
Research Article
Existence of Almost Periodic Solutions for Impulsive Neutral
Functional Differential Equations

Junwei Liu1 and Chuanyi Zhang2

1 College of Science, Yanshan University, Qinhuangdao 066004, China
2Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Junwei Liu; junweiliuhit@gmail.com

Received 8 May 2014; Accepted 20 July 2014; Published 12 August 2014

Academic Editor: Robert A. Van Gorder

Copyright © 2014 J. Liu and C. Zhang.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existence of piecewise almost periodic solutions for impulsive neutral functional differential equations in Banach space
is investigated. Our results are based on Krasnoselskii’s fixed-point theorem combined with an exponentially stable strongly
continuous operator semigroup. An example is given to illustrate the theory.

1. Introduction

In this paper, we study the existence of piecewise almost
periodic solutions for a class of abstract impulsive neutral
functional differential equationswith unbounded delaymod-
eled in the form

𝑑

𝑑𝑡
(𝑢 (𝑡) + 𝑔 (𝑡, 𝑢

𝑡
)) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢

𝑡
) ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑖
, 𝑖 ∈ 𝑍,

Δ𝑢 (𝑡
𝑖
) = 𝐼

𝑖
(𝑢

𝑡𝑖
) , 𝑖 ∈ 𝑍,

(1)

where 𝐴 is the infinitesimal generator of an exponentially
stable strongly continuous semigroup of linear operators
{𝑇(𝑡)}

𝑡≥0
on a Banach space (𝑋, ‖ ⋅ ‖), the history 𝑢

𝑡
:

(−∞, 0] → 𝑋, 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) belongs to an abstract phase

space B defined axiomatically, 𝑓(⋅), 𝑔(⋅), 𝐼
𝑖
(⋅) (𝑖 ∈ 𝑍) are

appropriate functions, {𝑡
𝑖
}
𝑖∈𝑍

is a discrete set of real numbers
such that 𝑡

𝑖
< 𝑡

𝑗
when 𝑖 < 𝑗, and the symbol Δ𝜉(𝑡) represents

the jump of the function 𝜉(⋅) at 𝑡, which is defined by Δ𝜉(𝑡) =

𝜉(𝑡
+
) − 𝜉(𝑡

−
).

The existence of solutions to impulsive differential equa-
tions is one of the most attracting topics in the qualita-
tive theory of impulsive differential equations due to their
applications in mechanical, electrical engineering, ecology,
biology, and others; see, for instance, [1–6] and the references
therein. Some recent contributions on mild solutions to

impulsive neutral functional differential equations have been
established in [7–14]. On the other hand, the existence of
almost periodic solutions for impulsive differential equations
has been investigated by many authors; see, for example, [2–
5, 15, 16]. However, the existence of almost periodic solutions
for the impulsive neutral functional differential equations in
the form (1) is an untreated topic in the literature and this fact
is the motivation of the present work.

The paper is organized as follows: in Section 2, we recall
some notations, concepts, and useful lemmas which are
used in this paper. In Section 3, some criteria ensuring the
existence of almost periodic solutions for impulsive neutral
functional differential equations are obtained. In Section 4,
we give an application.

2. Preliminaries

Let (𝑋, ‖ ⋅ ‖) be a Banach space. 𝐴 : 𝐷(𝐴) → 𝑋 is the
infinitesimal generator of a strongly continuous semigroup of
linear operators {𝑇(𝑡)}

𝑡≥0
on the Banach space 𝑋 and 𝑀

1
, 𝛿

are positive constants such that ‖𝑇(𝑡)‖ ≤ 𝑀
1
𝑒
−𝛿𝑡 for 𝑡 ≥ 0.

Let 0 ∈ 𝜌(𝐴); it is possible to define the fractional power
𝐴
𝛼, 0 < 𝛼 < 1, as a closed linear operator with its domain

𝐷(𝐴
𝛼
). We denote by 𝑋

𝛼
a Banach space between 𝐷(𝐴) and

𝑋 endowed with the norm ‖𝑥‖
𝛼

= ‖𝐴
𝛼
𝑥‖, 𝑥 ∈ 𝐷(𝐴

𝛼
); the

following properties hold.
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Lemma 1 (see [17, 18]). Let 0 < 𝛼 < 𝛽 < 1; then 𝑋
𝛽
is

continuously embedded into𝑋
𝛼
with bounded 𝐾; that is,

‖𝑥‖
𝛼
≤ 𝐾‖𝑥‖

𝛽
. (2)

Moreover, the function 𝑠 → 𝐴
𝛼
𝑇(𝑠) is continuous in the

uniform operator topology on (0,∞) and there exists 𝑀
2
> 0

such that ‖𝐴𝛼
𝑇(𝑡)‖ ≤ 𝑀

2
𝑒
−𝛿𝑡

𝑡
−𝛼 for every 𝑡 > 0.

Throughout this paper, let T be the set consisting of all
real sequences {𝑡

𝑖
}
𝑖∈𝑍

such that 𝛾 = inf
𝑖∈𝑍

(𝑡
𝑖+1

− 𝑡
𝑖
) > 0.

For {𝑡
𝑖
}
𝑖∈𝑍

∈ T , let 𝑃𝐶(𝑅,𝑋
𝛼
) be the space formed by all

piecewise continuous functions 𝜙 : 𝑅 → 𝑋
𝛼
such that 𝜙(⋅)

is continuous at 𝑡 for any 𝑡 ∉ {𝑡
𝑖
}
𝑖∈𝑍

and 𝜙(𝑡
𝑖
) = 𝜙(𝑡

−

𝑖
) for all

𝑖 ∈ 𝑍; let𝑃𝐶(𝑅×𝑋
𝛼
, 𝑋

𝛼
) be the space formed by all piecewise

continuous functions 𝜙 : 𝑅 × 𝑋
𝛼

→ 𝑋
𝛼
such that, for any

𝑥 ∈ 𝑋
𝛼
, 𝜙(⋅, 𝑥) is continuous at 𝑡 for any 𝑡 ∉ {𝑡

𝑖
}
𝑖∈𝑍

and
𝜙(𝑡

𝑖
, 𝑥) = 𝜙(𝑡

−

𝑖
, 𝑥) for all 𝑖 ∈ 𝑍 and for any 𝑡 ∈ 𝑅, 𝜙(𝑡, ⋅) is

continuous at 𝑥 ∈ 𝑋
𝛼
.

Definition 2. A number 𝜏 ∈ 𝑅 is called an 𝜖-translation
number of the function 𝜙 ∈ 𝑃𝐶(𝑅,𝑋

𝛼
) if

𝜙(𝑡 + 𝜏) − 𝜙(𝑡)
𝛼 < 𝜖, (3)

for all 𝑡 ∈ 𝑅 which satisfies |𝑡 − 𝑡
𝑖
| > 𝜖, for all 𝑖 ∈ 𝑍. Denote

by 𝑇(𝜙, 𝜖) the set of all 𝜖-translation numbers of 𝜙.

Definition 3 (see [1]). A function 𝜙 ∈ 𝑃𝐶(𝑅,𝑋
𝛼
) is said to

be piecewise almost periodic if the following conditions are
fulfilled.

(1) {𝑡
𝑗

𝑖
= 𝑡

𝑖+𝑗
− 𝑡

𝑖
}, 𝑖 ∈ 𝑍, 𝑗 = 0, ±1, ±2, . . ., are

equipotentially almost periodic; that is, for any 𝜖 > 0,
there exists a relatively dense set of 𝜖-almost periods
that are common to all the sequences {𝑡𝑗

𝑖
}.

(2) For any 𝜖 > 0, there exists a positive number 𝛿 = 𝛿(𝜖)

such that if the points 𝑡
 and 𝑡

 belong to a same
interval of continuity of 𝜙 and |𝑡


− 𝑡


| < 𝛿, then

‖𝜙(𝑡

) − 𝜙(𝑡


)‖
𝛼
< 𝜖.

(3) For every 𝜖 > 0, 𝑇(𝜙, 𝜖) is a relatively dense set in 𝑅.

We denote by 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
) the space of all piecewise

almost periodic functions. 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
) endowed with the

uniform convergence topology is a Banach space.

Definition 4. 𝑓 ∈ 𝑃𝐶(𝑅 × 𝑋
𝛼
, 𝑋

𝛼
) is said to be piecewise

almost periodic in 𝑡 uniformly in 𝑥 ∈ 𝑋
𝛼
if for each compact

set 𝐾 ⊆ 𝑋
𝛼
, {𝑓(⋅, 𝑥) : 𝑥 ∈ 𝐾} is uniformly bounded and,

given 𝜖 > 0, there exists a relatively dense setΩ(𝜖) such that
𝑓(𝑡 + 𝜏, 𝑥) − 𝑓(𝑡, 𝑥)

𝛼 < 𝜖, (4)

for all 𝑥 ∈ 𝐾, 𝜏 ∈ Ω(𝜖), and 𝑡 ∈ 𝑅, |𝑡 − 𝑡
𝑖
| > 𝜖 for all 𝑖 ∈ 𝑍.

Denote by 𝐴𝑃
𝑇
(𝑅 × 𝑋

𝛼
, 𝑋

𝛼
) the set of all such functions.

Lemma 5 (see [15]). Let 𝜙 ∈ 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
); then the range of 𝜙,

𝑅(𝜙), is a relatively compact subset of𝑋
𝛼
.

Lemma 6. Suppose that 𝑓(𝑡, 𝑥) ∈ 𝐴𝑃
𝑇
(𝑅 × 𝑋

𝛼
, 𝑋

𝛼
) and

𝑓(𝑡, ⋅) is uniformly continuous on each compact subset𝐾 ⊆ 𝑋
𝛼

uniformly for 𝑡 ∈ 𝑅; that is, for every 𝜖 > 0, there exists
𝛿 > 0 such that 𝑥, 𝑦 ∈ 𝐾 and ‖𝑥 − 𝑦‖

𝛼
< 𝛿 implies that

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖
𝛼

< 𝜖 for all 𝑡 ∈ 𝑅. Then 𝑓(⋅, 𝑥(⋅)) ∈

𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
) for any 𝑥 ∈ 𝐴𝑃

𝑇
(𝑅,𝑋

𝛼
).

Proof. Since 𝑥 ∈ 𝐴𝑃(𝑅,𝑋
𝛼
), by Lemma 5, 𝑅(𝑥) is a relatively

compact subset of𝑋
𝛼
. Because𝑓(𝑡, ⋅) is uniformly continuous

on each compact subset𝐾 ⊆ 𝑋
𝛼
uniformly for 𝑡 ∈ 𝑅, then for

any 𝜖 > 0, there exist a number 𝛿 : 0 < 𝛿 ≤ 𝜖/2, such that

𝑓(𝑡, 𝑥
1
) − 𝑓(𝑡, 𝑥

2
)
𝛼 <

𝜖

2
, (5)

where 𝑥
1
, 𝑥

2
∈ 𝑅(𝑥), and ‖𝑥

1
− 𝑥

2
‖
𝛼
< 𝛿, 𝑡 ∈ 𝑅. By piecewise

almost periodic of 𝑓 and 𝑥, there exists a relatively dense set
Ω of 𝑅 such that the following conditions hold:

𝑓(𝑡 + 𝜏, 𝑥
0
) − 𝑓(𝑡, 𝑥

0
)
𝛼 <

𝜖

2
,

‖𝑥(𝑡 + 𝜏) − 𝑥(𝑡)‖
𝛼
<

𝜖

2
,

(6)

for 𝑥
0
∈ 𝑅(𝑥) and 𝑡 ∈ 𝑅, |𝑡 − 𝑡

𝑖
| > 𝜖, 𝑖 ∈ 𝑍, 𝜏 ∈ Ω. Note that

𝑓 (𝑡 + 𝜏, 𝑥 (𝑡 + 𝜏)) − 𝑓 (𝑡, 𝑥 (𝑡))

= 𝑓 (𝑡 + 𝜏, 𝑥 (𝑡 + 𝜏)) − 𝑓 (𝑡, 𝑥 (𝑡 + 𝜏))

+ 𝑓 (𝑡, 𝑥 (𝑡 + 𝜏)) − 𝑓 (𝑡, 𝑥 (𝑡)) .

(7)

We have
𝑓(𝑡 + 𝜏, 𝑥(𝑡 + 𝜏)) − 𝑓(𝑡, 𝑥(𝑡))

𝛼

≤
𝑓(𝑡 + 𝜏, 𝑥(𝑡 + 𝜏)) − 𝑓(𝑡, 𝑥(𝑡 + 𝜏))

𝛼

+
𝑓 (𝑡, 𝑥 (𝑡 + 𝜏)) − 𝑓 (𝑡, 𝑥 (𝑡))

𝛼.

(8)

We deduce from (5) and (6) that the following formula holds:
𝑓(𝑡 + 𝜏, 𝑥(𝑡 + 𝜏)) − 𝑓(𝑡, 𝑥(𝑡))

𝛼 ≤ 𝜖,

𝑡 ∈ 𝑅,
𝑡 − 𝑡

𝑖

 > 𝜖, 𝑖 ∈ 𝑍, 𝜏 ∈ Ω.

(9)

That is, 𝑓(⋅, 𝑥(⋅)) is piecewise almost periodic. The proof is
complete.

Since the uniform continuity is weaker than the Lipschitz
continuity, we obtain the following lemma as an immediate
consequence of the previous lemma.

Lemma 7. Let 𝑓(𝑡, 𝑥) ∈ 𝐴𝑃
𝑇
(𝑅 × 𝑋

𝛼
, 𝑋

𝛼
) and 𝑓 is Lipschitz;

that is, there is a positive number 𝐿 such that
𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)

𝛼 ≤ 𝐿
𝑥 − 𝑦

𝛼, (10)

for all 𝑡 ∈ 𝑅 and 𝑥, 𝑦 ∈ 𝑋
𝛼
; if for any 𝑥 ∈ 𝐴𝑃

𝑇
(𝑅,𝑋

𝛼
), then

𝑓(⋅, 𝑥(⋅)) ∈ 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
).

In this paper, we assume that the phase space B is a
linear space formed by functions mapping (−∞, 0] into 𝑋

𝛼

endowed with a norm ‖ ⋅ ‖B and satisfying the following
conditions.
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(1) If 𝑥 ∈ 𝑃𝐶(𝑅,𝑋
𝛼
), then 𝑥

𝑡
∈ B for all 𝑡 ∈ 𝑅 and

‖𝑥
𝑡
‖B ≤ 𝐿 sup

𝑠≤𝑡
‖𝑥(𝑠)‖

𝛼
, where 𝐿 > 0 is a constant

independent of 𝑥(⋅) and 𝑡 ∈ 𝑅.

(2) The spaceB is complete.

(3) If {𝜙𝑛}
𝑛∈𝑁

⊂ B is a uniformly bounded sequence in
𝑃𝐶((−∞, 0], 𝑋

𝛼
) formed by functions with compact

support and 𝜙
𝑛

→ 𝜙 in the compact open topology,
then 𝜙 ∈ B and ‖𝜙

𝑛
− 𝜙‖B → 0, as 𝑛 → ∞.

Lemma 8 (see [1, 15]). Assume that 𝑓 ∈ 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
), the

sequence {𝑥
𝑖
: 𝑖 ∈ 𝑍} is almost periodic in 𝑋

𝛼
, and {𝑡

𝑗

𝑖
=

𝑡
𝑖+𝑗

− 𝑡
𝑖
}, 𝑖 ∈ 𝑍, 𝑗 = 0, ±1, ±2, . . ., are equipotentially almost

periodic. Then for each 𝜖 > 0, there are relatively dense sets
Ω
𝜖,𝑓,𝑥𝑖

of 𝑅 and 𝑄
𝜖,𝑓,𝑥𝑖

of 𝑍 such that the following conditions
hold.

(i) ‖𝑓(𝑡 + 𝜏) − 𝑓(𝑡)‖
𝛼

< 𝜖 for all 𝑡 ∈ 𝑅, |𝑡 − 𝑡
𝑖
| > 𝜖, 𝜏 ∈

Ω
𝜖,𝑓,𝑥𝑖

, and 𝑖 ∈ 𝑍.

(ii) ‖𝑥
𝑖+𝑞

− 𝑥
𝑖
‖
𝛼
< 𝜖 for all 𝑞 ∈ 𝑄

𝜖,𝑓,𝑥𝑖
and 𝑖 ∈ 𝑍.

(iii) For every 𝜏 ∈ Ω
𝜖,𝑓,𝑥𝑖

, there exists at least one number
𝑞 ∈ 𝑄

𝜖,𝑓,𝑥𝑖
such that

𝑡
𝑞

𝑖
− 𝜏

 < 𝜖, 𝑖 ∈ 𝑍. (11)

Definition 9. A bounded function 𝑢 ∈ 𝑃𝐶(𝑅,𝑋
𝛼
) is a mild

solution of (1) if the following holds:𝑢
𝜎
= 𝜙 ∈ B, the function

𝐴𝑇(𝑡 − 𝑠)𝑔(𝑠, 𝑢
𝑠
) is integrable, and for any 𝑡 ∈ 𝑅, 𝑡

𝑖
< 𝑡 ≤ 𝑡

𝑖+1
,

𝑢 (𝑡) = 𝑇 (𝑡 − 𝜎) [𝜙 (0) + 𝑔 (𝜎, 𝜙)] − 𝑔 (𝑡, 𝑢
𝑡
)

− ∫

𝑡

𝜎

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝑡

𝜎

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

𝜎<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
) .

(12)

Since ‖𝑇(𝑡 − 𝜎)‖ ≤ 𝑀
1
𝑒
−𝛿(𝑡−𝜎) for all 𝑡 ≥ 𝜎, let 𝜎 → −∞;

then we have ‖𝑇(𝑡 − 𝜎)‖ → 0, and the above formula can be
replaced by

𝑢 (𝑡) = − 𝑔 (𝑡, 𝑢
𝑡
) − ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
) .

(13)

In fact, for 𝑡 > 𝜎,

− ∫

𝑡

𝜎

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠 + ∫

𝑡

𝜎

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

𝜎<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

= −∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝜎

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

− ∫

𝜎

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

−∞<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

− ∑

−∞<𝑡𝑖<𝜎

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

= −𝑔 (𝑡, 𝑢
𝑡
) − ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

−∞<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢 (𝑡

𝑖
))

+ 𝑔 (𝑡, 𝑢
𝑡
) − 𝑇 (𝑡 − 𝜎)

× [ − 𝑔 (𝜎, 𝑢
𝜎
) − ∫

𝜎

−∞

𝐴𝑇 (𝜎 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝜎

−∞

𝑇 (𝜎 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

−∞<𝑡𝑖<𝜎

𝑇 (𝜎 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢 (𝑡

𝑖
)) + 𝑔 (𝜎, 𝑢

𝜎
)]

= 𝑢 (𝑡) + 𝑔 (𝑡, 𝑢
𝑡
) − 𝑇 (𝑡 − 𝜎) [𝑢 (𝜎) + 𝑔 (𝜎, 𝑢

𝜎
)]

= 𝑢 (𝑡) + 𝑔 (𝑡, 𝑢
𝑡
) − 𝑇 (𝑡 − 𝜎) [𝑢

𝜎
(0) + 𝑔 (𝜎, 𝑢

𝜎
)]

= 𝑢 (𝑡) + 𝑔 (𝑡, 𝑢
𝑡
) − 𝑇 (𝑡 − 𝜎) [𝜙 (0) + 𝑔 (𝜎, 𝜙)] ,

(14)

so that

𝑢 (𝑡) = 𝑇 (𝑡 − 𝜎) [𝜙 (0) + 𝑔 (𝜎, 𝜙)] − 𝑔 (𝑡, 𝑢
𝑡
)

− ∫

𝑡

𝜎

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝑡

𝜎

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠 + ∑

𝜎<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
) .

(15)
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In order to obtain our results, we need to introduce some
additional notations. Letℎ : 𝑅 → 𝑅 be a continuous function
such that ℎ(𝑡) ≥ 1 for all 𝑡 ∈ 𝑅 and ℎ(𝑡) → ∞ as |𝑡| → ∞.
We consider the space

(𝑃𝐶)
0

ℎ
(𝑅,𝑋

𝛼
) = {𝑢 ∈ 𝑃𝐶 (𝑅,𝑋

𝛼
) : lim

|𝑡|→∞

‖𝑢 (𝑡)‖
𝛼

ℎ (𝑡)
= 0} .

(16)

Endowed with the norm ‖𝑢‖
ℎ
= sup

𝑡∈𝑅
(‖𝑢(𝑡)‖

𝛼
/ℎ(𝑡)), it is a

Banach space.
We recall here the following compactness criterion in

these spaces, which we can refer to [7, 19–23].

Lemma 10. A set 𝐵 ⊆ (𝑃𝐶)
0

ℎ
(𝑅,𝑋

𝛼
) is a relatively compact set

if and only if

(1) lim
|𝑡|→∞

(‖𝑥(𝑡)‖
𝛼
/ℎ(𝑡)) = 0 uniformly for 𝑥 ∈ 𝐵;

(2) 𝐵(𝑡) = {𝑥(𝑡) : 𝑥 ∈ 𝐵} is relatively compact in 𝑋
𝛼
for

every 𝑡 ∈ 𝑅;
(3) the set 𝐵 is equicontinuous on each interval (𝑡

𝑖
, 𝑡
𝑖+1

)

(𝑖 ∈ 𝑍).

Theorem 11 (Krasnoselskii’s fixed-point theorem [24]). Let
𝑀 be a closed convex nonempty subset of a Banach space 𝑋;
suppose that 𝐴 and 𝐵 map 𝑀 into𝑋 such that

(i) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀 (∀𝑥, 𝑦 ∈ 𝑀),
(ii) 𝐴 is completely continuous,
(iii) 𝐵 is a contraction with constant 𝐿 < 1.

Then there is a 𝑦 ∈ 𝑀 with 𝐴𝑦 + 𝐵𝑦 = 𝑦.

3. Main Results

In this section, we discuss the existence of piecewise almost
periodic solutions for impulsive neutral functional differen-
tial equation (1). To begin, let us list the following hypotheses.

(A1) The operator 𝐴 is the infinitesimal generator of an
exponentially stable strongly continuous semigroup
of linear operators {𝑇(𝑡)}

𝑡≥0
; that is, there exist con-

stants 𝑀
1
> 0, 𝛿 > 0 such that ‖𝑇(𝑡)‖ ≤ 𝑀

1
𝑒
−𝛿𝑡 for

𝑡 ≥ 0. Moreover, 𝑇(𝑡) is compact for 𝑡 > 0.
(A2) 𝑓(𝑡, 𝑥) ∈ 𝐴𝑃

𝑇
(𝑅 ×B, 𝑋

𝛼
) is uniformly continuous in

𝑥 ∈ B uniformly in 𝑡 ∈ 𝑅; 𝐼
𝑖
(𝑥) is almost periodic

in 𝑖 ∈ 𝑍 uniformly in 𝑥 ∈ B and is a uniformly
continuous function in 𝑥 for all 𝑖 ∈ 𝑍. For every
𝑙 > 0, 𝐶

1𝑙
= sup

𝑡∈𝑅,‖𝑥‖B≤𝑙𝐿
‖𝑓(𝑡, 𝑥)‖

𝛼
< ∞, 𝐶

2𝑙
=

sup
𝑖∈𝑍,‖𝑥‖B≤𝑙𝐿

‖𝐼
𝑖
(𝑥)‖

𝛼
< ∞. Moreover, there exist a

number 𝐿
0
> 0, such that𝑀

1
(𝐶

1
/𝛿+𝐶

2
/(1−𝑒

−𝛿𝛾
)) ≤

𝐿
0
/2, where 𝐶

1
= 𝐶

1𝐿0
, 𝐶

2
= 𝐶

2𝐿0
.

(A3) 𝑔 ∈ 𝐴𝑃
𝑇
(𝑅 × B, 𝑋

𝛽
), 𝑔(𝑡, 0) = 0, and there exist a

number 𝐿
1
> 0 such that

𝑔(𝑡, 𝜙1) − 𝑔(𝑡, 𝜙
2
)
𝛽 ≤ 𝐿

1

𝜙1 − 𝜙
2

B (17)

for all 𝑡 ∈ 𝑅, 𝜙
1
, 𝜙

2
∈ B.

(A4) Let {𝑥
𝑛
} ⊆ 𝐴𝑃

𝑇
(𝑅,𝑋

𝛼
) be uniformly bounded in 𝑅

and uniformly convergent in each compact set of 𝑅;
then {𝑓(⋅, 𝑥

𝑛
(⋅))} is relatively compact in 𝑃𝐶(𝑅,𝑋

𝛼
).

Theorem 12. Suppose that conditions (A1)–(A4) hold; then (1)
has a piecewise almost periodic solution provided that𝐾𝐿𝐿

1
+

(𝑀
2
𝜋/𝛿

𝛽−𝛼 sin(𝜋(1 + 𝛼 − 𝛽))Γ(1 + 𝛼 − 𝛽))𝐿
1
𝐿 ≤ 1/2.

Proof. Let

𝐵 = {𝑢 ∈ 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
) : ‖𝑢‖

𝛼
≤ 𝐿

0
} . (18)

Note that 𝐵 is a closed convex set of𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
). By (A3) and

Lemma 1, we have

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
)
𝛼

≤

𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)


𝑔(𝑠, 𝑢𝑠)
𝛽

≤ 𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)𝑔(𝑠, 𝑢𝑠) − 𝑔(𝑠, 0)

𝛽

≤ 𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

𝐿
1

𝑢𝑠
B

≤ 𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

𝐿
1
𝐿 sup

𝑟≤𝑠

‖𝑢(𝑟)‖
𝛼

≤ 𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

𝐿
1
𝐿𝐿

0
,

(19)

and we infer that 𝑠 → 𝐴𝑇(𝑡 − 𝑠)𝑔(𝑠, 𝑢
𝑠
) is integrable on

(−∞, 𝑡].
Define the operator Υ on (𝑃𝐶)

0

ℎ
(𝑅,𝑋

𝛼
) by

Υ𝑢 (𝑡) = − 𝑔 (𝑡, 𝑢
𝑡
) − ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
) .

(20)

In order to prove that Υ has a fixed point in 𝐴𝑃
𝑇
(𝑅,𝑋

𝛼
), we

introduce the decomposition Υ = Υ
1
+ Υ

2
, where

Υ
1
𝑢 (𝑡) = − 𝑔 (𝑡, 𝑢

𝑡
) − ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢
𝑠
) 𝑑𝑠,

Υ
2
𝑢 (𝑡) = ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠 + ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
) .

(21)

Our proof will be split into the following three steps.

Step 1.We claim that Υ
1
𝑥 + Υ

2
𝑦 ∈ 𝐵 (for all 𝑥, 𝑦 ∈ 𝐵).
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For any 𝑥, 𝑦 ∈ 𝐵, by (A3) and Lemma 1, we have

Υ1𝑥 (𝑡)
𝛼

=


−𝑔 (𝑡, 𝑥

𝑡
) − ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
) 𝑑𝑠

𝛼

≤
𝑔 (𝑡, 𝑥

𝑡
)
𝛼

+ ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
)
𝛼𝑑𝑠

≤ 𝐾
𝑔 (𝑡, 𝑥

𝑡
)
𝛽

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)


𝑔 (𝑠, 𝑥
𝑠
)
𝛽𝑑𝑠

= 𝐾
𝑔(𝑡, 𝑥𝑡) − 𝑔(𝑡, 0)

𝛽

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)


×
𝑔 (𝑠, 𝑥

𝑠
) − 𝑔 (𝑠, 0)

𝛽𝑑𝑠

≤ 𝐾𝐿
1

𝑥𝑡
B

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)

𝐿
1

𝑥𝑠
B𝑑𝑠

≤ 𝐾𝐿
1
𝐿 sup

𝑟≤𝑡

‖𝑥(𝑟)‖
𝛼

+ ∫

𝑡

−∞

𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

× 𝐿
1
𝐿 sup

𝑟≤𝑠

‖𝑥 (𝑟)‖
𝛼
𝑑𝑠

≤ 𝐾𝐿
1
𝐿‖𝑥‖

𝛼

+ ∫

𝑡

−∞

𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

× 𝐿
1
𝐿‖𝑥‖

𝛼
𝑑𝑠

≤ 𝐾𝐿
1
𝐿‖𝑥‖

𝛼

+
𝑀

2
𝜋

𝛿𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽)) Γ (1 + 𝛼 − 𝛽)

× 𝐿
1
𝐿‖𝑥‖

𝛼
,

Υ2𝑦 (𝑡)
𝛼 =



∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑦
𝑠
) 𝑑𝑠

+∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑦

𝑡𝑖
)

𝛼

≤ ∫

𝑡

−∞

‖𝑇 (𝑡 − 𝑠)‖
𝑓(𝑠, 𝑦

𝑠
)
𝛼𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
)



𝐼
𝑖
(𝑦

𝑡𝑖
)
𝛼

≤ ∫

𝑡

−∞

𝑀
1
𝑒
−𝛿(𝑡−𝑠)

𝐶
1
𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝐶

2

≤
𝑀

1

𝛿
𝐶
1
+ ∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝐶

2
.

(22)

In order to estimate the last part of the second term on the
right hand side of the above formula, we assume that, for
every 𝑡 ∈ 𝑅, there exists 𝑗 ∈ 𝑍, such that 𝑡

𝑗
≤ 𝑡 < 𝑡

𝑗+1
,

𝑡 − 𝑡
𝑖
= (𝑡 − 𝑡

𝑗
) + (𝑡

𝑗
− 𝑡

𝑖
) ≥ (𝑗 − 𝑖) 𝛾,

∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝐶

2
≤ ∑

−∞<𝑖≤𝑗

𝑀
1
𝑒
−𝛿(𝑗−𝑖)𝛾

𝐶
2

= ∑

0≤𝑘=𝑗−𝑖<∞

𝑀
1
𝑒
−𝛿𝑘𝛾

𝐶
2
=

𝑀
1

1 − 𝑒−𝛿𝛾
𝐶
2
,

(23)

so

Υ2𝑦(𝑡)
𝛼 ≤

𝑀
1

𝛿
𝐶
1
+

𝑀
1

1 − 𝑒−𝛿𝛾
𝐶
2
. (24)

Then,
Υ1𝑥(𝑡) + Υ

2
𝑦(𝑡)

𝛼

≤
Υ1𝑥(𝑡)

𝛼 +
Υ2𝑦(𝑡)

𝛼

≤ 𝐾𝐿
1
𝐿‖𝑥‖

𝛼

+
𝑀

2
𝜋

𝛿𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽)) Γ (1 + 𝛼 − 𝛽)
𝐿
1
𝐿‖𝑥‖

𝛼

+
𝑀

1

𝛿
𝐶
1
+

𝑀
1

1 − 𝑒−𝛿𝛾
𝐶
2
,

(25)

from𝐾𝐿
1
𝐿+ (𝑀

2
𝜋/𝛿

𝛽−𝛼 sin(𝜋(1 +𝛼−𝛽))Γ(1 +𝛼−𝛽))𝐿
1
𝐿 ≤

1/2, and we obtain that
Υ1𝑥(𝑡) + Υ

2
𝑦(𝑡)

𝛼 ≤ 𝐿
0
, 𝑥, 𝑦 ∈ 𝐵. (26)

By (A2) and Lemma 6, 𝑓(𝑡, 𝑦
𝑡
) ∈ 𝐴𝑃

𝑇
(𝑅,𝑋

𝛼
), and, by

(A3) and Lemma 7, 𝑔(𝑡, 𝑥
𝑡
) ∈ 𝐴𝑃

𝑇
(𝑅,𝑋

𝛽
). By (A2) and [1,

Lemma 37], {𝐼
𝑖
(𝑦

𝑡𝑖
)} is almost periodic. From [1,Theorem 73],

for the two almost periodic functions 𝑓(𝑡, 𝑦
𝑡
), 𝑔(𝑡, 𝑥

𝑡
), there

exists a relatively dense set of their common 𝜖-translation
numbers. Then by Lemma 8, for every 𝜖 > 0, there exist
relatively dense sets Ω

𝜖,𝑓,𝑔,𝐼𝑖
of 𝑅 and 𝑄

𝜖,𝑓,𝑔,𝐼𝑖
of 𝑍 such that

for 𝜏 ∈ Ω
𝜖,𝑓,𝑔,𝐼𝑖

, ∃ q ∈ 𝑄
𝜖,𝑓,𝑔,𝐼𝑖

,

𝑔(𝑡 + 𝜏, 𝑥
𝑡+𝜏

) − 𝑔(𝑡, 𝑥
𝑡
)
𝛽 ≤ 𝜖,

𝑓(𝑡 + 𝜏, 𝑦
𝑡+𝜏

) − 𝑓(𝑡, 𝑦
𝑡
)
𝛼 ≤ 𝜖,


𝐼
𝑖+𝑞

(𝑦
𝑡𝑖+𝑞

) − 𝐼
𝑖
(𝑦

𝑡𝑖
)
𝛼

≤ 𝜖,
𝑡
𝑞

𝑖
− 𝜏

 ≤ 𝜖,

(27)
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where 𝑡 ∈ 𝑅, |𝑡 − 𝑡
𝑖
| > 𝜖, 𝑖 ∈ 𝑍. So for 𝜏 ∈ Ω

𝜖,𝑓,𝑔,𝐼𝑖
, we know

that

Υ
1
𝑥 (𝑡 + 𝜏) − Υ

1
𝑥 (𝑡)

= −𝑔 (𝑡 + 𝜏, 𝑥
𝑡+𝜏

) − ∫

𝑡+𝜏

−∞

𝐴𝑇 (𝑡 + 𝜏 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ 𝑔 (𝑡, 𝑥
𝑡
) + ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
) 𝑑𝑠

= −𝑔 (𝑡 + 𝜏, 𝑥
𝑡+𝜏

) + 𝑔 (𝑡, 𝑥
𝑡
)

− ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) [𝑔 (𝑠 + 𝜏, 𝑥
𝑠+𝜏

) − 𝑔 (𝑠, 𝑥
𝑠
)] 𝑑𝑠,

(28)

so
Υ1𝑥(𝑡 + 𝜏) − Υ

1
𝑥(𝑡)

𝛼

≤
𝑔(𝑡 + 𝜏, 𝑥

𝑡+𝜏
) − 𝑔(𝑡, 𝑥

𝑡
)
𝛼

+ ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) [𝑔 (𝑠 + 𝜏, 𝑥
𝑠+𝜏

) − 𝑔 (𝑠, 𝑥
𝑠
)]
𝛼𝑑𝑠

≤ 𝐾
𝑔(𝑡 + 𝜏, 𝑥

𝑡+𝜏
) − 𝑔(𝑡, 𝑥

𝑡
)
𝛽

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)


×
𝑔 (𝑠 + 𝜏, 𝑥

𝑠+𝜏
) − 𝑔 (𝑠, 𝑥

𝑠
)
𝛽𝑑𝑠

≤ 𝐾𝜖 + ∫

𝑡

−∞

𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

𝜖𝑑𝑠

≤ 𝜖(𝐾 +
𝑀

2
𝜋

𝛿𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽)) Γ (1 + 𝛼 − 𝛽)
) .

(29)

That is,
Υ1𝑥(𝑡 + 𝜏) − Υ

1
𝑥(𝑡)

𝛼

≤ 𝜖 (𝐾 + (𝑀
2
𝜋)

× (𝛿
𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽))

× Γ (1 + 𝛼 − 𝛽))
−1

) ,

(30)

Υ
2
𝑦 (𝑡 + 𝜏) − Υ

2
𝑦 (𝑡)

= ∫

𝑡+𝜏

−∞

𝑇 (𝑡 + 𝜏 − 𝑠) 𝑓 (𝑠, 𝑦
𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡+𝜏

𝑇 (𝑡 + 𝜏 − 𝑡
𝑖
) 𝐼

𝑖
(𝑦

𝑡𝑖
)

− ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑦
𝑠
) 𝑑𝑠

− ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑦

𝑡𝑖
)

= ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠 + 𝜏, 𝑦
𝑠+𝜏

) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖+𝑞
(𝑦

𝑡𝑖+𝑞
)

− ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑦
𝑠
) 𝑑𝑠

− ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑦

𝑡𝑖
)

= ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) [𝑓 (𝑠 + 𝜏, 𝑦
𝑠+𝜏

)

−𝑓 (𝑠, 𝑦
𝑠
)] 𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) [𝐼

𝑖+𝑞
(𝑦

𝑡𝑖+𝑞
) − 𝐼

𝑖
(𝑦

𝑡𝑖
)] ,

(31)

so we have


∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) [𝑓 (𝑠 + 𝜏, 𝑦
𝑠+𝜏

) − 𝑓 (𝑠, 𝑦
𝑠
)] 𝑑𝑠

𝛼

≤ ∫

𝑡

−∞

‖𝑇 (𝑡 − 𝑠)‖
𝑓(𝑠 + 𝜏, 𝑦

𝑠+𝜏
) − 𝑓(𝑠, 𝑦

𝑠
)
𝛼𝑑𝑠

≤ ∫

𝑡

−∞

𝑀
1
𝑒
−𝛿(𝑡−𝑠)

𝜖 𝑑𝑠 ≤
𝑀

1

𝛿
𝜖,



∑

𝑡𝑖<𝑡

𝑇(𝑡 − 𝑡
𝑖
)[𝐼

𝑖+𝑞
(𝑦

𝑡𝑖+𝑞
) − 𝐼

𝑖
(𝑦

𝑡𝑖
)]

𝛼

≤ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
)



𝐼
𝑖+𝑞

(𝑦
𝑡𝑖+𝑞

) − 𝐼
𝑖
(𝑦

𝑡𝑖
)
𝛼

≤ ∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝜖 ≤

𝑀
1

1 − 𝑒−𝛿𝛾
𝜖,

(32)

so

Υ2𝑦 (𝑡 + 𝜏) − Υ
2
𝑦 (𝑡)

𝛼 ≤ (
𝑀

1

𝛿
+

𝑀
1

1 − 𝑒−𝛿𝛾
) 𝜖. (33)

Combining (26), (30), and (33), it follows that Υ
1
𝑥 + Υ

2
𝑦 ∈ 𝐵

(for all 𝑥, 𝑦 ∈ 𝐵).

Step 2. Υ
1
is a contraction.

Let 𝑥, 𝑦 ∈ 𝐵; by (A3) and Lemma 1, we have

Υ1𝑥(𝑡) − Υ
1
𝑦(𝑡)

𝛼

=


−𝑔 (𝑡, 𝑥

𝑡
) − ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ 𝑔 (𝑡, 𝑦
𝑡
) + ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑦
𝑠
) 𝑑𝑠

𝛼

≤
𝑔 (𝑡, 𝑥

𝑡
) − 𝑔 (𝑡, 𝑦

𝑡
)
𝛼
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+ ∫

𝑡

−∞

𝐴𝑇 (𝑡 − 𝑠) [𝑔 (𝑠, 𝑥
𝑠
) − 𝑔 (𝑠, 𝑦

𝑠
)]
𝛼𝑑𝑠

≤ 𝐾
𝑔(𝑡, 𝑥𝑡) − 𝑔(𝑡, 𝑦

𝑡
)
𝛽

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)


𝑔(𝑠, 𝑥𝑠) − 𝑔(𝑠, 𝑦
𝑠
)
𝛽𝑑𝑠

≤ 𝐾𝐿
1

𝑥𝑡 − 𝑦
𝑡

B

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)

𝐿
1

𝑥𝑠 − 𝑦
𝑠

B𝑑𝑠

≤ 𝐾𝐿
1
𝐿 sup

𝑟≤𝑡

𝑥 (𝑟) − 𝑦 (𝑟)
𝛼

+ ∫

𝑡

−∞


𝐴
1+𝛼−𝛽

𝑇 (𝑡 − 𝑠)

𝐿
1
𝐿 sup

𝑟≤𝑠

𝑥(𝑟) − 𝑦(𝑟)
𝛼𝑑𝑠

≤ 𝐾𝐿
1
𝐿
𝑥 − 𝑦

𝛼

+ ∫

𝑡

−∞

𝑀
2
𝑒
−𝛿(𝑡−𝑠)

(𝑡 − 𝑠)
−(1+𝛼−𝛽)

𝐿
1
𝐿
𝑥 − 𝑦

𝛼𝑑𝑠

≤ 𝐾𝐿
1
𝐿
𝑥 − 𝑦

𝛼

+
𝑀

2
𝜋

𝛿𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽)) Γ (1 + 𝛼 − 𝛽)

× 𝐿
1
𝐿
𝑥 − 𝑦

𝛼.

(34)

Therefore,
Υ1𝑥 − Υ

1
𝑦
𝛼

≤ [𝐾𝐿
1
𝐿 +

𝑀
2
𝜋

𝛿𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽)) Γ (1 + 𝛼 − 𝛽)
𝐿
1
𝐿]

×
𝑥 − 𝑦

𝛼.

(35)

Since𝐾𝐿
1
𝐿+ (𝑀

2
𝜋/𝛿

𝛽−𝛼 sin(𝜋(1+𝛼−𝛽))Γ(1+𝛼−𝛽))𝐿
1
𝐿 ≤

1/2 < 1, it follows that Υ
1
is a contraction.

Step 3. Υ
2
is completely continuous.

Claim 1. Υ
2
is continuous.

Let {𝑥
𝑛
} ⊆ 𝐴𝑃

𝑇
(𝑅,𝑋

𝛼
), 𝑥

𝑛
→ 𝑥 in 𝐴𝑃

𝑇
(𝑅,𝑋

𝛼
) as 𝑛 →

∞; by Lemma 5, we may find a compact subset 𝐵
0
⊆ 𝑋

𝛼
such

that 𝑥
𝑛
(𝑡), 𝑥(𝑡) ∈ 𝐵

0
for all 𝑡 ∈ 𝑅, 𝑛 ∈ 𝑁; here we assume

𝐵 ⊆ 𝐵
0
. By (A2), for the given 𝜖, there exist 𝛿 > 0 such that

𝑥, 𝑦 ∈ B, ‖𝑥 − 𝑦‖B ≤ 𝛿, implies that

𝑓 (𝑡, 𝑥
𝑡
) − 𝑓 (𝑡, 𝑦

𝑡
)
𝛼 ≤ 𝜖,


𝐼
𝑖
(𝑥

𝑡𝑖
) − 𝐼

𝑖
(𝑦

𝑡𝑖
)
𝛼

≤ 𝜖.

(36)

For the above 𝛿, there exists 𝑛
0
∈ 𝑁 such that

𝑥𝑛(𝑡) − 𝑥(𝑡)
𝛼 ≤

𝛿

𝐿
(37)

for 𝑛 > 𝑛
0
and 𝑡 ∈ 𝑅; then

(𝑥𝑛)𝑡 − 𝑥
𝑡

B ≤ 𝛿,

𝑓(𝑡, (𝑥
𝑛
)
𝑡
) − 𝑓 (𝑡, 𝑥

𝑡
)
𝛼 ≤ 𝜖,


𝐼
𝑖
((𝑥

𝑛
)
𝑡𝑖
) − 𝐼

𝑖
(𝑥

𝑡𝑖
)
𝛼

≤ 𝜖,

(38)

for 𝑛 > 𝑛
0
and 𝑡 ∈ 𝑅. Hence,

Υ2(𝑥𝑛)(𝑡) − Υ
2
𝑥(𝑡)

𝛼

=



∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, (𝑥
𝑛
)
𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
((𝑥

𝑛
)
𝑡𝑖
)

− ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

−∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑥

𝑡𝑖
)

𝛼

≤ ∫

𝑡

−∞

‖𝑇 (𝑡 − 𝑠)‖
𝑓 (𝑠, (𝑥

𝑛
)
𝑠
) − 𝑓 (𝑠, 𝑥

𝑠
)
𝛼

𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
)



𝐼
𝑖
((𝑥

𝑛
)
𝑡𝑖
) − 𝐼

𝑖
(𝑥

𝑡𝑖
)
𝛼

≤ ∫

𝑡

−∞

𝑀
1
𝑒
−𝛿(𝑡−𝑠)

𝜖 𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝜖

=
𝑀

1

𝛿
𝜖 +

𝑀
1

1 − 𝑒𝛿𝛾
𝜖,

(39)

for 𝑛 > 𝑛
0
and 𝑡 ∈ 𝑅, from which it follows that Υ

2
is

continuous.

Claim 2. {Υ
2
𝑢(𝑡) : 𝑢 ∈ 𝐵} is a relatively compact subset of𝑋

𝛼

for each 𝑡 ∈ 𝑅.
For any 𝜖 > 0, let

Υ
𝜖

2
𝑢 (𝑡) = ∫

𝑡−𝜖

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡−𝜖

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

= 𝑇 (𝜖) [∫

𝑡−𝜖

−∞

𝑇 (𝑡 − 𝜖 − 𝑠) 𝑓 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡−𝜖

𝑇 (𝑡 − 𝜖 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)]

= 𝑇 (𝜖) Υ
2
𝑢 (𝑡 − 𝜖) ,

(40)
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where {Υ
2
𝑢(𝑡 − 𝜖) : 𝑢 ∈ 𝐵} is uniformly bounded in 𝑋

𝛼
and

𝑇(𝜖) is compact, so {Υ
𝜖

2
𝑢(𝑡) : 𝑢 ∈ 𝐵} is relatively compact in

𝑋
𝛼
. Moreover,

Υ2𝑢 (𝑡) − Υ
𝜖

2
𝑢 (𝑡)

𝛼

=



∫

𝑡

𝑡−𝜖

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
𝑠
) 𝑑𝑠

+ ∑

𝑡−𝜖<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

𝛼

≤ ∫

𝑡

𝑡−𝜖

‖𝑇 (𝑡 − 𝑠)‖
𝑓(𝑠, 𝑥

𝑠
)
𝛼𝑑𝑠

+ ∑

𝑡−𝜖<𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
)



𝐼
𝑖
(𝑢

𝑡𝑖
)
𝛼

≤ ∫

𝑡

𝑡−𝜖

𝑀
1
𝑒
−𝛿(𝑡−𝑠)𝑓 (𝑠, 𝑥

𝑠
)
𝛼𝑑𝑠

+ ∑

𝑡−𝜖<𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)


𝐼
𝑖
(𝑢

𝑡𝑖
)
𝛼

≤ 𝜖𝑀
1
𝐶
1
+

𝜖

𝛾
𝑀

1
𝐶
2
,

(41)

so {Υ
2
𝑢(𝑡) : 𝑢 ∈ 𝐵} is a relatively compact subset of 𝑋

𝛼
for

each 𝑡 ∈ 𝑅.

Claim 3. {Υ
2
𝑢 : 𝑢 ∈ 𝐵} is equicontinuous on each interval

(𝑡
𝑖
, 𝑡
𝑖+1

) (𝑖 ∈ 𝑍).
Let 𝑡 < 𝑡


, 𝑡

, 𝑡

∈ (𝑡

𝑖
, 𝑡
𝑖+1

), 𝑖 ∈ 𝑍, 𝑢 ∈ 𝐵,

Υ
2
𝑢 (𝑡


) − Υ

2
𝑢 (𝑡


)

= ∫

𝑡


−∞

𝑇 (𝑡

− 𝑠) 𝑓 (𝑠, 𝑢

𝑠
) 𝑑𝑠 + ∑

𝑡𝑖<𝑡


𝑇 (𝑡

− 𝑡

𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

− ∫

𝑡


−∞

𝑇 (𝑡

− 𝑠) 𝑓 (𝑠, 𝑢

𝑠
) 𝑑𝑠

− ∑

𝑡𝑖<𝑡


𝑇 (𝑡

− 𝑡

𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
)

= ∫

𝑡


−∞

[𝑇 (𝑡

− 𝑠) − 𝑇 (𝑡


− 𝑠)] 𝑓 (𝑠, 𝑢

𝑠
) 𝑑𝑠

+ ∫

𝑡


𝑡


𝑇 (𝑡

− 𝑠) 𝑓 (𝑠, 𝑢

𝑠
) 𝑑𝑠

+ ∑

𝑡𝑖<𝑡


[𝑇 (𝑡

− 𝑡

𝑖
) − 𝑇 (𝑡


− 𝑡

𝑖
)] 𝐼

𝑖
(𝑢

𝑡𝑖
)

+ ∑

𝑡

<𝑡𝑖<𝑡


𝑇 (𝑡

− 𝑡

𝑖
) 𝐼

𝑖
(𝑢

𝑡𝑖
) .

(42)

Moreover,

∫

𝑡


−∞

[𝑇 (𝑡

− 𝑠) − 𝑇 (𝑡


− 𝑠)] 𝑓 (𝑠, 𝑢

𝑠
) 𝑑𝑠

= ∫

∞

0

[𝑇 (𝑡

− 𝑡


+ 𝑠) − 𝑇 (𝑠)] 𝑓 (𝑡


− 𝑠, 𝑢

𝑡

−𝑠
) 𝑑𝑠

= ∫

∞

0

[𝑇 (𝑡

− 𝑡


) − 𝐼] 𝑇 (𝑠) 𝑓 (𝑡


− 𝑠, 𝑢

𝑡

−𝑠
) 𝑑𝑠.

(43)

By (A1), for the given 𝜖 > 0, there exists 𝜇(𝜖) < 𝜖/4𝑀
1
(𝐶

1
+

𝐶
2
/𝛾), such that if 0 < 𝑡


− 𝑡


< 𝜇, then


𝑇 (𝑡


− 𝑡


) − 𝐼


< min{

𝛿𝜖

4𝑀
1
𝐶
1

,
(1 − 𝑒

−𝛿𝛾
) 𝜖

4𝑀
1
𝐶
2

} . (44)

So



∫

𝑡


−∞

[𝑇 (𝑡

− 𝑠) − 𝑇 (𝑡


− 𝑠)] 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

𝛼

≤ ∫

∞

0


𝑇 (𝑡


− 𝑡


) − 𝐼


‖𝑇 (𝑠)‖

×

𝑓 (𝑡


− 𝑠, 𝑢 (𝑡


− 𝑠))

𝛼
𝑑𝑠

≤ ∫

∞

0

𝛿𝜖

4𝑀
1
𝐶
1

𝑀
1
𝑒
−𝛿𝑠

𝐶
1
𝑑𝑠 <

𝜖

4
,



∫

𝑡


𝑡


𝑇(𝑡

− 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠

𝛼

≤ ∫

𝑡


𝑡



𝑇 (𝑡


− 𝑠)



𝑓(𝑠, 𝑢(𝑠))
𝛼𝑑𝑠

< 𝜇𝑀
1
𝐶
1
<

𝜖

4
.

(45)

Similarly,



∑

𝑡𝑖<𝑡


[𝑇 (𝑡

− 𝑡

𝑖
) − 𝑇 (𝑡


− 𝑡

𝑖
)] 𝐼

𝑖
(𝑢 (𝑡

𝑖
))

𝛼

=



∑

𝑡𝑖<𝑡


[𝑇 (𝑡

− 𝑡


) 𝑇 (𝑡


− 𝑡

𝑖
) − 𝑇 (𝑡


, 𝑡
𝑖
)] 𝐼

𝑖
(𝑢 (𝑡

𝑖
))

𝛼

=



∑

𝑡𝑖<𝑡


[𝑇 (𝑡

− 𝑡


) − 𝐼] 𝑇 (𝑡


− 𝑡

𝑖
) 𝐼

𝑖
(𝑢 (𝑡

𝑖
))

𝛼

≤ ∑

𝑡𝑖<𝑡



𝑇 (𝑡


− 𝑡


) − 𝐼




𝑇 (𝑡


− 𝑡

𝑖
)


𝐼𝑖(𝑢(𝑡𝑖))
𝛼

≤ ∑

𝑡𝑖<𝑡


(1 − 𝑒
−𝛿𝛾

) 𝜖

4𝑀
1
𝐶
2

𝑀
1
𝑒
−𝛿(𝑡

−𝑡𝑖)𝐶

2
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≤
𝜖

4
,



∑

𝑡

<𝑡𝑖<𝑡


𝑇 (𝑡

− 𝑡

𝑖
) 𝐼

𝑖
(𝑢 (𝑡

𝑖
))

𝛼

≤ ∑

𝑡

<𝑡𝑖<𝑡



𝑇 (𝑡


, 𝑡
𝑖
)


𝐼𝑖 (𝑢 (𝑡
𝑖
))
𝛼

<
𝜇

𝛾
𝑀

1
𝐶
2
<

𝜖

4
.

(46)

So that, for 𝑢 ∈ 𝐵, 𝑡

, 𝑡


∈ (𝑡
𝑖
, 𝑡
𝑖+1

), 𝑖 ∈ 𝑍, for any 𝜖 > 0,
there exists a positive number 𝜇(𝜖), 𝜇 < 𝜖/4𝑀

1
(𝐶

1
+𝐶

2
/𝛾); if

0 < 𝑡

− 𝑡


< 𝜇,


Υ
2
𝑢(𝑡


) − Υ

2
𝑢(𝑡


)
𝛼

≤ 𝜖. (47)

That is, {Υ
2
𝑢 : 𝑢 ∈ 𝐵} is equicontinuous on each interval

(𝑡
𝑖
, 𝑡
𝑖+1

) (𝑖 ∈ 𝑍).
Since {Υ

2
𝑢 : 𝑢 ∈ 𝐵} ⊆ (𝑃𝐶)

0

ℎ
(𝑅,𝑋

𝛼
) and {Υ

2
𝑢 :

𝑢 ∈ 𝐵} satisfies the conditions of Lemma 10, Υ
2
is completely

continuous.
By Krasnoselskii’s fixed-point theorem (Theorem 11), we

know thatΥ has a fixed point 𝑢 ∈ 𝐵; that is, (1) has a piecewise
almost periodic solution 𝑢(𝑡). The proof is complete.

Note that the condition of uniformly continuous is
weaker than that of Lipschitz continuous, so if assumption
(A2) is replaced by the following assumption:

(A2) 𝑓(𝑡, 𝑥) ∈ 𝐴𝑃
𝑇
(𝑅 × B, 𝑋

𝛼
), 𝑓(𝑡, 0) = 0, 𝐼

𝑖
(0) =

0, 𝐼
𝑖
(𝑥) is almost periodic in 𝑖 ∈ 𝑍 uniformly in 𝑥 ∈ B and

𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)
𝛼 ≤ 𝐿

2

𝑥 − 𝑦
B,

𝐼𝑖(𝑥) − 𝐼
𝑖
(𝑦)

𝛼 ≤ 𝐿
3

𝑥 − 𝑦
B,

(48)

for all 𝑥, 𝑦 ∈ B.
We can get the almost periodic solution of (1) by means

of contraction mapping principle.

Corollary 13. Suppose that conditions (A1), (A2), and (A3)-
(A4) hold; (1) has a piecewise almost periodic solution provided
that

𝑀
1
𝐿
2
𝐿

𝛿
+

𝑀
1
𝐿
3
𝐿

1 − 𝑒−𝛿𝑟

+ (𝐾 +
𝑀

2
𝜋

𝛿𝛽−𝛼 sin (𝜋 (1 + 𝛼 − 𝛽)) Γ (1 + 𝛼 − 𝛽)
)

× 𝐿
1
𝐿 < 1.

(49)

Proof. As the same discussion as Step 2 ofTheorem 12, we can
prove that Υ

1
is a contraction, and it remains to show that Υ

2

is a contraction. By Step 1 of Theorem 12, Υ
2
𝐵 ⊆ 𝐵. For 𝑥,

𝑦 ∈ 𝐵,
Υ2𝑥(𝑡) − Υ

2
𝑦(𝑡)

𝛼

=



∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥
𝑠
) − 𝑓 (𝑠, 𝑦

𝑠
)] 𝑑𝑠

+∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) [𝐼

𝑖
(𝑥

𝑡𝑖
) − 𝐼

𝑖
(𝑦

𝑡𝑖
)]

𝛼

≤ ∫

𝑡

−∞

‖𝑇 (𝑡 − 𝑠)‖
𝑓(𝑠, 𝑥

𝑠
) − 𝑓(𝑠, 𝑦

𝑠
)
𝛼𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑇 (𝑡 − 𝑡
𝑖
)



𝐼
𝑖
(𝑥

𝑡𝑖
) − 𝐼

𝑖
(𝑦

𝑡𝑖
)
𝛼

≤ ∫

𝑡

−∞

𝑀
1
𝑒
−𝛿(𝑡−𝑠)

𝐿
2

𝑥𝑠 − 𝑦
𝑠

B𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝐿

3


𝑥
𝑡𝑖
− 𝑦

𝑡𝑖

B

≤ ∫

𝑡

−∞

𝑀
1
𝑒
−𝛿(𝑡−𝑠)

𝐿
2
𝐿 sup

𝑟≤𝑠

𝑥(𝑟) − 𝑦(𝑟)
𝛼𝑑𝑠

+ ∑

𝑡𝑖<𝑡

𝑀
1
𝑒
−𝛿(𝑡−𝑡𝑖)𝐿

3
𝐿 sup

𝑟≤𝑡𝑖

𝑥(𝑟) − 𝑦(𝑟)
𝛼

≤ 𝑀
1
𝐿 (

𝐿
2

𝛿
+

𝐿
3

1 − 𝑒−𝛿𝛾
)
𝑥 − 𝑦

𝛼.

(50)

The proof is complete.

4. Application

Consider the following impulsive neutral differential system:

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝜉) + ∫

0

−∞

∫

𝜋

0

𝑏
1
(𝑠, 𝜂, 𝜉) 𝑢 (𝑡 + 𝑠, 𝜂) 𝑑𝜂 𝑑𝑠]

=
𝜕
2

𝜕𝜉2
𝑢 (𝑡, 𝜉) + 𝑏

2
(𝜉) 𝑢 (𝑡, 𝜉)

+ ∫

0

−∞

𝑏
3
(𝑠) 𝑢 (𝑡 + 𝑠, 𝜉) 𝑑𝑠 + 𝑏

4
(𝑡, 𝜉) ,

(𝑡, 𝜉) ∈ 𝑅 × [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ 𝑅,

Δ𝑢 (𝑡
𝑖
) (𝜉) = ∫

𝜋

0

𝑎
𝑖
(𝑡
𝑖
− 𝑠) 𝑢 (𝑠, 𝜉) 𝑑𝑠,

𝑖 ∈ 𝑍, 𝜉 ∈ [0, 𝜋] ,

(51)

where {𝑡
𝑗

𝑖
= 𝑡

𝑖+𝑗
− 𝑡

𝑖
}, 𝑖 ∈ 𝑍, 𝑗 = 0, ±1, ±2, . . ., are

equipotentially almost periodic such that 𝛾 = inf
𝑖∈𝑍

{𝑡
𝑖+1

−

𝑡
𝑖
} > 0. The system (51) arises, for example, in control

systems described by abstract retarded functional differential
equations with feedback control governed by proportional
integrodifferential law; see [25, 26] for details.
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Let 𝑋 = 𝐿
2
([0, 𝜋]) and 𝐴 be the infinitesimal generator

of an analytic semigroup {𝑇(𝑡)}
𝑡≥0

which is compact for 𝑡 > 0

and given by 𝐴𝑢 = 𝑢
 with domain 𝐷(𝐴) = {𝑢 ∈ 𝐿

2
([0, 𝜋]) :

𝑢


∈ 𝐿
2
([0, 𝜋]), 𝑢(0) = 𝑢(𝜋) = 0}. The semigroup {𝑇(𝑡)}

𝑡≥0
is

defined for 𝑢 ∈ 𝐿
2
([0, 𝜋]) by

𝑇 (𝑡) 𝑢 =

∞

∑

𝑛=1

𝑒
−𝑛
2
𝑡
⟨𝑢, 𝜙

𝑛
⟩ 𝜙

𝑛
, (52)

where {𝜙
𝑛
, 𝑛 ∈ 𝑍} is an orthonormal basis of 𝑋; then

|𝑇(𝑡)𝑢| ≤ 𝑒
−𝑡
|𝑢|, 0 ̸= 𝑢 ∈ 𝐿

2
([0, 𝜋]). For 𝑢 ∈ 𝐿

2
([0, 𝜋]),

𝛼 ∈ (0, 1), (−𝐴)
−𝛼

𝑢 = ∑
∞

𝑛=1
𝑛
−2𝛼

⟨𝑢, 𝜙
𝑛
⟩𝜙

𝑛
, 𝑋

𝛼
is the Banach

space endowed with the norm ‖ ⋅ ‖
𝛼
between𝑋 and𝐷(𝐴).

In this paper, we assume 𝛼 = 1/4, 𝛽 = 3/4.
To study the system (51), we make the following assump-

tions.
(i) The functions (𝜕𝑖/𝜕𝜉𝑖)𝑏

1
(𝜏, 𝜂, 𝜉), 𝑖 = 0, 1 are Lebesgue

measurable, 𝑏
1
(𝜏, 𝜂, 0) = 𝑏

1
(𝜏, 𝜂, 𝜋) = 0 and

𝐿
1

:= max{∫

𝜋

0

∫

0

−∞

∫

𝜋

0

(
𝜕
𝑖

𝜕𝜉𝑖
𝑏
1
(𝜏, 𝜂, 𝜉))

2

𝑑𝜂 𝑑𝜏 𝑑𝜉 : 𝑖 = 0, 1}

< ∞.

(53)

(ii) The functions 𝑏
𝑖
(𝑖 = 2, 3, 4), 𝑎

𝑖
(𝑖 ∈ 𝑍) are

continuous, and the sequence of functions {𝑎
𝑖
, 𝑖 ∈ 𝑍} is

almost periodic.

Under these conditions, we define 𝑓, 𝑔 : 𝑅 ×B → 𝑋, 𝐼
𝑖
:

B → 𝑋 (𝑖 ∈ 𝑍) by

𝑔 (𝑡, 𝜙) = ∫

0

−∞

∫

𝜋

0

𝑏
1
(𝑠, 𝜂, 𝜉) 𝜙 (𝑡 + 𝑠, 𝜂) 𝑑𝜂 𝑑𝑠,

𝑡 ∈ 𝑅, 𝜉 ∈ [0, 𝜋] ,

𝑓 (𝑡, 𝜙) = 𝑏
2
(𝜉) 𝜙 (𝑡, 𝜉) + ∫

0

−∞

𝑏
3
(𝑠) 𝜙 (𝑡 + 𝑠, 𝜉) 𝑑𝑠 + 𝑏

4
(𝑡, 𝜉) ,

𝑡 ∈ 𝑅, 𝜉 ∈ [0, 𝜋] ,

𝐼
𝑖
(𝜙) = ∫

𝜋

0

𝑎
𝑖
(𝑡
𝑖
− 𝑠) 𝜙 (𝑠, 𝜉) 𝑑𝑠, 𝑖 ∈ 𝑍, 𝜉 ∈ [0, 𝜋] .

(54)

We assume further that 𝑓, 𝑔 satisfy the following condi-
tion.

(iii) 𝑔 ∈ 𝐴𝑃
𝑇
(𝑅 × B, 𝑋

𝛽
) and 𝑓 ∈ 𝐴𝑃

𝑇
(𝑅 × B, 𝑋

𝛼
) are

uniformly continuous in 𝑥 ∈ B uniformly in 𝑡 ∈ 𝑅.
Under the above assumptions, we can rewrite (51) as

the abstract form (1) and verify that the assumptions of
Theorem 12 hold; then we can get the next result, which is a
consequence of Theorem 12.

Proposition 14. Assume that the previous conditions are
verified, if

𝐿
1
𝐿 (𝐾 + √𝜋) < 1. (55)

The system (51) has a piecewise almost periodic solution.
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