𝑘
. (81)

Hence, by Corollary 27, we get that

∫

⊕

𝐸𝑘

[𝑓]
𝑘

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝐸𝑘

[𝑓
𝑛
]
𝑘

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚,

(82)

which implies that

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = lim
𝑘→∞

∫

⊕

𝐸𝑘

[𝑓]
𝑘

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚.

(83)

Consequently, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (84)

Theorem 30. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is a decreasing sequence of finite

measurable functionals and pseudointegral of 𝑓
1
is finite on 𝑋,

then

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (85)

Proof. Let {𝑓
𝑛
} be a decreasing sequence of measurable

functionals on 𝑋. By Lemma 28, we get that the sequence
of measurable functionals {𝑓

𝑛
} is convergent. Let 𝑓 =

lim
𝑛→∞

𝑓
𝑛
. By Theorem 3.5 in [38], we have 𝑓 ∈ M(A).

Since {𝑓
1
−


⊕
𝑓
𝑛
} is an increasing sequence of measurable

functionals, by Theorem 29, we have

lim
𝑛→∞

∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚. (86)

Since 𝑓
1

= (𝑓
1
−


⊕
𝑓
𝑛
) ⊕ 𝑓
𝑛
and ⊕ is continuous, we have

𝑓
1

= lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) ⊕ lim
𝑛→∞

𝑓
𝑛

= lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) ⊕ 𝑓. (87)

Since 𝑓
1

= (𝑓
1
−


⊕
𝑓) ⊕ 𝑓 ≺ Δ and ⊕ is strict, we get that

lim
𝑛→∞

(𝑓
1
−


⊕
𝑓
𝑛
) = 𝑓
1
−


⊕
𝑓, (88)
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which implies that

lim
𝑛→∞

∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 = ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓) ⊙ 𝑑𝑚. (89)

By (3) of Theorem 22, we have

∫

⊕

𝑋

𝑓
1

⊙ 𝑑𝑚 = ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚,

∫

⊕

𝑋

𝑓
1

⊙ 𝑑𝑚 = ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓) ⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚.

(90)

Thus, we get that

∫

⊕

𝑋

𝑓
1

⊙ 𝑑𝑚

= lim
𝑛→∞

∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓
𝑛
) ⊙ 𝑑𝑚 ⊕ lim

𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚

= ∫

⊕

𝑋

(𝑓
1
−


⊕
𝑓) ⊙ 𝑑𝑚 ⊕ lim

𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚.

(91)

Since ∫
⊕

𝑋

𝑓
1

⊙ 𝑑𝑚 ≺ Δ and ⊕ is strict, we obtain that

lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚. (92)

Theorem 31. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is a sequence of measurable

functionals on 𝑋, then

∫

⊕

𝑋

(
∞

⊕
𝑛=1

𝑓
𝑛
) ⊙ 𝑑𝑚 =

∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (93)

Proof. Let ℎ
𝑛

= ⊕
𝑛

𝑖=1
𝑓
𝑖
, 𝑛 = 1, 2, . . .. Then {ℎ

𝑛
} is an increasing

sequence ofmeasurable functionals on𝑋. ByTheorem 29, we
have

lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

lim
𝑛→∞

ℎ
𝑛

⊙ 𝑑𝑚. (94)

By (3) of Theorem 22, we have

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝑋

𝑛

⊕
𝑖=1

𝑓
𝑖

⊙ 𝑑𝑚 =
𝑛

⊕
𝑖=1

∫

⊕

𝑋

𝑓
𝑖

⊙ 𝑑𝑚; (95)

that is,

lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (96)

Since lim
𝑛→∞

ℎ
𝑛

= ⊕
∞

𝑛=1
𝑓
𝑛
, we have

∫

⊕

𝑋

(
∞

⊕
𝑛=1

𝑓
𝑛
) ⊙ 𝑑𝑚 =

∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (97)

Theorem 32. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If 𝑓 is a measurable functional on 𝑋,

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝐸𝑛

𝑓 ⊙ 𝑑𝑚, (98)

for any sequence {𝐸
𝑛
} of pairwise disjoint sets fromAwith𝑋 =

⋃
∞

𝑛=1
𝐸
𝑛
.

Proof. A functionals sequence [𝑓]
𝑛
is given by

𝑓
𝑛

(𝑥) = {
𝑓 (𝑥) , if 𝑥 ∈ 𝐸

𝑛
,

0, if 𝑥 ∈ 𝑋 − 𝐸
𝑛
,

𝑛 = 1, 2, . . . , (99)

then 𝑓 = ⊕
∞

𝑛=1
𝑓
𝑛
and

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛

𝑓
𝑛

⊙ 𝑑𝑚 ⊕ ∫

⊕

𝑋−𝐸𝑛

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

𝐸𝑛

𝑓 ⊙ 𝑑𝑚.

(100)

ByTheorem 31, we have

∫

⊕

𝑋

∞

⊕
𝑛=1

𝑓
𝑛

⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (101)

Hence, we obtain that

∫

⊕

𝑋

𝑓 ⊙ 𝑑𝑚 =
∞

⊕
𝑛=1

∫

⊕

𝐸𝑛

𝑓 ⊙ 𝑑𝑚. (102)

Theorem 33. Let ⊕ be a strict pseudoaddition, and let 𝑋 be
a 𝜎-finite set of ⊕-measure and 𝑚 : A → [𝑎, 𝑏] a 𝜎-⊕-
decomposable measure. If {𝑓

𝑛
} is a sequence of measurable

functionals on 𝑋, then

∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 ⪯ lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚. (103)

Proof. Let ℎ
𝑛

= ∧
⊙

∞

𝑘=𝑛
𝑓
𝑘
, 𝑛 = 1, 2, . . .. Then {ℎ

𝑛
} is an

increasing sequence ofmeasurable functionals on𝑋. By proof
of Theorem 29, we have

lim
𝑛→∞

ℎ
𝑛

=
∞

∨
⊕

𝑛=1

ℎ
𝑛

=
∞

∨
⊕

𝑛=1

∞

∧
⊙

𝑘=𝑛

𝑓
𝑘

= lim
𝑛→∞

𝑓
𝑛
. (104)

ByTheorem 29, we have

∫

⊕

𝑋

lim
𝑛→∞

ℎ
𝑛

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚, (105)

which implies that

∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚. (106)

By (4) of Theorem 22 and ℎ
𝑛

⪯ 𝑓
𝑘
for all 𝑘 ≥ 𝑛, we have

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 ⪯ ∫

⊕

𝑋

𝑓
𝑘

⊙ 𝑑𝑚, (107)
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for all 𝑘 ≥ 𝑛, which implies that

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 ⪯
∞

∧
⊙

𝑘=𝑛

∫

⊕

𝑋

𝑓
𝑘

⊙ 𝑑𝑚. (108)

By (4) of Theorem 22 and the monotonicity of {ℎ
𝑛
}, we have

{∫
⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚} is an increasing sequence. Thus, by proof of
Theorem 29, we have

lim
𝑛→∞

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚 =
∞

∨
⊕

𝑛=1

∫

⊕

𝑋

ℎ
𝑛

⊙ 𝑑𝑚. (109)

Hence, we obtain that

∫

⊕

𝑋

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 ⪯
∞

∨
⊕

𝑛=1

∞

∧
⊙

𝑘=𝑛

∫

⊕

𝑋

𝑓
𝑘

⊙ 𝑑𝑚 = lim
𝑛→∞

∫

⊕

𝑋

𝑓
𝑛

⊙ 𝑑𝑚.

(110)

Example 34. Let the total order ⪯ on [0, +∞) be the usual
order of the real line and the pseudoaddition ⊕ is defined by

𝑥 ⊕ 𝑦 =
{

{

{

𝑥 + 𝑦

2
, if 𝑥, 𝑦 ∈ (0, ∞) ,

max {𝑥, 𝑦} , if 𝑥 = 0 or 𝑦 = 0,

(111)

and the pseudomultiplication ⊙ is the usual multiplication of
the real numbers. It is obvious that zero element is 0 and unit
element is 1. Let the decomposable measure 𝑚 be Lebesgue
measure on [0, 1]. We know that the pseudointegral is

∫

⊕

[0,1]

𝑓 ⊙ 𝑑𝑚 =
1

2
∫

1

0

𝑓 (𝑥) 𝑑𝑥, (112)

for each 𝑓 ∈ M(A([0, 1])), where the right hand side is the
Lebesgue integral. Let

𝑓
𝑛

(𝑥) =

{{{

{{{

{

𝑛,
1

2𝑛
≤ 𝑥 ≤

1

𝑛
,

0,
1

𝑛
< 𝑥 ≤ 1 or 0 ≤ 𝑥 <

1

2𝑛
.

(113)

Then, we get that

∫

⊕

[0,1]

𝑓
𝑛

⊙ 𝑑𝑚 = ∫

⊕

[0,1/2𝑛]

0 ⊙ 𝑑𝑚 ⊕ ∫

⊕

[1/2𝑛,1/𝑛]

𝑛 ⊙ 𝑑𝑚

⊕ ∫

⊕

[1/𝑛,1]

0 ⊙ 𝑑𝑚 =
1

4
;

(114)

that is, lim
𝑛→∞

∫
⊕

[0,1]

𝑓
𝑛

⊙ 𝑑𝑚 = 1/4 and lim
𝑛→∞

𝑓
𝑛

= 0,
which implies that ∫

⊕

[0,1]

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 = 0. Hence, we
obtain that

∫

⊕

[0,1]

lim
𝑛→∞

𝑓
𝑛

⊙ 𝑑𝑚 ≤ lim
𝑛→∞

∫

⊕

[0,1]

𝑓
𝑛

⊙ 𝑑𝑚. (115)

4. Conclusions

In this paper, we mainly discussed pseudointegral based on
pseudoaddition decomposablemeasure. Particularly, we have
given the definition of the pseudointegral of a measurable
function based on a strict pseudoaddition decomposable
measure by generalizing the definition of the pseudointegral
of a bounded measurable function. Furthermore, we have
derived several important properties of the pseudointegral
of a measurable function based on strict pseudoaddition
decomposable measure. Finally, we have obtained that some
theorems on the integral and the limit can be exchanged.

Recently, pseudoanalysis has obtained rapid development
in the mechanical, chemical, biological, medical, and com-
puter fields and has solved some uncertainty problems of
knowledge. Pseudoanalysis theory has important applica-
tions in the field of computer image processing [39, 40];
for example, it can analyze and grasp the variation range
of the image gray value, solve the relationship between the
grey value and image color change, and take appropriate
grey value to achieve better image processing effect. With
the development of computer technology, pseudoanalysis will
also get more and more widely used in computer science. We
also hope that our results in this papermay lead to significant,
new, and innovative results in other related fields.
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