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Measles is a higher contagious disease that can spread in a community population depending on the number of people (children)
susceptible or infected and also depending on their movement in the community. In this paper we present a fractional SEIR
metapopulation systemmodeling the spread ofmeasles.We restrict ourselves to the dynamics between four distinct cities (patches).
We prove that the fractional metapopulation model is well posed (nonnegative solutions) and we provide the condition for the
stability of the disease-free equilibrium. Numerical simulations show that infection will be proportional to the size of population
in each city, but the disease will die out. This is an expected result since it is well known for measles (Bartlett (1957)) that, in
communities which generate insufficient new hosts, the disease will die out.

1. Introduction and Important Facts

Mathematical modeling in epidemiology is concerned with
describing the spread of disease and its effect on people.
This itself encompasses a range of disciplines, from biology,
mathematics, and engineering to sociology and philosophy,
all of which are utilized to a better understanding and
containing of the spread of infection. The models devel-
oped in epidemiology provide a wider understanding of the
mechanisms that influence the spread of a disease and they
suggest control strategies [1]. One of the early triumphs of
mathematical epidemiology was a formulation of a model in
[2] to predict the behavior of a disease.The total population in
this model was assumed to be constant and divided into three
compartments: suspended, infectious, and recovered. Over
the years, more complex models have been derived. Among
them, we count models based on dynamics with derivative of
fractional order and metapopulation models.

Fractional differential equations and their applications
have been comprehensively studied in a large number of
works [3–6]. Although numerous analyses have been done in
modeling the dynamics of epidemiological diseases, most of

them have been restricted to integer order (delay) differential
equations. In recent years, it has turned out that many phe-
nomena in different fields can be described very successfully
by the models using fractional order differential equations.
Adomian decomposition method has been employed to
obtain solutions of a system of nonlinear fractional differ-
ential equations in number of articles and the method is
extended in [5], where the authors used a complementary
method, Frobenius decomposition method, to generalize the
classical Darcy law. Epidemiology combined with fractional
calculus was applied in [6] for an outbreak of dengue fever.

Metapopulation models are defined as system of differ-
ential equations generated by discrete spatial models with
continuous time. Indeed, they describe movement of indi-
viduals between discrete spatial patches that can be cities,
towns, places, and so forth. Metapopulation models have
been thoroughly analyzed in numeral articles [7, 8].

Measles is a higher contagious viral disease caused by
infection of Paramyxovirus, generally of the genus Morbil-
livirus. Its incubation period is located somewhere between
9 and 12 days and its infectivity period between 4 and 9 days.
Measles is highly present in early childhood and its epidemics
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are commonly related to aggregation of children at schools or
childcare centres. It is recommended to get vaccinated against
it at around 18 months of age and have a booster at 4 to 5
years of age. The disease is particularly characterized by its
low mortality and high morbidity. Measles will continue to
circulate in a community with a higher number of susceptible
hosts by birth of children. However, in communities which
generate insufficient new hosts, measles will die out. This
theory was introduced in 1957 by Bartlett [9], who brought
out the critical population size for a community and referred
it to be the minimum number supporting measles.

Our work is motivated by an article by the online
magazine Otago Daily Time [10], following the emergence
of measles after a student brought the disease from Sydney
where he participated in a hip hop competition. On 1 March
2014, the online magazine Otago Daily Time released a
warning over measles outbreak in New Zealand after the
disease was discovered on the student. After that, many cases
of the disease in different cities all over the country were
noticed. The metapopulation model, presented in Section 3,
is then suitable to describe and analyze the spread of the
disease.

2. Formulation of Fractional Temporal
SEIR Measles Model

We formulate here the systemmodeling the fractional tempo-
ral spread of measles in a human population. In this model,
a population supposed constant is divided into different
classes, disjoint and based on their disease status. At time 𝑡,
𝑆 = 𝑆(𝑡) is the fraction of population representing individuals
susceptible to measles, 𝐸 = 𝐸(𝑡) is the fraction of population
representing individuals exposed to measles, 𝐼 = 𝐼(𝑡) is
the fraction of population representing individuals infectious
with measles, and 𝑅 = 𝑅(𝑡) is the fraction of population
representing individuals that recovered from measles. We
assume that all recruitment is done by birth into the class
of susceptible and occurs at constant birth rate 𝑏. The rate
constant for nondisease related death is 𝜇; thus 1/𝜇 is the
average lifetime.We use the standard mass balance incidence
expressions 𝛽(𝑡)𝑆𝐼 to indicate successful transmission of
measles due to effective contacts dynamics in the population
by infectious individuals. Once infected, a fraction of exposed
people becomes infectious with a constant rate 𝜎, so that 1/𝜎
is the average incubation period. Some infectious individuals
will recover after a treatment or a certain period of time
at a rate constant 𝜁, making 1/𝜁 the average infectious
period. The transfer diagram for this model is described
by Figure 1 and formulated by the following differential
equations:

𝐷
𝛾

𝑡
𝑆 = 𝑏 − (𝛽 (𝑡) 𝐼 + 𝜇) 𝑆,

𝐷
𝛾

𝑡
𝐸 = 𝛽 (𝑡) 𝑆𝐼 − (𝜎 + 𝜇) 𝐸,

𝐷
𝛾

𝑡
𝐼 = 𝜎𝐸 − (𝜁 + 𝜇) 𝐼,

𝐷
𝛾

𝑡
𝑅 = 𝜁𝐼 − 𝜇𝑅,

(1)
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Figure 1: Transfer diagram for temporal dynamics transmission of
measles.

where

𝐷
𝛾

𝑡
𝑢 (𝑡) =

𝜕
𝛾

𝜕𝑡
𝛾
𝑢 (𝑡) =

1

Γ (1 − 𝛾)
∫

𝑡

0

(𝑡 − 𝑟)
−𝛾 𝜕

𝜕𝑟
𝑢 (𝑟) 𝑑𝑟, (2)

with 0 ≤ 𝛾 < 1 being the fractional derivative of the
function 𝑢(𝑡) in the sense of Caputo [3], with Γ being the
Gama function.

3. Metapopulation Model

In this section we formulate the metapopulation dynamics
[7] for four patches representing four cities in New Zealand:
Auckland, Bay of Plenty, Wellington, and Dunedin. Those
cities are chosen since, on 1March 2014, there were 43 cases of
individuals found infected with measles in Auckland (among
which 20 students were of the same school), 15 cases in the
city of Bay of Plenty, and 3 cases in Wellington. There was
no case found in Dunedin, a city in the southern region of
Otago in South Island ofNewZealand.The aim is to deal with
prevention against measles to reach the region of Otago. For
reasons of commodity, we denote the cities Auckland, Bay of
Plenty, Wellington, and Dunedin by the letters𝐴, 𝐵, 𝑊, and
𝐷, respectively. Let us consider the setP = {𝐴; 𝐵;𝑊;𝐷} of the
four patches. We call𝑚𝑐

𝑥𝑦
the rate of travel from city 𝑥 to city

𝑦 in compartment 𝑐with 𝑐 = 𝑆, 𝐸, 𝐼, or 𝑅; that is, it represents
the transfer rate of individuals in the compartment 𝑐 of city 𝑥
moving to the same compartment 𝑐 in city 𝑦. It is clear that
𝑚
𝑐

𝑥𝑥
= 0, for all 𝑥 ∈ P and 𝑐 ∈ C = {𝑆, 𝐸, 𝐼, 𝑅}. Then the

travel model is given in Figure 2 and, for each city 𝑥 ∈ P, we
obtain the system of four differential equations given by

𝐷
𝛾

𝑡
𝑆𝑥 = 𝑏𝑥 − (𝛽𝑥 (𝑡) 𝐼𝑥 + 𝜇𝑥) 𝑆𝑥 + ∑

𝑦∈P

𝑆𝑦𝑚
𝑆

𝑦𝑥
− 𝑆𝑥∑

𝑦∈P

𝑚
𝑆

𝑥𝑦
,

𝐷
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𝐸𝑥 = 𝛽𝑥 (𝑡) 𝑆𝑥𝐼𝑥 − (𝜎𝑥 + 𝜇𝑥) 𝐸𝑥

+ ∑

𝑦∈P

𝐸𝑦𝑚
𝐸

𝑦𝑥
− 𝐸𝑥∑

𝑦∈P

𝑚
𝐸

𝑥𝑦
,

𝐷
𝛾

𝑡
𝐼𝑥 = 𝜎𝑥𝐸𝑥 − (𝜁𝑥 + 𝜇𝑥) 𝐼𝑥 + ∑

𝑦∈P

𝐼𝑦𝑚
𝐼

𝑦𝑥
− 𝐼𝑥∑

𝑦∈P

𝑚
𝐼

𝑥𝑦
,

𝐷
𝛾

𝑡
𝑅𝑥 = 𝜁𝑥𝐼𝑥 − 𝜇𝑥𝑅𝑥 + ∑

𝑦∈P

𝑅𝑦𝑚
𝑅

𝑦𝑥
− 𝑅𝑥∑

𝑦∈P

𝑚
𝑅
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,

(3)
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Table 1

Auckland Bay of Plenty Wellington Dunedin
Initial population (×105) 𝑆

𝐴
(0) = 1417,9 𝑆

𝐵
(0) = 124,1 𝑆

𝑊
(0) = 397,5 𝑆

𝐷
(0) = 118,25

Auckland 0
Bay of Plenty 200 0
Wellington 650 470 0
Dunedin 1060 1020 610 0
Approximate distances between cities (km).

Wellington (W) Bay of Plenty (B)

Auckland (A)

Dunedin (D)

mWAmAW

Figure 2: Travel model dynamics between cities. The arrows
symbolize the travel rates𝑚

𝑥𝑦
between cities 𝑥 and 𝑦.

with initial conditions

𝑆𝑥 (0) > 0, 𝐸𝑥 (0) ≥ 0, 𝐼𝑥 (0) ≥ 0, 𝑅𝑥 (0) ≥ 0,

with ∑

𝑥∈P

𝐸𝑥 (0) + 𝐼𝑥 (0) ≥ 0.

(4)

These initial conditions ensure that, at the beginning, there
are infected individuals in the system. They also imply the
well posedness of the model. Indeed, we have the general-
ized version of the Mean Value Theorem that is stated as
follows.

Theorem 1. Let the function J ∈ 𝐶[𝑡1, 𝑡2] and its fractional
derivative 𝐷𝛼

𝑡
J ∈ 𝐶(𝑡1, 𝑡2] for 0 ≤ 𝛼 < 1, and 𝑡1, 𝑡2 ∈ R; then

one has

J (𝑡) = J (𝑡1) +
1

Γ (𝛼)
𝐷
𝛼

𝑡
J (𝜏) (𝑡 − 𝑡1)

𝛼
∀𝑡 ∈ (𝑡1, 𝑡2] , (5)

where 0 ≤ 𝜏 < 𝑡.

Proof. See the “Generalized Mean ValueTheorem” proved in
[11].

Thus, consider the interval [0, 𝑡2] for any 𝑡2 > 𝑜; this
theorem implies that the function J : [0, 𝑡2] → R+ is
nonincreasing on [0, 𝑡2] if 𝐷

𝛼

𝑡
J(𝑡) ≤ 0 for all 𝑡 ∈ (0, 𝑡2) and

nondecreasing on [0, 𝑡2] if 𝐷
𝛼

𝑡
J(𝑡) ≥ 0 for all 𝑡 ∈ (0, 𝑡2).

Furthermore, the nonnegativity of solutions to the problem
(3)-(4) is obvious since the total population in city 𝑥, say
𝑁𝑥, evolves according to the sum of the four equations in
(3) such that a positive 𝑁𝑥 yields nonnegative solutions of
(3)-(4).

4. Equilibrium Points, Basic Reproduction
Ratio, and Stability

We evaluate the equilibrium points of (3) by letting, for each
city 𝑥 ∈ P,

𝐷
𝛾

𝑡
𝑆𝑥 = 0,

𝐷
𝛾

𝑡
𝐸𝑥 = 0,

𝐷
𝛾

𝑡
𝐼𝑥 = 0,

𝐷
𝛾

𝑡
𝑅𝑥 = 0.

(6)

The disease-free equilibrium (DFE) of the system is obtained
by setting 𝐸𝑥(0) = 0, 𝐼𝑥(0) = 0 for each city 𝑥 ∈ P and
its stability is investigated using the next generation operator
[12].Thus, at theDFE for all the cities𝑥 ∈ P, we have 𝑆𝑥 = 𝑁𝑥
and adding the equation given in (3) yields at the DFE

𝑏𝑥 − 𝜇𝑥𝑁𝑥 + ∑

𝑦∈P

𝑁𝑦𝑚
𝑆

𝑦𝑥
− ∑

𝑦∈P

𝑁𝑥𝑚
𝑆

𝑥𝑦
= 0. (7)

Following the same approach as [7], we compute the basic
reproduction number as the spectral radius

R0 = 𝜌 (𝐹𝑉
−1
) , (8)

where 𝐹 and 𝑉 are, respectively, the matrix of new infections
and the matrix of transfer between compartments. The
disease-free equilibrium of system (3) is linearly stable if
R0 < 1 and unstable ifR0 > 1.

5. Numerical Simulations

To provide numerical approximations and simulations of
solutions to the fractional model (3)-(4) with different values
of 𝛾, we use the implementation code of the predictor-
corrector PECE method of Adams-Bashforth-Moulton type
described in [13]. We restrict our analysis to the case of
symmetry in the intercities movements, meaning𝑚𝑥𝑦 = 𝑚𝑦𝑥.
We assume that𝑚𝑥𝑦 is inversely proportional to the distance
𝐷𝑥𝑦 between the cities 𝑥 and 𝑦. That is,

𝑚𝑥𝑦𝐷𝑥𝑦 = 𝑘, (9)

for some 𝑘 ∈ R. Table 1 shows the different distances between
cities. Figure 3 shows the dynamics of the disease in the city
of Auckland (𝐴), for the four compartments with different
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Figure 3: Measles dynamics in Auckland (𝐴) for the 4 compartments for 𝛾 = 1; 0.95; 0.90.
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Figure 4: Global dynamics of the infection in the 4 cities for 𝛾 = 1; 0.95; 0.90.
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values of the fractional derivative order 𝛾 = 1; 0.95 and 0.90.
Auckland has been chosen just as an example since it contains
the highest number of people among the four cities as shown
in Table 1. In Figure 4, we can see the global evolution the
infection in the four cities, with different values of 𝛾. It is clear
that the disease dies out irrespective of the three values of 𝛾.
In the simulation for the city 𝑥 = 𝐴 (Auckland), for example,
we have taken 𝐸𝐴(0) = 1, 𝐼𝐴(0) = 0.01, and 𝑅𝐴(0) = 0.02 and
have considered the parameters

𝜁𝐴 = 0.14,
𝜇𝐴 = 0,
𝛽𝐴 = 0.1,
𝑘 = 1,
𝜎𝐴 = 0.09,
𝑏𝐴 = 0.

6. Concluding Remarks

In this paper we have presented the well posedness of frac-
tional SEIR metapopulation dynamics of measles between
four cities inNewZealand.We used real data according to the
article by the online magazine Otago Daily Time, following
the emergence of the disease after a student brought it from
Sydney where he participated in a hip hop competition.
We have started by showing nonnegativity of solutions to
the fractional metapopulation model, thereby addressing the
problem of its well posedness. We have also shown that the
disease-free equilibrium of the model is linearly stable if
R0 < 1 and unstable if R0 > 1. Numerical simulations
have shown that, even in fractional dynamics of measles in
metapopulation, the epidemic will not occur in communities
which generate insufficient new hosts, which is in accordance
with the theory of Bartlett [9]. This work generalizes the
preceding ones with the inclusion of the fractional dynamics
to a combined SEIR and metapopulation model, giving at
the same time one of the multiple applications of fractional
differential equations.
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