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This paper is concernedwith some stronger forms of sensitivity formeasure-preservingmaps and semiflows onprobability spaces. A
new form of sensitivity is introduced, called ergodic sensitivity. It is shown that, on ametric probability space with a fully supported
measure, if a measure-preserving map is weak mixing, then it is ergodically sensitive and multisensitive; and if it is strong mixing,
then it is cofinitely sensitive, where it is not required that themap is continuous and the space is compact. Similar results formeasure-
preserving semiflows are obtained, where it is required in a result about ergodic sensitivity that the space is compact in some sense
and the semiflow is continuous. In addition, relationships between some sensitive properties of amap and its iterations are discussed,
including syndetic sensitivity, cofinite sensitivity, ergodic sensitivity as well as usual sensitivity, 𝑛-sensitivity, and multisensitivity.
Moreover, it is shown that multisensitivity, cofinite sensitivity, and ergodic sensitivity can be lifted up by a semiopen factor map.

1. Introduction

One of the most interesting characteristics of a dynamical
system is when orbits of nearby points deviate after finite
steps. This is also one of the important features of chaotic
dynamical behaviors. It is termed as sensitive dependence
on initial conditions (briefly, sensitivity). Sensitivity is a
key notion when studying the complexity of a dynamical
system. So, it is very important to study what systems
have sensitive dependence. This problem has gained much
attention recently (see [1–14]).

In [1], Abraham et al. proved that if a measure-preserving
map 𝑇 on a metric probability space (𝑋, 𝑑,B(𝑋), 𝜇) with
supp 𝜇 = 𝑋 is either topologically mixing or weak mixing
and satisfies that for any nonempty open set𝑈 ⊂ 𝑋 and there
exists a subsequence {𝑛𝑘} with positive upper density such
that

𝑈⋂(⋂

𝑘≥0

𝑇
−𝑛𝑘
𝑈) ̸= 0, (1)

then 𝑇 is sensitive. In the same paper, they proved that if
𝑇 is strong mixing and sup𝜇 = 𝑋, then it is sensitive; and

if 𝑇 is an exact endomorphism and sup 𝜇 = 𝑋, then it is
cofinitely sensitive. He et al. [8] showed that if a measure-
preserving map 𝑇 (resp., a measure-preserving semiflow 𝜑)
on (𝑋, 𝑑,B(𝑋), 𝜇) with supp 𝜇 = 𝑋 is weak mixing, then
it is sensitive. In addition, if 𝑋 is a nontrivial metric space
(i.e., a metric space is not reduced to a single point) and a
map 𝑓 on 𝑋 is topologically mixing, then 𝑓 is sensitive [7,
Proposition 7.2.14].

There are severalways to extend this notion.Here, we only
list the following three ways:

(1) one may define 𝑛-sensitivity as it was done by
Nemiskii and Stepanov in [15] and Ye and Zhang in
[16];

(2) one may require that in any open subset 𝑈 there is
a pair (𝑥; 𝑦) which is a Li-Yorke pair as Akin and
Kolyada in [17] did (see also recent work by Li et al. in
[18], where a stronger form of sensitivity is defined);

(3) the third way is what we now consider in the present
paper, that is, study𝑁𝑓(𝑉, 𝛿).

Previously, the third way was considered by several scholars.
More recently, Moothathu [12] studied continuous self-maps
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on compact metric spaces and initiated a preliminary study
of stronger forms of sensitivity, including syndetic sensitivity,
cofinite sensitivity, and multisensitivity. In particular, he
showed that any syndetically transitive and nonminimal map
is syndetically sensitive. This improves the result that if a
continuous map is topologically transitive and has a dense
set of periodic points in an infinite metric space, then it
is sensitive [3]. Xiong [14] introduced the concept of 𝑛-
sensitivity for continuous self-maps of a complete metric
space. Later, Shao et al. [13] investigated some properties of
𝑛-sensitivity of continuous and surjective maps on a compact
metric space. James et al. [10] introduced a notion, called
measurable sensitivity and showed that a totally ergodic and
measurably sensitive map is weakly mixing. More recently,
Huang et al. [9] introduced the concepts of 𝜇-sensitivity,
𝑛-sensitivity for 𝜇, 𝜇-complexity, and 𝜇-equicontinuity for
a measure-preserving and continuous map on a metric
probability space (𝑋, 𝑑,B(𝑋), 𝜇) and presented a sufficient
condition for 𝑛-sensitivity for 𝜇, where𝑋 is a compact metric
space.They proved that 𝜇-sensitivity is equivalent to pairwise
sensitivity defined by Cadre and Jacob in [4].

In this paper, we introduce a new and stronger form
of sensitivity, ergodic sensitivity, and present several suffi-
cient conditions for multisensitivity, cofinite sensitivity, and
ergodic sensitivity of measure-preserving maps and semi-
flows, where it is not required that maps and semiflows are
continuous and spaces are compact. We show that, for a
measure-preserving map on a metric probability space with
a fully supported measure, if it is weak mixing, then it is
ergodically sensitive and multisensitive; and if it is strong
mixing, then it is cofinitely sensitive. Related problems for
measure-preserving semiflow are also discussed. In addition,
we consider the relationships between five forms of sensitivity
(i.e., sensitivity, multisensitivity, cofinite sensitivity, syndetic
sensitivity, ergodic sensitivity, and 𝑛-sensitivity) of a map 𝑓
and its iterations 𝑓𝑚 for𝑚 ≥ 2.

The rest of this paper is organized as follows. In Section 2,
we recall some basic concepts and lemmas and introduce a
new and stronger form of sensitivity, called ergodic sensi-
tivity. In Section 3, we give several sufficient conditions for
multisensitivity, cofinite sensitivity, and ergodic sensitivity.
Finally, we discuss the relationships between five forms of
sensitivity of a map and its iterations in Section 4.

2. Preliminaries

In this section, we first introduce some notations and basic
concepts, including a new and stronger form of sensitivity,
called ergodic sensitivity, and then give two useful lemmas.

By N denote the set of all positive integers. Denote Z+ :=
{0, 1, . . .}, R+ := [0, +∞), and N𝑛 := {0, 1, . . . , 𝑛 − 1}. We will
use |𝐴| to denote the cardinality of a set 𝐴.

We refer to [12, 19, 20] for the following basic concepts.
Let (𝑋, 𝑑) be ametric space,B(𝑋) the sigma-algebra of Borel
subsets of 𝑋, and 𝜇 a probability measure on (𝑋,B(𝑋)).
Then the space 𝑋 is called to be a metric probability space,
denoted by the quadruple (𝑋, 𝑑,B(𝑋), 𝜇), which is often
briefly denoted by the triple (𝑋,B(𝑋), 𝜇).

A measurable map 𝑇 is called measure-preserving on
(𝑋,B(𝑋), 𝜇) if 𝜇(𝐵) = 𝜇(𝑇

−1
(𝐵)) for any 𝐵 ∈ B(𝑋).

A measurable semiflow 𝜑 is called measure-preserving on
(𝑋,B(𝑋), 𝜇) if 𝜇(𝐵) = 𝜇(𝜑−1

𝑡
(𝐵)) for any 𝐵 ∈ B(𝑋) and for

any 𝑡 ∈ R+.
The following concepts are about mixing properties of

maps and semiflows in the measure-theoretical sense.

Definition 1. (i) A measure-preserving map 𝑇 on
(𝑋,B(𝑋), 𝜇) is called weak mixing and strong mixing
if, for any 𝐴, 𝐵 ∈ B(𝑋), the following two equalities hold,
respectively:

lim
𝑛→∞

1

𝑛

𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝐴⋂𝑇

−𝑖
(𝐵)) − 𝜇 (𝐴) 𝜇 (𝐵)

󵄨
󵄨
󵄨
󵄨
󵄨
= 0,

lim
𝑛→∞

𝜇 (𝐴⋂𝑇
−𝑛
(𝐵)) = 𝜇 (𝐴) 𝜇 (𝐵) .

(2)

(ii) A measure-preserving semiflow 𝜑 on (𝑋,B(𝑋), 𝜇)
is called weak mixing and strong mixing if, for any 𝐴, 𝐵 ∈

B(𝑋), the following two equalities hold, respectively:

lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝐴⋂𝜑

−1

𝑠
(𝐵)) − 𝜇 (𝐴) 𝜇 (𝐵)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 = 0,

lim
𝑡→∞

𝜇 (𝐴⋂𝜑
−1

𝑡
(𝐵)) = 𝜇 (𝐴) 𝜇 (𝐵) .

(3)

The following concepts describe three different forms of
transitivity of amap𝑓 : 𝑋 → 𝑋 and a semiflow𝜑 : R+×𝑋 →

𝑋 in the topological sense. For convenience, denote

𝑁𝑓 (𝑈, 𝑉) := {𝑛 ∈ N : 𝑇
𝑛
(𝑈) ∩ 𝑉 ̸= 0} ,

𝑁𝜑 (𝑈, 𝑉) := {𝑡 > 0 : 𝜑𝑡 (𝑈) ∩ 𝑉 ̸= 0}

(4)

for any sets 𝑈,𝑉 ⊂ 𝑋.

Definition 2. Let𝑓 : 𝑋 → 𝑋 be amap and𝑋 ametric space.

(i) The map 𝑓 is said to be topologically transitive and
topologicallymixing on𝑋 if, for any pair of nonempty
open sets 𝑈,𝑉 ⊂ 𝑋, the following conditions hold,
respectively: 𝑁𝑓(𝑈, 𝑉) ̸= 0 and 𝑁𝑓(𝑈, 𝑉) ⊃ {𝑘, 𝑘 +

1, . . .} for some integer 𝑘 ≥ 1.

(ii) The map 𝑓 is said to be topologically weakly mixing
on𝑋 if𝑓×𝑓 is topologically transitive on the product
space𝑋 × 𝑋.

Clearly, topological mixing is stronger than topologically
weak mixing, and topologically weak mixing is stronger
than topological transitivity. There are other two different
forms of transitivity: syndetic transitivity [15] and topological
ergodicity [21], which are not considered in the present paper.

Their corresponding concepts to semiflows are given as
follows.

Definition 3. Let 𝜑 : R+ × 𝑋 → 𝑋 be a semiflow and 𝑋 a
metric space.
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(i) The semiflow 𝜑 is said to be topologically transitive
and topologically mixing on 𝑋 if, for any pair of
nonempty open sets 𝑈,𝑉 ⊂ 𝑋, the following condi-
tions hold, respectively:𝑁𝜑(𝑈, 𝑉) ̸= 0 and𝑁𝜑(𝑈, 𝑉) ⊃
[𝐿, +∞) for some constant 𝐿 > 0.

(ii) A semiflow𝜑 is said to be topologically weaklymixing
on𝑋 if 𝜑×𝜑 is topologically transitive on the product
space𝑋 × 𝑋.

Let 𝑆 be a subset of Z+ (resp., a Lebesgue measurable
subset of R+). Its upper and lower densities are defined,
respectively, by

𝑑 (𝑆) := lim sup
𝑘→∞

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆⋂𝑁𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑑 (𝑆) := lim inf
𝑘→∞

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆⋂𝑁𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

(5)

(resp., lim sup
𝑡→∞

(1/𝑡)𝑙(𝑆∩[0, 𝑡]) and lim inf 𝑡→∞(1/𝑡)𝑙(𝑆∩
[0, 𝑡]), where 𝑙(𝑆) is the Lebesgue measure of 𝑆 [8]), and its
density is defined by

𝑑 (𝑆) := lim
𝑘→∞

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆⋂𝑁𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

(6)

(resp., lim𝑡→∞(1/𝑡)𝑙(𝑆 ∩ [0, 𝑡])) and if it exists.
According to the classical definition, a map 𝑓 (resp., a

semiflow 𝜑) is sensitive in 𝑋 if there is a constant 𝛿 > 0 such
that, for any 𝑥 ∈ 𝑋 and any open neighborhood𝑉𝑥 of 𝑥, there
is 𝑛 ∈ Z+ (resp., 𝑡 ∈ R+) such that sup{𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) : 𝑦 ∈
𝑉𝑥} > 𝛿 (resp., sup{𝑑(𝜑𝑡(𝑥), 𝜑𝑡(𝑦)) : 𝑦 ∈ 𝑉𝑥} > 𝛿), where 𝛿 is
called a constant of sensitivity. Now, we write this in a slightly
different way. For 𝑉 ⊂ 𝑋 and 𝛿 > 0, denote

𝑁𝑓 (𝑉, 𝛿) := {𝑛 ∈ Z+ : there exist 𝑥, 𝑦 ∈ 𝑉

with 𝑑 (𝑓𝑛 (𝑥) , 𝑓𝑛 (𝑦)) > 𝛿} ,

𝑁𝜑 (𝑉, 𝛿) := {𝑡 ∈ R+ : there exist 𝑥, 𝑦 ∈ 𝑉

with 𝑑 (𝜑𝑡 (𝑥) , 𝜑𝑡 (𝑦)) > 𝛿} .

(7)

In terms of these notations, the above sensitivity properties
can be equivalently defined as [12]

(1) 𝑓 (resp., 𝜑) is sensitive in𝑋 if there is a constant 𝛿 > 0
such that 𝑁𝑓(𝑉, 𝛿) (resp., 𝑁𝜑(𝑉, 𝛿)) is nonempty for
any nonempty open set 𝑉 ⊂ 𝑋.

In [12], Moothathu gave the following three stronger forms of
sensitivity:

(2) 𝑓 (resp., 𝜑) is cofinitely sensitive in 𝑋 if there is a
constant 𝛿 > 0 such that𝑁𝑓(𝑉, 𝛿) ⊃ [𝑛, +∞)⋂N for
some 𝑛 ≥ 1 (resp.,𝑁𝜑(𝑉, 𝛿) ⊃ [𝑡, +∞) for some 𝑡 > 0)
for any nonempty open subset 𝑉 ⊂ 𝑋;

(3) 𝑓 (resp., 𝜑) is multisensitive in 𝑋 if there is a
constant 𝛿 > 0 such that ⋂𝑘

𝑖=1
𝑁𝑓(𝑉𝑖, 𝛿) ̸= 0 (resp.,

⋂
𝑘

𝑖=1
𝑁𝜑(𝑉𝑖, 𝛿) ̸= 0) for each 𝑘 ≥ 1 and any nonempty

open sets 𝑉1, 𝑉2, . . . , 𝑉𝑘 ⊂ 𝑋;

(4) 𝑓 is syndetically sensitive in 𝑋 if there is a constant
𝛿 > 0 such that 𝑁𝑓(𝑉, 𝛿) is a syndetic set for any
nonempty open set 𝑉 ⊂ 𝑋.

Motivated by the idea in the definition of topological ergod-
icity introduced by Akin [21], we now introduce another
stronger form of sensitivity as follows.

(5) 𝑓 (resp., 𝜑) is called to be ergodically sensitive in
𝑋 if there is a constant 𝛿 > 0 such that 𝑁𝑓(𝑉, 𝛿)
(resp., 𝑁𝜑(𝑉, 𝛿)) has a positive upper density for any
nonempty open subset 𝑉 ⊂ 𝑋.

For convenience, such a constant 𝛿 in the above defini-
tions is called a sensitive constant of 𝑓 with respect to the
corresponding sensitive forms.

Remark 4. In [12], it is required that the map is continuous
and the space is compact in the definitions of the concepts
in (9)–(25) as well as in the definitions of the three concepts
given in Definition 2.

By the above definitions, it can be easily implied that

cofinitely sensitive 󳨐⇒ syndetically sensitive

󳨐⇒ ergodically sensitive 󳨐⇒ sensitive.
(8)

So, cofinite sensitivity is the strongest one among the above
five different forms of sensitivity.

Definition 5. Let (𝑋, 𝑑) be a nontrivial metrics space and 𝑓 :
𝑋 → 𝑋 a map. For a given integer 𝑛 ≥ 2, the system (𝑋, 𝑓)

or the map 𝑓 is said to be 𝑛-sensitive if there exists a constant
𝛿 > 0 such that, for any nonempty and open set 𝑈, there are
distinct points 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑈 and some𝑚 ∈ 𝑍

+ satisfying
that 𝑑(𝑓𝑚(𝑥𝑖), 𝑓

𝑚
(𝑥𝑗)) ≥ 𝛿 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Such a constant

𝛿 is called an 𝑛-sensitive constant of 𝑓.

It is clear that 2-sensitivity is just sensitivity. For any given
𝑛 ≥ 2, there exists a minimal system, that is, 𝑛-sensitive, but
not (𝑛 + 1)-sensitive (see [13]).

Remark 6. In the case that 𝑋 is a locally connected and
compact nontrivial metric space, Shao et al. [13] showed that
if a continuous and surjective map 𝑓 : 𝑋 → 𝑋 is sensitive,
then it is 𝑛-sensitive for all 𝑛 ≥ 2. Note that if the assumptions
that 𝑋 is compact and 𝑓 is surjective are removed, then the
result still holds. This can be easily verified by the method
used in the proof of Proposition 4.1 in [14]. Consequently, if
𝑓 is multisensitive, then it is 𝑛-sensitive for each 𝑛 ≥ 2 in this
case.

To end this section, we introduce two useful lemmas. A
set 𝑆 ⊂ Z+ (resp., 𝑆 ⊂ R+) is called relatively dense in Z+
(resp., R+) if there is 𝑛 ∈ N (resp., 𝐿 > 0) such that, for any
𝑘 ∈ Z+ (resp., 𝑡 ∈ R+), we have 𝑆 ∩ {𝑘, 𝑘 + 1, . . . , 𝑘 + 𝑛 − 1} ̸= 0

(resp., 𝑆 ∩ (𝑡, 𝑡 + 𝐿) ̸= 0). Clearly, the relative density of a set in
Z+ is equivalent to its syndedicity.
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Lemma 7 (see [19]). Let 𝑇 be a measure-preserving map on
(𝑋,B(𝑋), 𝜇). For any 𝐴 ∈ B(𝑋), if 𝜇(𝐴) > 0, then, for any
𝜀 > 0, the set 𝑆 = {𝑘 ∈ N : 𝜇(𝐴⋂𝑇

−𝑘
(𝐴)) ≥ (𝜇(𝐴))

2
− 𝜀} is

relatively dense in N.

Lemma 8 (see [15]). Let 𝜑 be a measure-preserving semiflow
on (𝑋,B(𝑋), 𝜇). For any 𝐴 ∈ B(𝑋), if 𝜇(𝐴) > 0, then the
set 𝑆 = {𝑡 ∈ R+ : 𝜇(𝐴⋂𝜑−1

𝑡
(𝐴)) > 𝜆 (𝜇(𝐴))

2
} (𝜆 < 1) is

relatively dense in R+.

3. Sufficient Conditions for Multisensitivity,
Cofinite Sensitivity, and Ergodic Sensitivity

In this section, we will give several sufficient conditions for
multisensitivity, cofinite sensitivity, and ergodic sensitivity
of measure-preserving maps and semiflows. This section is
divided into three subsections.

3.1. Multisensitivity. In this subsection, we first show that
multisensitivity can be lifted up by a semiopen factor map
and then give a sufficient condition for multisensitivity of
measure-preserving maps (resp., semiflows).

In [13], the authors proved that 𝑛-sensitivity can be lifted
up by a semiopen factormap, where amap is called semiopen
if the image of any nonempty open set contains a nonempty
open subset. Now, we show that multisensitivity has the same
property.

Let 𝑓 : 𝑋 → 𝑋 and 𝑔 : 𝑌 → 𝑌 be maps, where𝑋 and 𝑌
are metric spaces. If there exists a continuous and surjective
map 𝜋 : 𝑋 → 𝑌 such that 𝜋 ∘ 𝑓 = 𝑔 ∘ 𝜋, then (𝑌, 𝑔) is said
to be a factor of the system (𝑋, 𝑓), and (𝑋, 𝑓) is said to be an
extension of (𝑌, 𝑔), while 𝜋 is said to be a factor map between
(𝑋, 𝑓) and (𝑌, 𝑔).

Proposition 9. Let (𝑋, 𝑑) and (𝑌, 𝑒) be nontrivial metric
spaces, let 𝑓 : 𝑋 → 𝑋 and 𝑔 : 𝑌 → 𝑌 be maps, and let
𝜋 : 𝑋 → 𝑌 be a semiopen factor map between (𝑋, 𝑓) and
(𝑌, g). If 𝑔 is multisensitive, then so is 𝑓.

Proof. Suppose that𝑔 ismultisensitivewith sensitive constant
𝛿 > 0. By the continuity of 𝜋, there exists a constant 𝛿󸀠 > 0
such that if 𝑒(𝑦1, 𝑦2) > 𝛿 for 𝑦1, 𝑦2 ∈ 𝑌, then 𝑑(𝑥1, 𝑥2) > 𝛿

󸀠,
where 𝜋(𝑥𝑖) = 𝑦𝑖, 𝑖 = 1, 2. Let 𝑛 ≥ 1 be any given integer
and 𝑈𝑖 any nonempty open set in 𝑋 for each 1 ≤ 𝑖 ≤ 𝑛.
Since 𝜋 is semiopen, 𝜋(𝑈𝑖) contains a nonempty open subset
𝑉𝑖 for each 1 ≤ 𝑖 ≤ 𝑛. Therefore, ⋂𝑛

𝑖=1
𝑁𝑔(𝑉𝑖, 𝛿) ̸= 0 implies

⋂
𝑛

𝑖=1
𝑁𝑓(𝑈𝑖, 𝛿

󸀠
) ̸= 0. Thus, the proof is complete.

Next, we study sufficient conditions for multisensitivity.

Lemma 10. Let (𝑋, 𝑑) be a nontrivialmetric space. If amap𝑓 :
𝑋 → 𝑋 satisfies that𝑓 × 𝑓 × ⋅ ⋅ ⋅ × 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

is topologically transitive

for each integer 𝑘 ≥ 1, then 𝑓 is multisensitive in𝑋.

Proof. As 𝑋 is not reduced to a single point, there exists a
constant 𝛿 > 0 such that, for every 𝑥 ∈ 𝑋, there is 𝑦 ∈ 𝑋

satisfying 𝑑(𝑥, 𝑦) > 3𝛿. We will remark that this claim will be
repeatedly used in this section.

Fix any integer 𝑘 ≥ 1 and let 𝑉𝑖 ⊂ 𝑋, 1 ≤ 𝑖 ≤ 𝑘, be
any bounded and nonempty open sets with diam(𝑉𝑖) < 𝛿,
where diam(𝑉𝑖) := sup

𝑥,𝑦∈𝑉𝑖
{𝑑(𝑥, 𝑦)} is the diameter of 𝑉𝑖.

Then there exists a nonempty open subset 𝑈𝑖 such that

𝑑 (𝑈𝑖, 𝑉𝑖) > 𝛿, 1 ≤ 𝑖 ≤ 𝑘. (9)

Since 𝑓 × 𝑓 × ⋅ ⋅ ⋅ × 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑘

is topologically transitive, one has

(𝑓 × 𝑓 × ⋅ ⋅ ⋅ × 𝑓)
𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑘

((𝑉1 × 𝑉1) × (𝑉2 × 𝑉2) × ⋅ ⋅ ⋅ × (𝑉𝑘 × 𝑉𝑘))

⋂ ((𝑉1 × 𝑈1) × (𝑉2 × 𝑈2) × ⋅ ⋅ ⋅ × (𝑉𝑘 × 𝑈𝑘)) ̸= 0

(10)

for some integer 𝑛 ≥ 1. This implies that 𝑓𝑛(𝑉𝑖) ∩ 𝑉𝑖 ̸= 0 and
𝑓
𝑛
(𝑉𝑖) ∩ 𝑈𝑖 ̸= 0, and consequently there exist 𝑥𝑖, 𝑥

󸀠

𝑖
∈ 𝑉𝑖 such

that 𝑓𝑛(𝑥𝑖) ∈ 𝑉𝑖 and 𝑓
𝑛
(𝑥
󸀠

𝑖
) ∈ 𝑈𝑖 for 1 ≤ 𝑖 ≤ 𝑘. So, it follows

from (9) that 𝑑(𝑓𝑛(𝑥𝑖), 𝑓
𝑛
(𝑥
󸀠

𝑖
)) > 𝛿 for 1 ≤ 𝑖 ≤ 𝑘. This yields

𝑘

⋂

𝑖=1

𝑁𝑓 (𝑉𝑖, 𝛿) ̸= 0. (11)

Therefore,𝑓 ismultisensitive in𝑋.The proof is complete.

Remark 11. It is known that a continuous map on a com-
pact space is topologically weak mixing if and only if
𝑓 × 𝑓 × ⋅ ⋅ ⋅ × 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

is topologically transitive for each 𝑘 ≥ 2.

(1) In [22, Theorem 3.1], it was shown that if 𝑓 is contin-
uous and topologically mixing on a compact metric
space 𝑋, then it is sensitive. Since the topological
mixing is stronger than the topological weak mixing,
Lemma 10 relaxes the conditions of [22,Theorem 3.1]
and improves it by noting that it is not required that
the space is compact and the map is continuous.

(2) In [12], Moothathu claimed that if a continuous map
𝑓 is topologically weak mixing on a compact metric
space, then it is multisensitive in 𝑋. So, Lemma 10
relaxes the conditions of this result.

Theorem 12. Let (𝑋, 𝑑) be a nontrivial metric space and let 𝑇
be a measure-preserving map on (𝑋, 𝑑,B(𝑋), 𝜇). If 𝑇 is weak
mixing and supp 𝜇 = 𝑋, then𝑇𝑛 ismultisensitive in𝑋 for every
integer 𝑛 ≥ 1.

Proof. By the definition, one can easily prove that 𝑇 is weak
mixing if and only if 𝑇𝑛 is too for each 𝑛 ≥ 1. So it
suffices to show that 𝑇 is multisensitive in 𝑋. Since 𝑇 is
weak mixing, 𝑇 × 𝑇 × ⋅ ⋅ ⋅ 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑘

is weak mixing for each 𝑘 ≥ 1

by Theorem 1.24 in [15]. Further, every nonempty open set
in 𝑋 has a positive measure because of supp𝜇 = 𝑋. It
follows that 𝑇 × 𝑇 × ⋅ ⋅ ⋅ 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑘

is topologically transitive for each

𝑘 ≥ 1. Therefore, 𝑇 is multisensitive in 𝑋 by Lemma 10. This
completes the proof.
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In order to extend the above result for measure-pre-
servingmaps to measure-preserving semiflows, we first show
the following five lemmas.

Lemma 13. Let (𝑋, 𝑑) be a nontrivial metric space. If a semi-
flow 𝜑 : R+ × 𝑋 → 𝑋 satisfies that 𝜑 × 𝜑 × ⋅ ⋅ ⋅ × 𝜑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

is

topologically transitive for each integer 𝑘 ≥ 1, then it is
multisensitive in𝑋.

Proof. With a similar argument to that used in the proof of
Lemma 10, one can easily prove Lemma 13. So its details are
omitted.

Lemma 14. Let 𝜑 be a measure-preserving semiflow on
(𝑋, 𝑑,B(𝑋), 𝜇) and Ω a semialgebra that generates B(𝑋).
Then 𝜑 is weak mixing if and only if, for any 𝐴, 𝐵 ∈ Ω, we
have

lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝐴⋂𝜑

−1

𝑠
(𝐵)) − 𝜇 (𝐴) 𝜇 (𝐵)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 = 0. (12)

Proof. Theproof is similar to that ofTheorem 1.17 in [20] and
then is omitted.

Lemma 15. The following are equivalent:

(i) lim𝑡→∞(1/𝑡) ∫
𝑡

0
|𝑓(𝑠)|𝑑𝑠 = 0;

(ii) there exists a subset 𝑆 ⊂ R+ of density zero such that
lim𝑡→∞𝑓(𝑡) = 0 provided 𝑡 ∉ 𝑆;

(iii) lim𝑡→∞(1/𝑡) ∫
𝑡

0
|𝑓(𝑠)|
2
𝑑𝑠 = 0.

Proof. Theproof is similar to that ofTheorem 1.20 in [20] and
then is omitted here.

The following lemma can be directly derived from
Lemma 15 with 𝑓(𝑠) = 𝜇(𝜑−1

𝑠
(𝐴)⋂𝐵) − 𝜇(𝐴)𝜇(𝐵).

Lemma 16. Let 𝜑 be a measure-preserving semiflow on
(𝑋, 𝑑,B(𝑋), 𝜇). Then the following are equivalent:

(i) 𝜑 is weak mixing;

(ii) for every pair of sets 𝐴, 𝐵 ∈ B(𝑋), there is a subset
𝑆(𝐴, 𝐵) ⊂ R+ of density zero such that

lim
R+\𝑆(𝐴,𝐵)∋𝑡→∞

𝜇 (𝜑
−1

𝑡
(𝐴)⋂𝐵) = 𝜇 (𝐴) 𝜇 (𝐵) ; (13)

(iii) for every pair of sets 𝐴, 𝐵 ∈B(𝑋), one has

lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝜑
−1

𝑠
(𝐴)⋂𝐵) − 𝜇 (𝐴) 𝜇 (𝐵)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 = 0. (14)

Lemma 17. Let 𝜑 be a measure-preserving semiflow on
(𝑋, 𝑑,B(𝑋), 𝜇).Then 𝜑 is weakmixing if and only if so is 𝜑×𝜑.

Proof. First consider the necessity. Suppose that 𝜑 is weak
mixing. Fix any sets 𝐴, 𝐵, 𝐶,𝐷 ∈ B(𝑋). Then by Lemma 16
there exist subsets 𝑆1, 𝑆2 ⊂ R+ of density zero such that

lim
R+\𝑆1∋𝑡→∞

𝜇 (𝜑
−1

𝑡
(𝐴)⋂𝐵) = 𝜇 (𝐴) 𝜇 (𝐵) ,

lim
R+\𝑆2∋𝑡→∞

𝜇 (𝜑
−1

𝑡
(𝐶)⋂𝐷) = 𝜇 (𝐶) 𝜇 (𝐷) ,

(15)

which yield that

lim
R+\(𝑆1∪𝑆2)∋𝑡→∞

(𝜇 × 𝜇) ((𝜑 × 𝜑)
−1

𝑡
(𝐴 × 𝐶)⋂(𝐵 × 𝐷))

= lim
R+\(𝑆1∪𝑆2)∋𝑡→∞

𝜇 (𝜑
−1

𝑡
(𝐴)⋂𝐵) 𝜇 (𝜑

−1

𝑡
(𝐶)⋂𝐷)

= 𝜇 (𝐴) 𝜇 (𝐵) 𝜇 (𝐶) 𝜇 (𝐷)

= (𝜇 × 𝜇) (𝐴 × 𝐶) (𝜇 × 𝜇) (𝐵 × 𝐷) .

(16)

So, by Lemma 15 one has

lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜇 × 𝜇) (𝜑 × 𝜑)

−1

𝑠
((𝐴 × 𝐶)⋂(𝐵 × 𝐷))

− (𝜇 × 𝜇) (𝐴 × 𝐶) (𝜇 × 𝜇) (𝐵 × 𝐷)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 = 0.

(17)

Since the measurable rectangles form a semialgebra that
generatesB(𝑋) ×B(𝑋). Therefore, 𝜑 × 𝜑 is weak mixing by
Lemma 14.

Next, we consider the sufficiency. Suppose that 𝜑 × 𝜑 is
weak mixing. Fix any sets 𝐴, 𝐵 ∈B(𝑋). It is evident that

𝜇 (𝜑
−1

𝑠
(𝐴)⋂𝐵) = (𝜇 × 𝜇) ((𝜑 × 𝜑)

−1

𝑠
(𝐴 × 𝑋)⋂(𝐵 × 𝑋)) ,

(𝜇 × 𝜇) (𝐴 × 𝑋) (𝜇 × 𝜇) (𝐵 × 𝑋) = 𝜇 (𝐴) 𝜇 (𝐵) ,

(18)

which, together with the assumption that 𝜑 × 𝜑 is weak
mixing, imply that

lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝜑
−1

𝑠
(𝐴)⋂𝐵) − 𝜇 (𝐴) 𝜇 (𝐵)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

= lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜇 × 𝜇) ((𝜑 × 𝜑)

−1

𝑠
(𝐴 × 𝑋)⋂(𝐵 × 𝑋))

− (𝜇 × 𝜇) (𝐴 × 𝑋) (𝜇 × 𝜇) (𝐵 × 𝑋)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 = 0.

(19)

Hence, 𝜑 is weak mixing. The entire proof is complete.

Theorem 18. Let (𝑋, 𝑑) be a nontrivial metric space and 𝜑 a
measure-preserving semiflow on (𝑋, 𝑑,B(𝑋), 𝜇). If 𝜑 is weak
mixing and supp 𝜇 = 𝑋, then 𝜑 is multisensitive in𝑋.

Proof. With a similar argument to that used in the proof of
Theorem 12, one can easily show this theorem by Lemmas 13
and 17. This completes the proof.
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3.2. Cofinite Sensitivity. In this subsection, we first show that
cofinite sensitivity can be lifted by a semiopen factor map
and then give a sufficient condition for cofinite sensitivity of
measure-preserving maps (resp., semiflows).

Proposition 19. Let 𝑋 and 𝑌 be nontrivial metric spaces, let
𝑓 : 𝑋 → 𝑋 and 𝑔 : 𝑌 → 𝑌 be maps, and let 𝜋 : 𝑋 → 𝑌 be a
semiopen factormap between (𝑋, 𝑓) and (𝑌, 𝑔). If𝑔 is cofinitely
sensitive, then so is 𝑓.

Proof. The proof is similar to that of Proposition 9 and so its
details are omitted.

Lemma 20. Let (𝑋, 𝑑) be a nontrivial metric space. If a map
𝑓 : 𝑋 → 𝑋 is topologicallymixing, then it is cofinitely sensitive
in𝑋.

Proof. As is shown in Lemma 10, there exists a constant 𝛿 >
0 such that, for every nonempty open set 𝑉 ⊂ 𝑋 with
diam(𝑉) < 𝛿, there exists a nonempty open set 𝑈 satisfying

𝑑 (𝑈,𝑉) > 𝛿. (20)

Since 𝑓 : 𝑋 → 𝑋 is topologically mixing, there is an integer
𝑛0 ≥ 1 such that

𝑓
𝑛
(𝑉)⋂𝑉 ̸= 0, 𝑓

𝑛
(𝑉)⋂𝑈 ̸= 0, ∀𝑛 ≥ 𝑛0, (21)

which, together with (20), yield that 𝑁𝑓(𝑉, 𝛿) ⊃

[𝑛0, +∞)⋂N. Therefore, 𝑓 is cofinitely sensitive in 𝑋.
This completes the proof.

Remark 21. Proposition 2 in [12] shows that if a map 𝑓 is
topologically mixing and continuous in a compact metric
space 𝑋, then 𝑓 is cofinitely sensitive in 𝑋. Note that the
compactness of the space 𝑋 and the continuity of the map
𝑓 are not required in Lemma 20. So Lemma 20 relaxes the
conditions of this proposition.

This result can be extended to semiflows.

Lemma 22. Let (𝑋, 𝑑) be a nontrivial metric space. If a
semiflow 𝜑 : R+ × 𝑋 → 𝑋 is topologically mixing, then it
is cofinitely sensitive in𝑋.

Proof. The proof is similar to that of Lemma 20 and so it is
omitted.

Theorem 23. Let (𝑋, 𝑑) be a nontrivial metric space and let 𝑇
be a measure-preserving map on (𝑋, 𝑑,B(𝑋), 𝜇). If 𝑇 is strong
mixing and supp 𝜇 = 𝑋, then 𝑇𝑛 is cofinitely sensitive in𝑋 for
each integer 𝑛 ≥ 1.

The above theorem follows from Proposition 2.2 in [10].
For completeness, we now give a different proof here.

Proof. By the definition of strong mixing, it can be easily
seen that 𝑇 is strong mixing if and only if 𝑇𝑛 is too for each
𝑛 ≥ 1. So it suffices to show that 𝑇 is cofinitely sensitive in𝑋.
Because of supp 𝜇 = 𝑋, every nonempty open set in 𝑋 has a
positivemeasure. So𝑇 is topologicallymixing. Consequently,

by Lemma 20, 𝑇 is cofinitely sensitive in𝑋. Thus, the proof is
complete.

Theorem 24. Let (𝑋, 𝑑) be a nontrivial metric space and let
𝜑 be a measure-preserving semiflow on (𝑋, 𝑑,B(𝑋), 𝜇). If 𝜑 is
strong mixing and supp 𝜇 = 𝑋, then 𝜑 is cofinitely sensitive in
𝑋.

Proof. With a similar argument to that used in the proof of
Theorem 23 and by Lemma 22, one can easily show that this
theorem holds. The proof is complete.

3.3. Ergodic Sensitivity. In the final subsection, we will first
show that ergodic sensitivity can be lifted by a semiopen
factormap and then consider ergodic sensitivity formeasure-
preserving maps and semiflows on a probability space and
give a sufficient condition for each of them.

Proposition 25. Let 𝑋 and 𝑌 be nontrivial metric spaces, let
𝑓 : 𝑋 → 𝑋 and 𝑔 : 𝑌 → 𝑌 be maps, and let 𝜋 : 𝑋 → 𝑌

be a semiopen factor map between (𝑋, 𝑓) and (𝑌, 𝑔). If 𝑔 is
ergodically sensitive, then so is 𝑓.

Proof. The proof is similar to that of Proposition 9 and so its
details are omitted.

Lemma 26. Let (𝑋, 𝑑) be a nontrivial metric space and 𝑇
a measure-preserving map on (𝑋, 𝑑,B(𝑋), 𝜇). If 𝑇 is not
ergodically sensitive in 𝑋 and supp 𝜇 = 𝑋, then there exist a
constant 𝛿 > 0 and two disjoint and nonempty open sets𝑈 and
𝑉 in𝑋 such that

𝑑 (𝑆⋂(Z+ \ 𝑁𝑇 (𝑊, 𝛿))) > 0 (22)

for some nonempty open set𝑊 ⊂ 𝑋, where

𝑆 = {𝑖 ∈ Z+ : 𝑇𝑖 (𝑉)⋂𝑈 = 0} . (23)

Proof. As is shown in the proof of Lemma 10, there exists a
constant 𝛿 > 0 such that, for every 𝑥 ∈ 𝑋, there is 𝑦 ∈ 𝑋 with
𝑑(𝑥, 𝑦) > 3𝛿. Since 𝑇 is not ergodically sensitive in 𝑋, there
exists a nonempty open set𝑊 ⊂ 𝑋 such that 𝑑(𝑁𝑇(𝑊, 𝛿)) = 0
and so

𝑑 (𝑁𝑇 (𝑊, 𝛿)) = 0. (24)

It is clear that

diam (𝑇
𝑛
(𝑊)) ≤ 𝛿, ∀𝑛 ∈ Z+ \ 𝑁𝑇 (𝑊, 𝛿) . (25)

Fix a point 𝑥 ∈ 𝑊 and take a constant 0 < 𝜀 < 𝛿with the open
ball 𝐵(𝑥, 𝜀) ⊂ 𝑊. Then 𝜇(𝐵(𝑥, 𝜀)) > 0 because of supp 𝜇 = 𝑋.
By Lemma 7, the set

𝑆1 = {𝑖 ∈ Z+ : 𝐵 (𝑥, 𝜀)⋂𝑇
−𝑖
(𝐵 (𝑥, 𝜀)) ̸= 0} (26)

is relatively dense in Z+. Now, for any 𝑖 ∈ 𝑆1, take

𝑧𝑖 ∈ 𝐵 (𝑥, 𝜀)⋂𝑇
−𝑖
(𝐵 (𝑥, 𝜀)) , (27)
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which implies that

𝑇
𝑖
(𝑧𝑖) ∈ 𝐵 (𝑥, 𝜀)⋂𝑇

𝑖
(𝐵 (𝑥, 𝜀)) . (28)

So it follows from (25) that, for any 𝑦 ∈ 𝐵(𝑥, 𝜀) and any 𝑘 ∈
𝑆1⋂(Z+ \ 𝑁𝑇(𝑊, 𝛿)),

𝑑 (𝑇
𝑘
(𝑦) , 𝑥) ≤ 𝑑 (𝑇

𝑘
(𝑦) , 𝑇

𝑘
(𝑧𝑘)) + 𝑑 (𝑇

𝑘
(𝑧𝑘) , 𝑥)

≤ 𝛿 + 𝜀 < 2𝛿.

(29)

This means that 𝑇𝑘(𝐵(𝑥, 𝜀)) ⊂ 𝐵(𝑥, 2𝛿) for any 𝑘 ∈ 𝑆1⋂(Z+ \
𝑁𝑇(𝑊, 𝛿)).

Set 𝑉 = 𝐵(𝑥, 𝜀) and 𝑈 = 𝑋 \ 𝐵(𝑥, 2𝛿). Then 𝑈 and 𝑉 are
disjoint and nonempty open sets, and 𝑇𝑘(𝑉)⋂𝑈 = 0 for any
𝑘 ∈ 𝑆1⋂(Z+ \ 𝑁𝑇(𝑊, 𝛿)), which implies that

𝑆1⋂(Z+ \ 𝑁𝑇 (𝑊, 𝛿)) ⊂ 𝑆, (30)

and consequently

𝑆⋂(Z+ \ 𝑁𝑇 (𝑊, 𝛿)) ⊃ 𝑆1⋂(Z+ \ 𝑁𝑇 (𝑊, 𝛿)) . (31)

As the lower density of 𝑆1 is positive which implies that the
upper density of

𝑆 ∩ (𝑍
+
\ 𝑁𝑇 (𝑊, 𝛿)) (32)

is positive, since the upper density of

𝑍
+
\ 𝑁𝑇 (𝑊, 𝛿) (33)

is 1, the proof is complete.

By the Birkhoff ergodic theorem and Lemma 26 one
can prove the following theorem. For completeness, we give
another proof of Theorem 27.

Theorem 27. Let (𝑋, 𝑑) be a nontrivial metric space and let 𝑇
be a measure-preserving map on (𝑋, 𝑑,B(𝑋), 𝜇). If 𝑇 is weak
mixing and supp 𝜇 = 𝑋, then 𝑇𝑛 is ergodically sensitive in 𝑋
for each integer 𝑛 ≥ 1.

Proof. As is shown in the proof of Theorem 12, 𝑇 is weak
mixing if and only if 𝑇𝑛 is too for each 𝑛 ≥ 1. So it suffices
to show that 𝑇 is ergodically sensitive in𝑋.

Suppose on the contrary that𝑇 is not ergodically sensitive
in𝑋.Then, by Lemma 26 there exist a constant 𝛿 > 0 and two
disjoint and nonempty open sets 𝑈 and 𝑉 in 𝑋 such that the
set 𝑆⋂(Z+ \ 𝑁𝑇(𝑊, 𝛿)) has a positive upper density for some
nonempty open set𝑊 ⊂ 𝑋, where 𝑆 = {𝑖 ∈ Z+ : 𝑇𝑖(𝑉)⋂𝑈 =

0}. Then

𝑉⋂𝑇
−𝑘
(𝑈) = 0, ∀𝑘 ∈ 𝑆, (34)

which implies that 𝜇(𝑉⋂𝑇−𝑘(𝑈)) = 0 for each 𝑘 ∈ 𝑆. Thus,
one has that
𝑛−1

∑

𝑖=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑉⋂𝑇

−𝑖
(𝑈)) − 𝜇 (𝑉) 𝜇 (𝑈)

󵄨
󵄨
󵄨
󵄨
󵄨

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆⋂𝑁𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑉) 𝜇 (𝑈)

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆⋂ (Z+ \ 𝑁𝑇 (𝑊, 𝛿))⋂𝑁𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑉) 𝜇 (𝑈) .

(35)

Further, 𝜇(𝑉)𝜇(𝑈) > 0 since supp 𝜇 = 𝑋, and 𝑈 and 𝑉 are
nonempty open sets. Consequently,

lim sup
𝑛→∞

1

𝑛

𝑛−1

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑉⋂𝑇

−𝑘
(𝑈)) − 𝜇 (𝑉) 𝜇 (𝑈)

󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜇 (𝑉) 𝜇 (𝑈) 𝑑 (𝑆⋂(Z+ \ 𝑁𝑇 (𝑊, 𝛿))) > 0.

(36)

This is a contradiction since 𝑇 is weak mixing.Therefore, 𝑇 is
ergodically sensitive in𝑋. This completes the proof.

Remark 28. Syndetic sensitivity implies ergodic sensitivity.
However, Moothathu gave an example of a sensitive map that
is not ergodically sensitive in Theorem 7 in [12].

Lemma 29. Let (𝑋, 𝑑) be a nontrivial metric space, whose
bounded and closed subsets are compact, and let 𝜑 be a
continuousmeasure-preserving semiflow on (𝑋, 𝑑,B(𝑋), 𝜇). If
𝜑 is not ergodically sensitive in 𝑋 and supp 𝜇 = 𝑋, then there
exist two disjoint and nonempty open sets 𝑈, 𝑉 in 𝑋 such that
𝑑(𝑆) > 0, where

𝑆 = {𝑡 ∈ R+ : 𝑉⋂𝜑
−1

𝑡
(𝑈) = 0} . (37)

Proof. As is shown in the proof of Lemma 10, there exists a
constant 𝛿 > 0 such that, for every 𝑥 ∈ 𝑋, there is 𝑦 ∈ 𝑋

with 𝑑(𝑥, 𝑦) > 3𝛿. By the assumption that 𝜑 is not ergodically
sensitive in𝑋, there exists a nonempty open set𝑊 ⊂ 𝑋 such
that 𝑑(𝑁𝜑(𝑊, 𝛿)) = 0, and so 𝑑(𝑁𝜑(𝑊, 𝛿)) = 0. Consequently,
𝑑(R+ \ 𝑁𝜑(𝑊, 𝛿)) = 1.

Fix any 𝑥 ∈ 𝑊.There exists a positive constant 𝜀 < 𝛿 such
that 𝐵(𝑥, 𝜀) ⊂ 𝑊. As supp 𝜇 = 𝑋, we have 𝜇(𝐵(𝑥, 𝜀)) > 0.
Take 𝑉 = 𝐵(𝑥, 𝜀). By Lemma 8, the set

𝑆1 = {𝑡 ∈ R+ : 𝑉⋂𝜑𝑡 (𝑉) ̸= 0}

= {𝑡 ∈ R+ : 𝑉⋂𝜑
−1

𝑡
(𝑉) ̸= 0}

(38)

is relatively dense in R+; that is, there exists 𝐿 > 0 such that

𝑆1⋂(𝑡, 𝑡 + 𝐿) ̸= 0, ∀𝑡 ∈ R+. (39)

For any 𝑡 ∈ 𝑆1⋂(R+ \ 𝑁𝜑(𝑊, 𝛿)), 𝑉⋂𝜑𝑡(𝑉) ̸= 0 and
diam(𝜑𝑡(𝑉)) ≤ 𝛿, and so

𝑉⋃𝜑𝑡 (𝑉) ⊂ 𝐵 (𝑥, 2𝛿) . (40)

Since 𝜑 is continuous and 𝐵(𝑥, 2𝛿) is compact, 𝜑|
[0,1]×𝐵(𝑥,2𝛿)

is
uniformly continuous. Hence, there exists a constant 0 < 𝜀󸀠 <
min{𝜀, 1} such that

𝜑𝑡 (𝐵 (𝑥, 2𝛿)) ⊂ 𝐵 (𝑥, 3𝛿) , ∀𝑡 ∈ [0, 𝜀
󸀠
] , (41)

which, together with (40), implies that

𝜑𝜏 (𝑉) ⊂ 𝐵 (𝑥, 3𝛿) (42)

for any 𝑡 ∈ 𝑆1⋂(R+ \ 𝑁𝜑(𝑊, 𝛿)) and any 𝜏 ∈ [𝑡, 𝑡 + 𝜀󸀠]. Let
𝑈 = 𝑋 \ 𝐵(𝑥, 3𝛿) and

𝑆2 = ⋃

𝑡∈𝑆1 ⋂(R+\𝑁𝜑(𝑊,𝛿))
[𝑡, 𝑡 + 𝜀

󸀠
] . (43)
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It follows from (42) that, for any 𝜏 ∈ 𝑆2, 𝑈⋂𝜑𝜏(𝑉) = 0; that
is, 𝑉⋂𝜑−1

𝜏
(𝑈) = 0. Thus,

𝑆1⋂(R+ \ 𝑁𝜑 (𝑊, 𝛿)) ⊂ 𝑆2 ⊂ 𝑆. (44)

As the lower density of 𝑆1 is positive which implies that the
upper density of

𝑆 ∩ (R+ \ 𝑁𝜑 (𝑊, 𝛿)) (45)

is positive, since the upper density of

R+ \ 𝑁𝜑 (𝑊, 𝛿) (46)

is 1, therefore, the proof is complete.

Theorem 30. Let (𝑋, 𝑑) be a nontrivial metric space, whose
bounded and closed subsets are compact, and let 𝜑 be a
continuous measure-preserving semiflow on (𝑋, 𝑑,B(𝑋), 𝜇).
If 𝜑 is weak mixing and supp 𝜇 = 𝑋, then 𝜑 is ergodically
sensitive in𝑋.

Proof. On the contrary, 𝜑 is not ergodically sensitive in 𝑋.
Then, by Lemma 29, there exist two disjoint and nonempty
open sets 𝑈, 𝑉 in𝑋 such that the set

𝑆 = {𝑡 ∈ R+ : 𝑉⋂𝜑
−1

𝑡
(𝑈) = 0} (47)

has a positive upper density. Since supp𝜇 = 𝑋, we have
𝜇(𝑉)𝜇(𝑈) > 0, and so

lim
𝑡→∞

1

𝑡

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑉⋂𝜑

−1

𝑠
(𝑈)) − 𝜇 (𝑉) 𝜇 (𝑈)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≥ 𝜇 (𝑉) 𝜇 (𝑈) 𝑑 (𝑆) > 0.

(48)

This contradicts the assumption that 𝜑 is weak mixing.
Therefore, 𝜑 is ergodically sensitive in 𝑋. This completes the
proof.

4. Relationships between Sensitive Properties
of a Map and Its Iterations

In the final section, we discuss relationships between sensitive
properties of amap𝑓 and its iterations𝑓𝑚, including sensitiv-
ity, syndetic sensitivity, ergodic sensitivity, cofinite sensitivity,
multisensitivity, and 𝑛-sensitivity. These relationships are
equivalent in the special case that the space is compact and
the map 𝑓 is continuous.

Theorem 31. Let 𝑓 : 𝑋 → 𝑋 be a map, where (𝑋, 𝑑) is
a metric space. If 𝑓𝑚 is sensitive or syndetically sensitive or
ergodically sensitive or multisensitive in 𝑋 for some 𝑚 ≥ 2,
then so is𝑓.Moreover, the converses of all the above conclusions
are true if 𝑓 is uniformly continuous in 𝑋. In addition, if 𝑓
is cofinitely sensitive, then so is 𝑓𝑚 for any 𝑚 ≥ 2; and if 𝑓
is uniformly continuous in 𝑋 and 𝑓𝑚 is cofinitely sensitive for
some𝑚 ≥ 2, then 𝑓 is cofinitely sensitive.

Proof. The proof is divided into four parts.

(1) It is evident that for any nonempty open set 𝑈 ⊂ 𝑋

and for any constant 𝛾 > 0,

𝑚𝑁𝑓𝑚 (𝑈, 𝛾) ⊂ 𝑁𝑓 (𝑈, 𝛾) , (49)

which implies that if 𝑓𝑚 is sensitive or syndetically sensitive
or ergodically sensitive or multisensitive in𝑋, then so is 𝑓 by
the related definitions.

(2) Suppose that 𝑓 is uniformly continuous in 𝑋 and fix
any integer 𝑚 ≥ 2. Then 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝑚 − 1, are
uniformly continuous in 𝑋. Let 𝛿 > 0 be a constant
of sensitivity with respect to one of the five types of
sensitivity. Then there exists a positive constant 𝜀 < 𝛿
such that whenever 𝑑(𝑥, 𝑦) ≤ 𝜀 for 𝑥, 𝑦 ∈ 𝑋, one has

𝑑 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑦)) ≤ 𝛿, 0 ≤ 𝑖 ≤ 𝑚 − 1. (50)

This claimwill be often used in the sequent discussion, which
is divided into four steps.

Step 1. If 𝑓 is sensitive in𝑋, then so is 𝑓𝑚.
Let𝑈 ⊂ 𝑋 be any nonempty open set. Since 𝑓 is sensitive

in 𝑋, 𝑁𝑓(𝑈, 𝛿) is not empty. Fix any 𝑛 ∈ 𝑁𝑓(𝑈, 𝛿) and then
there exist 𝑥, 𝑦 ∈ 𝑈 such that 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝛿. Let
𝑛 = 𝑘𝑚 + 𝑟 with 0 ≤ 𝑟 ≤ 𝑚 − 1 and 𝑘 ∈ Z+. Then
𝑑(𝑓
𝑘𝑚
(𝑥), 𝑓

𝑘𝑚
(𝑦)) > 𝜀. Otherwise, if 𝑑(𝑓𝑘𝑚(𝑥), 𝑓𝑘𝑚(𝑦)) ≤ 𝜀,

then it follows from (14) that 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≤ 𝛿, which is
a contradiction. Hence, 𝑘 ∈ 𝑁𝑓𝑚(𝑈, 𝜀) and so 𝑁𝑓𝑚(𝑈, 𝜀) ̸= 0.
Therefore, 𝑓𝑚 is sensitive in𝑋.

Step 2. If 𝑓 is syndetically sensitive in𝑋, then so is 𝑓𝑚.
Let 𝑈 ⊂ 𝑋 be any nonempty open set. Since 𝑓 is

syndetically sensitive in 𝑋,𝑁𝑓(𝑈, 𝛿) is syndetic in Z+. Write
𝑁𝑓(𝑈, 𝛿) as an increasing sequence {𝑛𝑖}

∞

𝑖=1
. There exists an

integer𝑀 ≥ 1 such that 𝑛𝑖+1 − 𝑛𝑖 < 𝑀 for all 𝑖 ≥ 1. Let

𝑛𝑖 = 𝑚𝑘𝑖 + 𝑟𝑖, 𝑖 ≥ 1, (51)

with 0 ≤ 𝑟𝑖 ≤ 𝑚 − 1 and 𝑘𝑖 ∈ Z+. Then

𝑛𝑖+1 − 𝑛𝑖 = 𝑚 (𝑘𝑖+1 − 𝑘𝑖) + 𝑟𝑖+1 − 𝑟𝑖 < 𝑀, (52)

which implies that

𝑚(𝑘𝑖+1 − 𝑘𝑖) < 𝑀 + 𝑟𝑖 − 𝑟𝑖+1 < 𝑀 + 𝑚, 𝑖 ≥ 1. (53)

Thus, {𝑘𝑖}
∞

𝑖=1
is syndetic in Z+. In addition, As is shown in

Step 1, 𝑘𝑖 ∈ 𝑁𝑓𝑚(𝑈, 𝜀) by the definition of 𝜀. Hence,𝑁𝑓𝑚(𝑈, 𝜀)
is syndetic, and consequently 𝑓𝑚 is syndetically sensitive in
𝑋.

Step 3. If 𝑓 is ergodically sensitive in𝑋, then so is 𝑓𝑚.
Let𝑈 ⊂ 𝑋 be any nonempty open set.Then𝑑(N𝑓(𝑈, 𝛿)) >

0. For any given 𝑘 ∈ 𝑁𝑓(𝑈, 𝛿), let 𝑘 = 𝑚𝑖𝑘 + 𝑟𝑘 with 0 ≤ 𝑟𝑘 ≤
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𝑚 − 1 and 𝑖𝑘 ∈ Z+. Then 𝑖𝑘 ∈ 𝑁𝑓𝑚(𝑈, 𝜀) as is shown in Step 1.
Consequently, we have

𝑚 lim sup
𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑁𝑓𝑚 (𝑈, 𝜀)⋂N𝑖𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

𝑖𝑘

≥ lim sup
𝑁𝑓(𝑈,𝛿)∋𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑁𝑓 (𝑈, 𝛿)⋂N𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑘 + 1

= 𝑑 (𝑁𝑓 (𝑈, 𝛿)) > 0,

(54)

which implies that

𝑑 (𝑁𝑓𝑚 (𝑈, 𝜀)) ≥ lim sup
𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑁𝑓𝑚 (𝑈, 𝜀)⋂N𝑖𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

𝑖𝑘

> 0. (55)

Therefore, 𝑓𝑚 is ergodically sensitive in𝑋.

Step 4. If 𝑓 is multisensitive in𝑋, then so is 𝑓𝑚.
Since 𝑓 is multisensitive in 𝑋, for each integer 𝑘 ≥ 1 and

any 𝑘 nonempty open sets 𝑉𝑖 ⊂ 𝑋, 1 ≤ 𝑖 ≤ 𝑘, we have

𝑘

⋂

𝑖=1

𝑁𝑓 (𝑉𝑖, 𝛿) ̸= 0. (56)

Let 𝑛 ∈ ⋂𝑘
𝑖=1
𝑁𝑓(𝑉𝑖, 𝛿) and 𝑛 = 𝑙𝑚 + 𝑟 with 0 ≤ 𝑟 ≤ 𝑚− 1 and

𝑙 ∈ Z+. It can be easily shown that 𝑙 ∈ ⋂𝑘
𝑖=1
𝑁𝑓𝑚(𝑉𝑖, 𝜀) by (14),

and consequently

𝑘

⋂

𝑖=1

𝑁𝑓𝑚 (𝑉𝑖, 𝜀) ̸= 0. (57)

Therefore, 𝑓𝑚 is multisensitive in𝑋.

(3) If 𝑓 is cofinitely sensitive in 𝑋, then so is 𝑓𝑚 for any
𝑚 ≥ 2.

Let 𝛿 > 0 be a constant of cofinite sensitivity, 𝑈 ⊂ 𝑋 any
nonempty open set, and𝑚 ≥ 2 any integer. Then there exists
an integer𝑀 ≥ 1 such that

𝑁𝑓 (𝑈, 𝛿) ⊃ [𝑀, +∞)⋂N. (58)

For any integer 𝑛 ≥ 𝑀, it is clear that 𝑛𝑚 ∈ 𝑁𝑓(𝑈, 𝛿) and so
there exist two points 𝑥, 𝑦 ∈ 𝑈 such that

𝑑 (𝑓
𝑛𝑚
(𝑥) , 𝑓

𝑛𝑚
(𝑦)) > 𝛿, (59)

which yields that 𝑛 ∈ 𝑁𝑓𝑚(𝑈, 𝛿), and consequently we get that

𝑁𝑓𝑚 (𝑈, 𝛿) ⊃ [𝑀, +∞)⋂N. (60)

Hence, 𝑓𝑚 is cofinitely sensitive in𝑋.

(4) If 𝑓 is uniformly continuous in𝑋 and 𝑓𝑚 is cofinitely
sensitive for some𝑚 ≥ 2, then𝑓 is cofinitely sensitive.

It is clear that 𝑓𝑖 is uniformly continuous for 1 ≤ 𝑖 ≤ 𝑚.
For any constant 𝛾 > 0, there exists 0 < 𝛾

󸀠
≤ 𝛾 such that

𝑑(𝑥, 𝑦) ≤ 𝛾
󸀠 implies that 𝑑(𝑓𝑖(𝑥), 𝑓𝑖(𝑦)) ≤ 𝛾 for 1 ≤ 𝑖 ≤ 𝑚.

This implies that if 𝑛 ∈ 𝑁𝑓𝑚(𝑈, 𝛾), then 𝑚(𝑛 − 1),𝑚(𝑛 − 1) +
1, . . . , 𝑚𝑛 ∈ 𝑁𝑓(𝑈, 𝛾

󸀠
). This means that {𝑚(𝑛 − 1) + 𝑖 : 𝑛 ∈

𝑁𝑓𝑚(𝑈, 𝛾), 0 ≤ 𝑖 ≤ 𝑚} ⊂ 𝑁𝑓(𝑈, 𝛾
󸀠
). Hence, 𝑓 is cofinitely

sensitive.
The entire proof is complete.

Theorem 32. Let 𝑓 : 𝑋 → 𝑋 be a map, where (𝑋, 𝑑) is
a nontrivial metric space. For any given 𝑚 ≥ 2, if 𝑓𝑚 is 𝑛-
sensitive in𝑋, then so is𝑓. Moreover, the converses of the above
conclusion are true if 𝑓 is uniformly continuous in𝑋.

Proof. The proof is similar to that of Theorem 31 and is
omitted.

Remark 33. In the study of topological dynamical systems,
it is the most important case that the space 𝑋 is compact
and the map 𝑓 continuously transforms the space into itself.
Clearly, 𝑓 is uniformly continuous in 𝑋, and consequently
𝑓 is sensitive, syndetically sensitive, ergodically sensitive,
cofinitely sensitive, 𝑛-sensitive, andmultisensitive in𝑋 if and
only if so is 𝑓𝑚, respectively, for any given integer 𝑚 ≥ 2 in
this case.
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