
Research Article
Nonlinear Time-Delay Suspension Adaptive
Neural Network Active Control

Yue Zhu and Sihong Zhu

College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

Correspondence should be addressed to Yue Zhu; zhuyue jin@163.com

Received 2 July 2014; Accepted 15 August 2014; Published 27 August 2014

Academic Editor: Zheng-Guang Wu

Copyright © 2014 Y. Zhu and S. Zhu. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Considering the time-delay in control input channel and the nonlinear spring stiffness characteristics of suspension, a quarter-
vehiclemagneto rheological active suspension nonlinearmodel with time-delay is established in this paper. Based on the time-delay
nonlinear model, an adaptive neural network structure for magneto rheological active suspension is presented. By recognizing and
training the adaptive neural network, the adaptive neural network active suspension controller is obtained. Simulation results show
that the presented method can guarantee that the quarter-vehicle magneto rheological active suspension system has satisfying
performance on the E level very poor ground.

1. Introduction

For engineering vehicles, farm tractors, military vehicles, and
so on, the road conditions are usually very poor. There-
fore, vibration problem is prominent particularly [1]. Seat
suspension has been widely used as a simple and effective
method to improve ride quality of vehicle which is directly
related to driver fatigue, discomfort, and safety [2]. In recent
years, the active suspension control research has received the
widespread attention of scholars at home and abroad, in the
aspect of theoretical analysis and physical test [3–8].

Vehicle suspension system is a complex dynamic sys-
tem; the road input is a random process and has a strong
uncertainty, while the system itself has strong nonlinearity
characteristic; therefore, it is difficult to obtain ideal control
effect by using conventional control methods [5, 6].

The neural network is a kind of powerful tool to deal
with uncertainty and nonlinearity; it can parallel computing
and distribute information storage, while it has strong fault
tolerance and self-learning ability. Hence, neural network is
suitable for the complex system modeling and control [9–11].

In this paper, in order to reduce the vibration of mag-
neto rheological active suspension system, adaptive neural
network active suspension controller is designed. At first, a

quarter-vehicle active suspensionnonlinearmodelwith time-
delay is established by considering the time-delay in control
input channel of magneto rheological active suspension
system and the nonlinear spring stiffness characteristics of
suspension. Then, an adaptive neural network structure for
magneto rheological active suspension is presented according
to the time-delay nonlinear model. Next, the adaptive neural
network active suspension controller is obtained by recogniz-
ing and training the adaptive neural network. At last, E level
ground which is very poor road condition is considered
for a quarter-vehicle magneto rheological active suspension
system. Simulation shows that the presented method can
guarantee that the system has satisfying performance.

The remainder of this paper is organized as follows.
In Section 2, the considered quarter-vehicle magneto rhe-
ological active suspension time-delay nonlinear model is
presented. Adaptive neural network structure, neural net-
work identification, and neural network training are given
in Section 3 and the adaptive neural network active sus-
pension controller is obtained in Section 3 as well. Sim-
ulation on a quarter-vehicle magneto rheological active
suspension system under E level very poor ground is illus-
trated in Section 4. Section 5 draws the conclusions of this
paper.
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Figure 1: Quarter-vehicle model with a magneto rheological active
suspension.

2. Quarter-Vehicle Magneto Rheological Active
Suspension Time-Delay Nonlinear Model

In this paper, quarter-vehicle model for active control of
magneto rheological seat suspension system is studied. At
the same time, the nonlinear stiffness characteristics of the
suspension spring and control time-delay characteristics are
considered. Figure 1 shows a quarter-vehicle model of an
active suspension system.
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Figure 2: Force-displacement curve of nonlinear spring.
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3. The Design of Adaptive Neural Network
Active Suspension Controller

3.1. Adaptive Neural Network Structure. Adaptive neural
network system structure is shown in Figure 3. The system
consists of three parts: the controlled active suspension,
the neural network identifier AN1, and the neural network
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Figure 3: Adaptive neural network structure.

controller AN2. AN1 is used for online identification of
active suspension systems; AN2 is used to realize the network
parameters adjustment by tuning the network weights and
the threshold online and then to get the best effect of vibration
reduction.

In Figure 3, output 𝑦 is the body acceleration, control
signal 𝑢 is damping force, and its normalized range is 0∼1.
The common way to implement 𝑢 is to regulate electrohy-
draulic proportional throttle valve flow area or valve core
displacement. �̇�

2
(�̇�
2
−�̇�
1
) is as an input for the neural network

controller AN2. The input for neural network identifier AN1
is the body acceleration and control signal 𝑢.

3.2. Neural Network Identification. Theroad excitation can be
viewed as a white noise signal and it is suitable to identify
active suspension system by using nonlinear autoregressive
moving average (NARMA) model; namely,

𝑦 (𝑘) = 𝑓 [𝑦 (𝑘 − 1) , . . . , 𝑦 (𝑘 − 𝑛) , 𝑢 (𝑘 − 1 − 𝜏) , . . . ,

𝑢 (𝑘 − 𝑚 − 𝜏) , V (𝑘 − 1) , . . . , V (𝑘 − 𝑙) ] ,

(6)

where 𝑦(𝑘) is for body acceleration at the 𝑘th step; 𝑢(𝑘−1−𝜏)
is for the control signal at the (𝑘 − 1 − 𝜏)th step; V(𝑘 − 1) is for
road random input (white noise) at the (𝑘 − 1)th step.

AN1 identifies the system model and multilayer feed-
forward neural network was used by the network structure.
Network is composed of two layers: the first layer is input
layer and has 𝑛 + 𝑚 inputs. Hyperbolic function is chosen as
neurons transformation; each of the neurons has a threshold.
The second layer is output layer and is with one neuronwhich
represents the estimate of the system output. Proportion
function is selected as neuron function and it also has neuron
threshold.

3.3. The Adaptive Neural Network Controller. The structure
of the neural network controller AN2 is shown in Figure 4.
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ŷ

+

yd

AN1

Suspension

Output layerFirst layerInput layer

z(0)1

z(0)2

· · · · · ·

Learning
algorithm

u

−

Figure 4: Adaptive neural network controller.

structure applies multilayer feed-forward neural network.
The network has two layers (not including the input layer);
the first layer is composed of 10 neurons with thresholds;
the hyperbolic function is used as neurons transformation
function 𝑆. The second layer has a neuron with threshold;
the sigmoid function is utilized as neurons transformation
function 𝑆, so that the output of the network can be always
in the range of 0∼1.

In order to obtain good performance, Marquardt back-
propagation algorithm (MBP algorithm) which is of high
training efficiency is used in training neural network iden-
tifier ANl. During training, the error between desired body
acceleration and the output of neural network identifier ANl
is as the input for MBP algorithm. And the weights and
thresholds of AN1 keep unchanging.

Because the desired control signal is unknown at the very
beginning, neural network controller AN2 is cascaded with
neural network identifier AN1, as shown in Figure 3. During
training, MBP algorithm is employed as well, but the weights
and thresholds of AN2 are changed, in order to obtain and
optimize adaptive neural network controller.

The input-output relationship of the first layer is
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Figure 6: Training result.

To improve the training algorithm, the weights and
thresholds are adjusted according to the following laws:
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4. Case Study

Consider the active suspension system [13]: 𝑚
1

= 70 kg,
𝑘
1

= 309.511 kg, 𝑚
2

= 310 kg, 𝑘
2

= 27.358KN/m, and
𝑐
2
= 0.984KN s/m.
For E level ground, the road roughness power spectrum

density is 𝐺
𝑞
(𝑛
0
) = 1024 × 10

−6, 𝑛
0
= 0.1. Suppose forward

velocity V
0
= 7 km/h. The ground excitation displacement is

shown in Figure 5.
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Figure 7: Test result.
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Figure 6 shows the training results, which illustrates the
comparison between the test data of actual output and the
network training output data. One can see that the network
training output is consistent with the system test output very
well. Figure 7 shows the test results; one can see that the
network test output is consistent with the system test output
very well.

In order to make comparison, LQR controller is designed
as well in this paper, and 𝑄LQR = diag{1, 1, 1, 1}; 𝑅LQR =

0.000001 is chosen for simulation. The simulation results are
shown in Figures 8, 9, and 10, where the solid black lines
represent the control results under the presented adaptive
neural network (ANN) controller, while the dash blue lines
represent the control results under LQR controller.

Figures 8∼10 show that, on the terrible E level ground,
compared with the LQR controller, the presented adaptive
neural network controller in this paper can significantly
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reduce the peak values of tire displacement, body accel-
eration, and control signal, and the body acceleration and
control signal are smoother.Therefore, the proposed adaptive
neural network controller for magneto rheological active
suspension system is effective.

5. Conclusions

In this paper, an adaptive neural network control strategy is
presented for amagneto rheological active suspension system
with time-delay in control input channel and the nonlinear
spring stiffness characteristics. On the basis of the time-delay
nonlinear model and adaptive neural network structure, and
by recognizing and training the adaptive neural network,

the adaptive neural network active suspension controller is
obtained. Simulation on a quarter-vehicle magneto rheologi-
cal active suspension system under E level ground shows that
the proposedmethod can significantly reduce the peak values
of tire displacement, body acceleration, and control signal,
and the body acceleration and control signal are smoother.
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