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A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing
boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution
was shown.The conditions under which the model admits a periodic solution and the conditions under which the zero solution is
globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and
periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of
snails for the control of schistosomiasis.

1. Introduction

Schistosomiasis, a disease caused by a wormlike parasite, is
one of the most prevalent parasitic diseases in the tropical
and subtropical regions of the developing world. In China,
despite remarkable achievements in schistosomiasis control
over the past five decades, the disease still remains a major
public health concern. It mainly prevails in 381 counties
(cities, districts) of 12 provinces, autonomous regions, and
municipalities along and to the south of the Yangtze River
valley and caused a number of above 100 million victims
(Chen, 2008 [1]).

The mathematical models in schistosomiasis appeared in
the 1960s (Macdonald, 1965 [2], Hairston, 1965 [3]). Since
then, a number of mathematical models of the transmission
dynamics of schistosomes have been developed (Williams et
al., 2002 [4], Liang et al., 2005 [5], and references therein).

Schistosomiasis is a serious infectious and parasitic dis-
ease transmitted through the medium of water. Male and
female helminthes must mate in a host (e.g., humans, ducks,
etc.). Thereafter, some of fertilized eggs leave the host in its
feces. Upon contact with fresh water, it hatches and attempts
to penetrate a snail. Once a snail is infected, a large number

of larvae are produced and swim freely in search of a host
for reproduction. It might penetrate the skin of a host or be
ingested with water or food grown in the water (Lucas, 1983
[6], Hoppensteadt, and Peskin, 1992 [7]). According to the
process above Lucas, 1983 [6], provided a modified version
of MacDonald’s model:

𝑑𝑖

𝑑𝑡
= −𝑖𝛿 + 𝐶 (𝑚) 𝐵 (𝑆 − 𝑖) ,

𝑑𝑚

𝑑𝑡
= −𝑟𝑚 + 𝑖

𝐴

𝑆
,

(1)

where (also seeWu, 2005 [8])𝑚 is themeannumber ofworms
upon each host and 𝑖 is the number of infected snails. The
constants 𝑟 and 𝛿 are death probabilities of worms and snails,
and 𝑆 is the number (fixed) of snails. The 𝐴 indicates the
ratio of infection caused in final host population by a snail
per unit time, while the 𝐵 means the ratio of infection in
snail population caused by a worm per unit time. The 𝐶(𝑚)
represents the probability of a snail infected once per time
unit. If we suppose that 𝐶(𝑚) = 𝑚2/(𝑚 + 1) (Hoppensteadt
and Peskin 1992 [7]) and consider that there is a delay 𝑇 ≥ 0
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due to the development period of helminthes, then there is
the following system:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑟𝑥 (𝑡) +

𝐴

𝑆
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿𝑦 (𝑡) + 𝐵 (𝑆 − 𝑦 (𝑡))

𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)
.

(2)

In fact, as reported by Lu et al., 2005 [9], the number of snails 𝑆
and the death ratio of snails 𝛿 are related to time; for example,

𝑆 (𝑡) = 6.060 + 0.750 cos 𝜋𝑡
6
− 2.897 cos 2𝜋𝑡

6

+ 4.036 sin 𝜋𝑡
6
− 0.441 sin 2𝜋𝑡

6
,

𝛿 (𝑡) = 0.048 − 0.030 cos 𝜋𝑡
12
− 0.006 cos 2𝜋𝑡

12

− 0.047 sin 𝜋𝑡
12
+ 0.021 sin 2𝜋𝑡

12
,

(3)

which is generated by fitting the data reported in Lu et al.,
2005 [9]. Therefore, the system (2) might be modified by

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑟𝑥 (𝑡) +

𝐴

𝑆 (𝑡)
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))

𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)
.

(4)

It is easy to check that system (4) does not belong to the
situations studied in the literature (Tang and Kuang, 1997
[10], Tang and Zhou, 2006 [11], and Fan and Zou, 2004 [12]),
though the systems therein are more general.

The aim of this paper is to study the existence of periodic
solution of the system (4). The periodic solutions of the
models of schistosomiasis relate to the periodic phenomenon
in epidemiology and control of schistosomiasis. As an appli-
cation, we will discuss what conditions enable the zero
solution of the model stable. We will also perform numerical
simulations, which indicate that the conditions of existence
of periodic solution can be further improved. To begin with,
we study the boundedness of solutions ofmodel (4). And then
we will prove the existence of periodic solutions of this model
and discuss the stability of zero solution.

2. Preliminaries

The following assumptions apply to thewhole paper concern-
ing model (4).

(H) The constants 𝐴, 𝐵, and 𝑟 are positive, and 𝛿(𝑡),
𝑆(𝑡) are periodic continuous positive functions with
period of 𝜔:

𝛿
0
= min
𝑡∈[0,𝜔]

𝛿 (𝑡) > 0, 𝑆
0
= min
𝑡∈[0,𝜔]

𝑆 (𝑡) > 0. (5)

The following results will be used in next sections.

Lemma1. If (H) holds, then the solution (𝑥(𝑡), 𝑦(𝑡)) of periodic
system (4) with initial value

𝑥 (𝜃) = 𝑥
0
(𝜃) > 0, 𝜃 ∈ [−𝑇, 0] ,

𝑦 (0) = 𝑦
0
> 0

(6)

is positive; that is, 𝑥(𝑡) ≥ 0, 𝑦(𝑡) ≥ 0, and 𝑥(𝑡) + 𝑦(𝑡) > 0 for
𝑡 ∈ 𝐼
0
, the interval of existence of (𝑥(𝑡), 𝑦(𝑡)).

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be the solution of (4) and (6). By the
first equation of (4), we have

𝑥 (𝑡) = 𝑥
0
(0) 𝑒
−𝑟𝑡
+ ∫

𝑡

0

𝐴

𝑆 (𝜃)
𝑦 (𝜃) 𝑒

−𝑟(𝑡−𝜃)
𝑑𝜃. (7)

So, 𝑥(𝑡) > 0 as long as 𝑦(𝑡) ≥ 0.
By the continuity of solutions, there is a 𝑡

1
> 0 such that

𝑦(𝑡) > 0 for 𝑡 ∈ [0, 𝑡
1
). If we suppose that there exists a 𝑡∗ > 0

such that

𝑦 (𝑡) > 0, 𝑡 ∈ [0, 𝑡
∗
) , 𝑦 (𝑡

∗
) = 0,

𝑦 (𝑡) < 0, 𝑡 ∈ (𝑡
∗
, 𝑡
∗
+ 𝜏
1
) ,

(8)

where 𝜏
1
is a positive number. By (7), 𝑥(𝑡) > 0 holds for 𝑡 ∈

[−𝑇, 𝑡
∗
]. By the continuity of solutions again, there is a 𝜏

2
> 0

such that 𝑥(𝑡) > 0 for 𝑡 ∈ [𝑡∗, 𝑡∗ + 𝜏
2
). Therefore in interval

[𝑡
∗
, 𝑡
∗
+ 𝜏) (𝜏 = min(𝜏

1
, 𝜏
2
)), there hold 𝑦(𝑡) < 0 and

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡)

+ 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))
𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)
> −𝛿 (𝑡) 𝑦 (𝑡) ,

𝑡 ∈ [𝑡
∗
, 𝑡
∗
+ 𝜏) ,

(9)

which implies that 𝑦(𝑡) ≥ 𝑢(𝑡) for 𝑡 ∈ (𝑡∗, 𝑡∗ + 𝜏) where 𝑢(𝑡)
is the solution of differential equation 𝑢󸀠(𝑡) = −𝛿(𝑡)𝑢(𝑡) and
𝑢(𝑡
∗
) = 0. This is a contradiction to (8). Thus the 𝑡∗ does not

exist. The proof is completed.

Lemma 2. Suppose that (H) holds. Then the interval of
existence of the solution of periodic systems (4) and (6) is
[0, +∞).

Proof. By Lemma 1, the solution (𝑥(𝑡), 𝑦(𝑡)) of (4) and (6)
is positive. Suppose that [0, 𝑡∗) is the maximal interval of
existence of (𝑥(𝑡), 𝑦(𝑡)); that is, lim

𝑡→ 𝑡
∗𝑥(𝑡) = +∞ or

lim
𝑡→ 𝑡
∗𝑦(𝑡) = +∞.

If lim
𝑡→ 𝑡
∗𝑦(𝑡) = +∞ is true, then there is 𝑡∗

0
< 𝑡
∗ such

that

𝑦 (𝑡
∗

0
) = 𝑆
0
= max
𝑡∈[0,𝜔]

𝑆 (𝑡) > 0,

𝑦 (𝑡) > 𝑆
0
, 𝑡 ∈ (𝑡

∗

0
, 𝑡
∗
) ,

(10)
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which imply that

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))

𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)

< −𝛿 (𝑡) 𝑦 (𝑡) , 𝑡 ∈ [𝑡
∗

0
, 𝑡
∗
) .

(11)

It follows comparison principle that

𝑦 (𝑡) ≤ 𝑢 (𝑡) = 𝑦 (𝑡
∗

0
) exp(−∫

𝑡

𝑡
∗

0

𝛿 (𝑠) 𝑑𝑠)

= 𝑆
0 exp(−∫

𝑡

𝑡
∗

0

𝛿 (𝑠) 𝑑𝑠) , 𝑡 ∈ (𝑡
∗

0
, 𝑡
∗
)

(12)

holds, where 𝑢(𝑡) is the solution of differential equation
𝑢
󸀠
(𝑡) = −𝛿(𝑡)𝑢(𝑡) and 𝑢(𝑡∗

0
) = 𝑦(𝑡

∗

0
) = 𝑆

0. Obviously, (12)
contradicts (10) due to 𝛿(𝑡) ≥ 𝛿

0
> 0 in (H), which means

that lim
𝑡→ 𝑡
∗𝑦(𝑡) = +∞ does not hold. Since the function

(𝐴/𝑆(𝑢))𝑦(𝑢)𝑒
𝑟(𝑢) is continuous, one gets that

lim
𝑡→ 𝑡
∗

𝑥 (𝑡) = lim
𝑡→ 𝑡
∗

[𝑒
−𝑟𝑡
∫

𝑡

0

𝐴

𝑆 (𝑢)
𝑦 (𝑢) 𝑒

𝑟𝑢
𝑑𝑢] < +∞. (13)

It completes the proof.

Now we give a result of boundedness of solutions.

Theorem 3. Suppose that (H) holds. Let (𝑥(𝑡), 𝑦(𝑡)) be a
solution of (4) and (6); then there is a number𝑀 > 0, which
is independent of (𝑥(𝑡), 𝑦(𝑡)), such that

lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀, lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑀. (14)

Proof. We claim that lim sup
𝑡→+∞

𝑦(𝑡) ≤ 𝑆
0
= max

[0,𝜔]
𝑆(𝑡).

In fact, if it is false, then there are two cases.

(i) One has a 𝑇
0
> 0 such that 𝑦

0
(𝑡) > 𝑆

0 for 𝑡 ≥ 𝑇
0
. By

the second equation of (4),

𝑑𝑦
0
(𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦

0
(𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦

0
(𝑡))

𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)

< −𝛿 (𝑡) 𝑦
0
(𝑡) , 𝑡 ≥ 𝑇

0
,

(15)

which implies that for, 𝑡 ≥ 𝑇
0
, the inequality 𝑦

0
(𝑡) <

𝑦
0
(𝑇
0
)𝑒
−∫
𝑡

𝑇

𝛿(𝑠)𝑑𝑠
→ 0, (𝑡 → +∞) is true. This is a

contradiction.

(ii) The solution 𝑦
0
(𝑡) is oscillatory with respect to 𝑆0.

Then there a sequence {𝑡
𝑛
} with 𝑡

𝑛
→ ∞ as 𝑛 → ∞,

such that

𝑦
0
(𝑡
𝑗
) > 𝑆
0
,

𝑑

𝑑𝑡
𝑦
0
(𝑡
𝑗
) = 0, 𝑗 = 1, 2, . . . . (16)

By the second equation of (4), we get

0 =
𝑑

𝑑𝑡
𝑦
0
(𝑡
𝑗
)

= −𝛿 (𝑡
𝑗
) 𝑦
0
(𝑡
𝑗
) + 𝐵 (𝑆 (𝑡

𝑗
) − 𝑦
0
(𝑡
𝑗
))

𝑥
2
(𝑡
𝑗
− 𝑇)

1 + 𝑥 (𝑡
𝑗
− 𝑇)

< −𝛿 (𝑡
𝑗
) 𝑦
0
(𝑡
𝑗
) < 0, 𝑗 = 1, 2, . . . ,

(17)

which is a contradiction.Thus the following inequality is true:

lim sup
𝑡→+∞

𝑦 (𝑡) ≤ 𝑆
0
= max
[0,𝜔]

𝑆 (𝑡) . (18)

By (18), one has a 𝑇
1
> 0 large enough such that 𝑦(𝑡) ≤ 𝑆0

for 𝑡 ≥ 𝑇
1
. The first equation of (4) gives that

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑟𝑥 (𝑡) +

𝐴

𝑆 (𝑡)
𝑦 (𝑡) ≤ −𝑟𝑥 (𝑡) +

𝐴

𝑆 (𝑡)
𝑆
0

≤ −𝑟𝑥 (𝑡) +
𝐴𝑆
0

𝑆
0

, 𝑡 ≥ 𝑇
1
,

(19)

which implies that

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝐴
0
𝑆
0

𝑟𝑆
0

. (20)

It is obvious that (14) follows (18) and (20). The proof is
completed.

3. Existence of Periodic Solution

Suppose that (H) holds. We will discuss the existence of 𝜔-
periodic solution of (4)–(6).

Lemma 4. Assume that there is a number 𝛼 > 0, such that
𝐴𝐵𝑆
0
𝛼 ≥ 𝑟𝑆

0
[𝛿
0
(1 + 𝛼) + 𝐵𝛼

2
], where 𝛿0 = max

𝑡∈[0,𝜔]
𝛿(𝑡).

Then the following differential equations

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑟𝑥 (𝑡) +

𝐴

𝑆 (𝑡)
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))

𝛼
2

1 + 𝛼

(21)

admit a unique positive 𝜔-periodic solution (𝑥
∗
(𝑡), 𝑦
∗
(𝑡)),

satisfying

𝑥
∗
(𝑡) ≥ 𝛼, 𝑦

∗
(𝑡) ≥

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2
,

𝑡 ∈ [0, 𝜔] .

(22)
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Proof. Since the second equation of (21)

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))

𝛼
2

1 + 𝛼

= −(𝛿 (𝑡) +
𝐵𝛼
2

1 + 𝛼
)𝑦 (𝑡) +

𝐵𝛼
2

1 + 𝛼
𝑆 (𝑡)

(23)

is a linear equation with respect to 𝑦(𝑡) and ∫𝜔
0
(𝐵𝛼
2
/(1 + 𝛼) +

𝛿(𝑡))𝑑𝑡 > 0, it admits a unique periodic solution denoted by
𝑦
∗
(𝑡). It is obvious that there holds

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))

𝛼
2

1 + 𝛼

≥ −𝛿
0
𝑦 (𝑡) + 𝐵 (𝑆

0
− 𝑦 (𝑡))

𝛼
2

1 + 𝛼
,

(24)

and that the following equation,

𝑑𝑢 (𝑡)

𝑑𝑡
= −𝛿
0
𝑢 (𝑡) + 𝐵 (𝑆

0
− 𝑢 (𝑡))

𝛼
2

1 + 𝛼
, (25)

has a globally stable equilibrium𝑢
∗
= 𝐵𝑆
0
𝛼
2
/(𝛿
0
(1+𝛼)+𝐵𝛼

2
).

Therefore, by comparison principle, the following inequality,

𝑦
∗
(𝑡) ≥ 𝑢

∗
(𝑡) 󳨀→

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2
, (𝑡 󳨀→ +∞) ,

(26)

is true for 𝑡 ≥ 0, where 𝑢∗(𝑡) is the solution of (25) with
𝑢
∗
(0) = 𝑦

∗
(0). Noting that 𝑦∗(𝑡) is a periodic function, we

obtain

𝑦
∗
(𝑡) ≥

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2
, 𝑡 ∈ [0, 𝜔] . (27)

Substitute 𝑦 = 𝑦∗(𝑡) into the first equation of (21); we get

𝑥
∗
(𝑡) = 𝑥

∗
(0) 𝑒
−𝑟𝑡
+ ∫

𝑡

0

𝐴

𝑆 (𝜃)
𝑦
∗
(𝜃) 𝑒
−𝑟(𝑡−𝜃)

𝑑𝜃

≥ 𝑥
∗
(0) 𝑒
−𝑟𝑡
+
𝐴

𝑆0

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2

1

𝑟
(1 − 𝑒

−𝑟𝑡
)

=
𝐴

𝑆0

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2

1

𝑟

+ (𝑥
∗
(0) −

𝐴

𝑆0

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2

1

𝑟
) 𝑒
−𝑟𝑡
,

(28)

where
𝑥
∗
(0)

=
∫
𝜔

0
(𝐴𝑦
∗
(𝜃) 𝑒
−𝑟(𝜔−𝜃)

/𝑆 (𝜃)) 𝑑𝜃

1 − 𝑒−𝑟𝜔

≥
(𝐴/𝑆
0
) (𝐵𝑆
0
𝛼
2
/ (𝛿
0
(1 + 𝛼) + 𝐵𝛼

2
)) (1/𝑟) (1 − 𝑒

−𝑟𝜔
)

1 − 𝑒−𝑟𝜔

=
𝐴

𝑆0

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2

1

𝑟
.

(29)

Thus there holds that

𝑥
∗
(𝑡) ≥

𝐴

𝑆0

𝐵𝑆
0
𝛼
2

𝛿0 (1 + 𝛼) + 𝐵𝛼2

1

𝑟
≥ 𝛼 𝑡 ∈ [0, 𝜔] . (30)

The conclusion of the lemma follows (27), (30). It completes
the proof.

Let 𝐶
𝜔
(𝑅) = {𝑥 ∈ 𝐶(𝑅) : 𝑥(𝑡 + 𝜔) = 𝑥(𝑡), 𝑡 ∈ 𝑅} be the set

of all continuous functions in [0, 𝜔] with the distance norm
‖𝜇(𝑡) − ](𝑡)‖ = max

𝑡∈[0,𝜔]
|𝜇(𝑡) − ](𝑡)|; then 𝐶

𝜔
(𝑅) is a Banach

space.
Let 𝜇(𝑡) be a continuous 𝜔-periodic function satisfying

𝛼 ≤ 𝜇(𝑡) ≤ 𝛽, 𝑡 ∈ [0, 𝜔], where 𝛽 = 𝐴𝑆0/𝑆
0
𝑟. Denote the set

of such functions by 𝐷, clearly, 𝐷 ⊆ 𝐶[0, 𝜔]. For any 𝜇 ∈ 𝐷,
the following differential equations,

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝑟𝑥 (𝑡) +

𝐴

𝑆 (𝑡)
𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))

𝜇
2
(𝑡 − 𝑇)

1 + 𝜇 (𝑡 − 𝑇)
,

(31)

admit a unique 𝜔-periodic solution:

𝑦 (𝑡) = 𝑦
0 exp[−∫

𝑡

0

(𝛿 (𝜃) +
𝐵𝜇
2
(𝜃 − 𝑇)

1 + 𝜇 (𝜃 − 𝑇)
)𝑑𝜃]

+ ∫

𝑡

0

exp[−∫
𝑡

𝜃

(𝛿 (𝜉) +
𝐵𝜇
2
(𝜉 − 𝑇)

1 + 𝜇 (𝜉 − 𝑇)
)𝑑𝜉]

×
𝐵𝜇
2
(𝜃 − 𝑇)

1 + 𝜇 (𝜃 − 𝑇)
𝑆 (𝜃) 𝑑𝜃,

(32)

𝑥 (𝑡) = 𝑥
0
𝑒
−𝑟𝑡
+ ∫

𝑡

0

𝐴

𝑆 (𝜃)
𝑦 (𝜃) 𝑒

−𝑟(𝑡−𝜃)
𝑑𝑢,

𝑥
0
=

1

1 − 𝑒−𝑟𝜔
∫

𝜔

0

𝐴

𝑆 (𝜃)
𝑦 (𝜃) 𝑒

−𝑟(𝜔−𝜃)
𝑑𝜃,

(33)

where

𝑦
0
= (∫

𝜔

0

exp[−∫
𝜔

𝜃

(𝛿 (𝜉) +
𝐵𝜇
2
(𝜉 − 𝑇)

1 + ℎ (𝜉 − 𝑇)
)𝑑𝜉]

×
𝐵𝜇
2
(𝜃 − 𝑇)

1 + 𝜇 (𝜃 − 𝑇)
𝑆 (𝜃) 𝑑𝜃)

× (1 − exp[−∫
𝜔

0

(𝛿 (𝜃) +
𝐵𝜇
2
(𝜃 − 𝑇)

1 + 𝜇 (𝜃 − 𝑇)
)𝑑𝜃])

−1

.

(34)

Obviously, 𝑥(𝑡) ∈ 𝐶
𝜔
(𝑅) is a periodic function. By the proof

of Theorem 3, one knows that lim sup
𝑡→+∞

𝑥(𝑡) ≤ 𝐴
0
𝑆
0
/𝑟𝑆
0
,

and so 𝑥(𝑡) ≤ 𝛽, 𝑡 ∈ [0, 𝜔].
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Denote by 𝑇 the mapping from 𝐷 into 𝐶
𝜔
(𝑅) defined by

(32)–(34); that is, 𝑇 : 𝐷 → 𝐶
𝜔
(𝑅), 𝑥 = 𝑇𝜇.

Lemma 5. The mapping 𝑇 is monotonic; that is, if 𝜇
1
, 𝜇
2
∈ 𝐷

and 𝜇
1
(𝑡) ≤ 𝜇

2
(𝑡) for 𝑡 ∈ [0, 𝜔], then (𝑇𝜇

2
)(𝑡) ≥ (𝑇𝜇

1
)(𝑡), for

𝑡 ∈ [0, 𝜔].

Proof. Let 𝜇
1
, 𝜇
2
∈ 𝐷 and 𝜇

1
≤ 𝜇
2
. Substitute 𝜇

1
, 𝜇
2
into the

second equation of (21); one gets

𝑑𝑦
𝑗
(𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦

𝑗
(𝑡) + 𝐵 (𝑆 (𝑡) − 𝑦

𝑗
(𝑡))

×
𝜇
2

𝑗
(𝑡 − 𝑇)

1 + 𝜇
𝑗
(𝑡 − 𝑇)

, 𝑗 = 1, 2.

(35)

Therefore,
𝑑 (𝑦
2
(𝑡) − 𝑦

1
(𝑡))

𝑑𝑡

= −𝛿 (𝑡) (𝑦
2
(𝑡) − 𝑦

1
(𝑡)) + 𝐵 (𝑆 (𝑡) − 𝑦

2
(𝑡))

𝜇
2

2
(𝑡 − 𝑇)

1 + 𝜇
2
(𝑡 − 𝑇)

− 𝐵 (𝑆 (𝑡) − 𝑦
1
(𝑡))

𝜇
2

1
(𝑡 − 𝑇)

1 + 𝜇
1
(𝑡 − 𝑇)

≥ − (𝑦
2
(𝑡) − 𝑦

1
(𝑡)) (𝛿 (𝑡) + 𝐵

𝜇
2

1
(𝑡 − 𝑇)

1 + 𝜇
1
(𝑡 − 𝑇)

) .

(36)

By comparison principle, the solution 𝑢(𝑡) of the following
initial value problem,

𝑑𝑢 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑢 (𝑡) − 𝐵

𝜇
2

1
(𝑡 − 𝑇)

1 + 𝜇
1
(𝑡 − 𝑇)

𝑢 (𝑡) ,

𝑢 (0) = 𝑦
2
(0) − 𝑦

1
(0) ,

(37)

for 𝑡 ≥ 0 satisfies
𝑦
2
(𝑡) − 𝑦

1
(𝑡) ≥ 𝑢 (𝑡)

= 𝑢 (0) exp(−∫
𝑡

0

[
𝜇
2

1
(𝜃 − 𝑇)

1 + 𝜇
1
(𝜃 − 𝑇)

+ 𝛿 (𝜃)] 𝑑𝜃) 󳨀→ 0,

(𝑡 󳨀→ +∞) .

(38)

Because of the periodicity of 𝑦
2
−𝑦
1
, one has 𝑦

2
(𝑡) ≥ 𝑦

1
(𝑡) for

𝑡 ∈ [0, 𝜔]. By (33) we obtain that, for 𝑡 ∈ [0, 𝜔],

𝑥
2
(𝑡) − 𝑥

1
(𝑡)

= (𝑥
0

2
− 𝑥
0

1
) 𝑒
−𝑟𝑡
+ ∫

𝑡

0

𝐴

𝑆 (𝜃)
(𝑦
2
(𝜃) − 𝑦

1
(𝜃)) 𝑒
−𝑟(𝑡−𝜃)

𝑑𝑢

=
𝑒
−𝑟𝑡

1 − 𝑒−𝑟𝜔
∫

𝜔

0

𝐴

𝑆 (𝜃)
(𝑦
2
(𝜃) − 𝑦

1
(𝜃)) 𝑒
−𝑟(𝜔−𝜃)

𝑑𝜃

+ ∫

𝑡

0

𝐴

𝑆 (𝜃)
(𝑦
2
(𝜃) − 𝑦

1
(𝜃)) 𝑒
−𝑟(𝑡−𝜃)

𝑑𝑢 ≥ 0,

(39)

which implies that (𝑇𝜇
2
)(𝑡) ≥ (𝑇𝜇

1
)(𝑡), for 𝑡 ∈ [0, 𝜔]. It

completes the proof of Lemma 5.

By Lemma 5, we know that the mapping 𝑇 maps 𝐷 into
𝐷. Based on the results above, we can give the existence of
periodic solution.

Theorem 6. If (H) is satisfied and if there is a positive number
𝛼, such that 𝐴𝐵𝑆

0
𝛼 ≥ 𝑟𝑆

0
[𝛿
0
(1 + 𝛼) + 𝐵𝛼

2
], then (4) admits a

positive periodic solution.

Proof. For fixed 𝛼 satisfying 𝐴𝐵𝑆
0
𝛼 ≥ 𝑟𝑆

0
[𝛿
0
(1 + 𝛼) + 𝐵𝛼

2
],

consider the following iterative sequence:

𝑥
𝑛
= 𝑇𝑥
𝑛−1
, 𝑥
0
= 𝛼 (𝑛 = 1, 2, . . .) . (40)

From Lemmas 4-5, for any positive integer 𝑛, one has 𝑥
𝑛
∈

𝐷 and that the {𝑥
𝑛
} is an increasing sequence. Let 𝐷

0
=

{𝑥
𝑛
(𝑡) | defined by (40), 𝑛 = 1, 2, . . .}. It is obvious that

𝐷
0
⊂ 𝐷 ⊂ 𝐶[0, 𝜔], and so for any 𝑛, we have |𝑥

𝑛
(𝑡)| ≤ 𝛽,

where 𝛽 is independent on 𝐷
0
. We claim that 𝐷

0
= {𝑥
𝑛
} is

equicontinuous on 𝐷. In fact, for arbitrary 𝜀 > 0 and any
𝑢
𝑛
∈ 𝐷
0
, by (32)-(33), we get that the following equation holds

for any 𝑡
1
, 𝑡
2
∈ [0, 𝜔],

𝑢
𝑛
(𝑡
2
) − 𝑢
𝑛
(𝑡
1
)

= (𝑒
−𝑟𝑡
2 − 𝑒
−𝑟𝑡
1) 𝑢
0
+ ∫

𝑡
2

𝑡
1

𝑒
−𝑟(𝑡
2
−𝑠) 𝐴

𝑆 (𝜃)
𝑦
𝑢
(𝜃) 𝑑𝜃,

(41)

where 𝑦
𝑢
is determined by (32) with ℎ(⋅) = 𝑢

𝑛−1
(⋅) and 𝑢0 is

given by the second equation of (33) with 𝑦(⋅) = 𝑦
𝑢
(⋅). By

differential mean theorem, there is a 𝜏 between 𝑡
1
and 𝑡
2
such

that

𝑢
𝑛
(𝑡
2
) − 𝑢
𝑛
(𝑡
1
)

= −𝑟𝑒
−𝑟𝜏
𝑢
0
(𝑡
2
− 𝑡
1
)

+
𝑑

𝑑𝑡
[∫

𝑡

0

𝑒
−𝑟(𝑡−𝑠) 𝐴

𝑆 (𝑠)
𝑦
𝑢
(𝑠) 𝑑𝑠]

𝑡=𝜏

(𝑡
2
− 𝑡
1
)

= −𝑟𝑒
−𝑟𝜏
𝑢
0
(𝑡
2
− 𝑡
1
)

+ [
𝐴

𝑆 (𝜏)
𝑦
𝑢
(𝜏) + ∫

𝜏

0

𝑒
−𝑟(𝑡−𝑠) 𝐴

𝑆 (𝑠)
𝑦
𝑢
(𝑠) 𝑑𝑠] (𝑡

2
− 𝑡
1
) .

(42)

Therefore
󵄨󵄨󵄨󵄨𝑢𝑛 (𝑡2) − 𝑢𝑛 (𝑡1)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨−𝑟𝑒
−𝑟𝜏󵄨󵄨󵄨󵄨 𝑢
0 󵄨󵄨󵄨󵄨(𝑡2 − 𝑡1)

󵄨󵄨󵄨󵄨 + [
𝐴

𝑆 (𝜏)
𝑦
𝑢
(𝜏)]

+ ∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑟𝑒
−𝑟(𝜏−𝑠) 𝐴

𝑆 (𝑠)
𝑦
𝑢
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨

≤ [𝑟𝑢
0
+𝑀
1
(1 + 𝑟𝜔)]

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨 ,

(43)
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Figure 1: A periodic solution ((a)𝐴 = 1, 𝐵 = 2.4, and 𝑟 = 0.2 satisfy the conditions ofTheorem 6) and a solution tending to zero ((b)𝐴 = 0.2,
𝐵 = 0.02, and 𝑟 = 1.5 satisfy the conditions of Theorem 7), where square is 𝑥(𝑡), line is 𝑦(𝑡), 𝑦

0
= 0, and 𝑥

0
(𝜃) = cos(𝜋𝜃/10).

8

6

4

2

0
0 20 40 60 80

Figure 2: Coexistence of a stable zero solution (solid squares and
circles, 𝑦

0
= 0.2, 𝑥

0
(𝜃) = 0.2) and a periodic solutions (dots and

hollow squares, 𝑦
0
= 2, 𝑥

0
(𝜃) = 2) where 𝐴 = 0.6, 𝐵 = 0.4, and

𝑟 = 0.8.

where

𝑀
1
= max max

𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐴

𝑆 (𝑡)
𝑦
𝑢
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝑥
0
=

1

1 − 𝑒−𝑟𝜔
∫

𝜔

0

𝑒
−𝑟(𝜔−𝑠) 𝐴

𝑆 (𝑠)
𝑦 (𝑠) 𝑑𝑠

≤
𝑀
1
𝜔

1 − 𝑒−𝑟𝜔
.

(44)

Since 𝑦
𝑢
(𝑡) is a solution of the second equation of (31) with

ℎ(⋅) = 𝑢
𝑛−1
(⋅), by the proof of Theorem 3, 𝑦

𝑢
(𝑡) has a bound

of 𝑆0. Consequently𝑀
1
≤ 𝐴𝑆
0
/𝑆
0
, which is independent on

𝑢
𝑛
. Therefore 𝐷

0
is equicontinuous on 𝐷. By Arzela-Ascoli’s

theorem, one has a subsequence {𝑢
𝑛
𝑘

} ⊂ 𝐷
0
such that 𝑢

𝑛
𝑘

→

𝑥
∗. Obviously, for any 𝑛 = 1, 2, . . ., inequality 𝑥∗ ≥ 𝑢

𝑛
holds.

For all 𝑡 ∈ [0, 𝜔], one has 0 ≤ 𝑥∗ − 𝑢
𝑚
≤ 𝑥
∗
− 𝑢
𝑛
𝑘

as 𝑚 > 𝑛
𝑘
.

On the other hand, the cone 𝑃 = {𝜑 | 𝜑 ∈ 𝐶
𝜔
(𝑅), 𝜑(𝑡) ≥ 0} is

normal, and in cone 𝑃, there holds that if 𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
∈ 𝑃 with

𝑥
𝑛
≤ 𝑧
𝑛
≤ 𝑦
𝑛
, 𝑥
𝑛
→ 𝑥, and 𝑦

𝑛
→ 𝑥, then 𝑧

𝑛
→ 𝑥 (see

Guo 2001 [13]). Thus as 𝑚 → +∞, it follows 0 ≤ 𝑥∗ − 𝑢
𝑚
≤

𝑥
∗
− 𝑢
𝑛
𝑘

→ 0. Replace 𝜇 in (32) and (34) by the limit 𝑥∗; we
get 𝑦∗. Obviously (𝑥∗, 𝑦∗) is the periodic solution of (4). It
completes the proof.

4. Stability of Zero Solution

Theorem 7. The zero solution of (4) is uniformly stable, if the
following inequality holds:

max
𝑡∈[0,𝜔]

[(
𝐴

𝑆 (𝑡)
+ 𝐵𝑆 (𝑡))

2

− 4𝑟𝛿 (𝑡)] < 0. (45)

Proof. Take 𝑉(𝑥, 𝑦) = (𝑥2 + 𝑦2)/2; we get that

𝑑𝑉

𝑑𝑡
|
(4)

= 𝑥(−𝑟𝑥 +
𝐴

𝑆 (𝑡)
𝑦) + 𝑦[ − 𝛿 (𝑡) 𝑦 + 𝐵 (𝑆 (𝑡) − 𝑦)

×
𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)
]

= −𝑟𝑥
2
− 𝛿 (𝑡) 𝑦

2
+

𝐴

𝑆 (𝑡)
𝑥𝑦 + 𝐵𝑆 (𝑡) 𝑦

𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)

− 𝐵𝑦
2 𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)

≤ −𝑟𝑥
2
− 𝛿 (𝑡) 𝑦

2
+

𝐴

𝑆 (𝑡)
𝑥𝑦 + 𝐵𝑆 (𝑡) 𝑦𝑥 (𝑡 − 𝑇)

≤ −𝑟𝑥
2
− 𝛿 (𝑡) 𝑦

2
+ [

𝐴

𝑆 (𝑡)
+ 𝐵𝑆 (𝑡)] 𝑥𝑦,

(46)

if 𝑥(𝑡) ≥ 𝑥(𝑡 − 𝑇). Because (45) holds, there are two positive
numbers 𝛾

1
and 𝛾
2
small enough such that (𝐴/𝑆(𝑡)+𝐵𝑆(𝑡))2−

4𝑟𝛿(𝑡)+4𝛾
1
𝛿(𝑡)+4𝛾

2
(𝑟−𝛼) < 0 hold for all 𝑡 ∈ [0, 𝜔]. It follows
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Figure 3: The graphs (solid lines) and a control strategy (dash line) of 𝛿(𝑡) (a) and 𝑆(𝑡) (b).

that −𝑟𝑥2 − (𝐴/𝑆(𝑡) + 𝐵𝑆(𝑡))𝑥𝑦 − 𝛿(𝑡)𝑦2 ≤ −(𝛾
1
𝑥
2
+ 𝛾
2
𝑦
2
).

Consequently,

𝑑𝑉

𝑑𝑡
|
(4)
≤ − (𝛾

1
𝑥
2
+ 𝛾
2
𝑦
2
) (47)

if 𝑥(𝑡) ≥ 𝑥(𝑡 − 𝑇) and (45). As 𝑉(𝑥, 𝑦) = (𝑥2 + 𝑦2)/2, by the
stability theorems (Hale and Verduyn Lunel, 1993 [14]), the
conclusions of the theorem are true. The proof is completed.

Theorem 8. If 𝑟 > 𝐵𝑆
0 and 𝐴 < 𝛿

0
𝑆
0
hold, then the zero

solution of (4) is globally asymptotically stable.

Proof. Define

𝑉 (𝑡) = |𝑥 (𝑡)| +
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 + 𝐵𝑆
0
∫

𝑡

𝑡−𝑇

|𝑥 (𝑠)| 𝑑𝑠. (48)

Now we calculate and estimate the upper-right derivative of
𝑉(𝑡) along the solutions of model (4):

𝐷
+
𝑉 (𝑡)

= 𝑥̇ (𝑡) sgn𝑥 (𝑡) + ̇𝑦 (𝑡) sgn𝑦 (𝑡) + 𝐵𝑆0 |𝑥 (𝑡)|

− 𝐵𝑆
0
|𝑥 (𝑡 − 𝑇)|

= −𝑟 |𝑥 (𝑡)| +
𝐴

𝑆 (𝑡)
𝑦 (𝑡) sgn𝑥 (𝑡) − 𝛿 (𝑡) 󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨

+ 𝐵 (𝑆 (𝑡) − 𝑦 (𝑡))
𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)
sgn𝑦 (𝑡)

+ 𝐵𝑆
0
|𝑥 (𝑡)| − 𝐵𝑆

0
|𝑥 (𝑡 − 𝑇)|

≤ −𝑟 |𝑥 (𝑡)| +
𝐴

𝑆
0

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 − 𝛿 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 + 𝐵𝑆

0
|𝑥 (𝑡 − 𝑇)|

− 𝐵
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨

𝑥
2
(𝑡 − 𝑇)

1 + 𝑥 (𝑡 − 𝑇)
+ 𝐵𝑆
0
|𝑥 (𝑡)| − 𝐵𝑆

0
|𝑥 (𝑡 − 𝑇)|

≤ − (𝑟 − 𝐵𝑆
0
) |𝑥 (𝑡)| + (

𝐴

𝑆
0

− 𝛿
0
)
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 .

(49)

According to the assumption 𝑟 > 𝐵𝑆
0 and 𝐴 < 𝛿

0
𝑆
0
, there

exists 𝜀 > 0 such that

𝐷
+
𝑉 (𝑡) ≤ −𝜀 (|𝑥 (𝑡)| +

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨) . (50)

Integrating both sides of (50) froma sufficiently large number
𝑇
∗ to 𝑡, we get

𝑉 (𝑡) + 𝜀∫

𝑡

𝑇
∗

[|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨] 𝑑𝑠 ≤ 𝑉 (𝑇
∗
) < +∞,

(𝑇
∗
) for 𝑡 > 𝑇∗,

(51)

which implies that 𝑉(𝑡) is bounded on [𝑇∗, +∞) and

∫

+∞

𝑇
∗

|𝑥 (𝑠)| 𝑑𝑠 < +∞, ∫

+∞

𝑇
∗

󵄨󵄨󵄨󵄨𝑦 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠 < +∞. (52)

ByTheorem 3, |𝑥(𝑡)| and |𝑦(𝑡)| are bounded on [𝑇∗, +∞). It is
obvious that 𝑥̇(𝑡) and ̇𝑦(𝑡) are bounded for 𝑡 ≥ 𝑇∗. Therefore,
|𝑥(𝑡)| and |𝑦(𝑡)| are uniformly continuous on [𝑇∗, +∞). By
Barbalat’s lemma (Lemmas 1.2.2 and 1.2.3, Gopalsamy [15]),
one can conclude that

lim |𝑥 (𝑡)| = 0, lim 󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 = 0. (53)

It follows that the zero solution is globally asymptotically
stable.

5. Numerical Simulations

In order to exemplify the results presented above to show
some possible behaviors of the solutions of the model, we
performed some simulations.

For the following model

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) ,

𝑑𝑦

𝑑𝑡
= 𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑥 (𝑡 − 𝑇)) ,

𝑦 (0) = 𝑦
0
, 𝑥 (𝑠) = 𝑥

0
(𝑠) , 𝑠 ∈ [−𝑇, 0] ,

(54)
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Figure 4: Comparison between uncontrolled and the controlled snails: a periodic solution ((a-b), 𝐴 = 1, 𝐵 = 2.4, and 𝑟 = 2.5), a solution
tending to zero ((c-d), 𝐴 = 2, 𝐵 = 0.2, and 𝑟 = 3.8), and a changed case ((e-f), 𝐴 = 2, 𝐵 = 0.2, and 𝑟 = 2.5), where square is 𝑥(𝑡), dot is 𝑦(𝑡),
𝑦
0
= 0, and 𝑥

0
(𝜃) = cos(𝜋𝜃/10).

based on the fourth-order Runge-Kutta’s formula for a ordi-
nary differential system, we applied the following scheme:

𝑥
𝑛+1

= 𝑥
𝑛
+
ℎ

6
(𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4
) ,

𝑦
𝑛+1

= 𝑦
𝑛
+
ℎ

6
(𝑆
1
+ 2𝑆
2
+ 2𝑆
3
+ 𝑆
4
) ,

𝐾
1
= 𝑓 (𝑡

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
) ,

𝑆
1
= 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑦
𝑛
, 𝑥
𝑛−𝑚

) , 𝑚 =
𝑇

ℎ
,

𝐾
2
= 𝑓(𝑡

𝑛
+
ℎ

2
, 𝑥
𝑛
+
ℎ

2
𝐾
1
, 𝑦
𝑛
+
ℎ

2
𝑆
1
) ,

𝑆
2
= 𝑔(𝑡

𝑛
+
ℎ

2
, 𝑥
𝑛
+
ℎ

2
𝐾
1
, 𝑦
𝑛
+
ℎ

2
𝑆
1
, 𝑥
𝑛−𝑚

) ,

𝐾
3
= 𝑓(𝑡

𝑛
+
ℎ

2
, 𝑥
𝑛
+
ℎ

2
𝐾
2
, 𝑦
𝑛
+
ℎ

2
𝑆
2
) ,
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Figure 5: The effects of delays on the behavior of solutions: (1) 𝐴 = 0.4, 𝐵 = 0.98, and 𝑟 = 0.5 (a–c) and (2) 𝐴 = 1, 𝐵 = 2.4, and 𝑟 = 2.5 (d–f)
with initial data of 𝑦

0
= 0, 𝑥

0
(𝜃) = cos(𝜋𝜃/10).

𝑆
3
= 𝑔(𝑡

𝑛
+
ℎ

2
, 𝑥
𝑛
+
ℎ

2
𝐾
2
, 𝑦
𝑛
+
ℎ

2
𝑆
2
, 𝑥
𝑛−𝑚

) ,

𝐾
4
= 𝑓 (𝑡

𝑛
+ ℎ, 𝑥

𝑛
+ ℎ𝐾
3
, 𝑦
𝑛
+ ℎ𝑆
3
) ,

𝑆
1
= 𝑔 (𝑡

𝑛
+ ℎ, 𝑥

𝑛
+ ℎ𝐾
3
, 𝑦
𝑛
+ ℎ𝑆
3
, 𝑥
𝑛−𝑚

) ,

(55)

where the step size ℎ is equal to 𝑇/𝑁
1
, where 𝑐𝑁

1
(𝑐 is about

20–400 ) is the total number of iterative steps. In computation
the virtual range of parameters was𝐴 ∈ [0.1, 2], 𝐵 ∈ [0.02, 3],
𝑟 ∈ [0.5, 4], and 𝑇 ∈ [0, 8]; both of 𝑆(𝑡) and 𝛿(𝑡) were given
by (3).

If one takes 𝐴 = 1, 𝐵 = 2.4, and 𝑟 = 0.2, then the
conditions of Theorem 6 are satisfied and a periodic solution
follows (Figure 1(a)). If one takes 𝐴 = 0.2, 𝐵 = 0.02, and
𝑟 = 1.5, then the condition (45) is satisfied and it can be found
that the zero is uniformly stable (Figure 1(b)). Furthermore,
the sufficient conditions given in Theorems 6 and 7 are far
from being sharp. In some cases where the initial value is
small enough, the solution tends to zero (solid squares and
circles in Figure 2, 𝑦

0
= 0.2, 𝑥

0
(𝜃) = 0.2), meanwhile in other

cases where the initial value is larger both the solution tends
to a periodic solution (dots and hollow squares in Figure 2,
𝑦
0
= 2, 𝑥

0
(𝜃) = 2), where 𝐴 = 0.6, 𝐵 = 0.4, and 𝑟 = 0.8.

Further simulations indicate that the periodic solution, if it
exists, is locally stable.

Concerning control strategies, many methods have been
applied in order to reduce the number of snails, that is, 𝑆(𝑡),
and at the same time to enlarge the death ratio of snails, 𝛿(𝑡).
If a control approach was applied such that 𝑆(𝑡) ≤ 6 and
𝛿(𝑡) ≥ 0.04 (dash lines in Figure 3), we obtain some results
shown in Figure 4. A periodic solution is shown in Figures
4(a)-4(b) and its amplitude is reduced by half by the control

strategy. A solution tending to zero is shown in Figures 4(c)-
4(d) and the time infected snails go extinct is reduced by a
quarter by the control strategy. A periodic solution is changed
to a solution tending to zero by the control strategy (Figures
4(e)-4(f)). Therefore it is an effective treatment by simply
reducing the population of snails and enlarging the death
ratio of snails.

In order to study the effects of the delay on the behavior of
solutions, a simulation was performed in two cases: (1) 𝐴 =

0.4, 𝐵 = 0.98, and 𝑟 = 0.5 (Figures 5(a)–5(c)) and (2) 𝐴 = 1,
𝐵 = 2.4, and 𝑟 = 2.5 (Figures 5(d)–5(f)) with initial data of
𝑦
0
= 0, 𝑥

0
(𝜃) = cos(𝜋𝜃/10). It can be seen that the amplitude

and period of the periodic solution 𝑦(𝑡) decrease, but no
obvious changes were observed on the periodic solution 𝑥(𝑡)
when the delay is changed from 8 to 1. Furthermore when the
delay is changed from 1 to 0.2, the similar changes could not
be found.

6. Discussion and Conclusion

In the preceding sections we modified MacDonald’s models
in schistosomiasis. It may be more reasonable in natural
conditions that we consider a periodic model and introduce
a delay to simulate the development period of helminthes.

The existence of periodic solution shows that the infected
snails and infecting worms in the host coexist in a periodic
pattern. The stability of the zero solution shows that the
population of infected snails and infecting worms in a host
will extinct eventually. Although much to our expectation,
the condition of existence of periodic solution is easier to be
satisfied, rather than that of global stability of zero solution.

It is needed to add that the condition of Theorem 6
can be improved, for example, the periodic solution shown
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in Figure 4(a) with the parameters satisfying 𝐴𝐵𝑆
0
𝛼 <

𝑟𝑆
0
[𝛿
0
(1 + 𝛼) + 𝐵𝛼

2
] for all 𝛼 > 0 rather than the condition

of Theorem 6. Also, the condition of Theorem 7 may be
improved, for example, the stable zero solution shown in
Figure 4(b) with the parameters not satisfying (45).

From the simulations andTheorem 7, while the practical
meaning of the parameter values chosen in numerical simu-
lations has not been clear yet, we can see that an increase in 𝑟
and decrease in 𝐴, 𝐵 would enable (45) and thus lead to the
stability of zero solution. In other words, to annihilate worms,
it is required to increase the death probability of worms, while
reducing the penetration of worms into snails and the disease
transmission of snails to final hosts. This implication is in
line with other published literature (Williams et al., 2002 [4],
Liang et al., 2005 [5]).

In conclusion, we present the conditions under which
the model admits a periodic solution and the conditions
underwhich the zero solution is uniformly stable and globally
stable, respectively. We show the conditional coexistence
of locally stable zero solution and periodic solutions in
numerical method and show that it is an effective treatment
of simply reducing the population of snails and enlarging the
death ratio of snails for the control of schistosomiasis.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are very grateful to the referees for careful
reading and valuable comments which led to improvements
of the original paper. This research was supported in part
by Beijing Leading Academic Discipline Project of Bei-
jing Municipal Education Commission (PHR201110506) and
CapitalMedicalUniversity Research Foundation (2013ZR10).

References

[1] W. Chen, Mathematical models of schistosomiasis epidemic and
the simulation of applications in practical [Ph.D. Dissertation],
Fudan University, Shanghai, China, 2008 (Chinese).

[2] G. Macdonald, “The dynamics of helminth infections, with
special reference to schistosomes,” Transactions of the Royal
Society of Tropical Medicine and Hygiene, vol. 59, no. 5, pp. 489–
506, 1965.

[3] N. G. Hairston, “On the mathematical analysis of schistosome
populations,” Bulletin of the World Health Organization, vol. 33,
pp. 45–62, 1965.

[4] G. M. Williams, A. C. Sleigh, Y. Li et al., “Mathematical
modelling of schistosomiasis japonica: comparison of control
strategies in the People’s Republic of China,” Acta Tropica, vol.
82, no. 2, pp. 253–262, 2002.

[5] S. Liang, R. C. Spear, E. Seto, A. Hubbard, and D. Qiu, “Amulti-
groupmodel of Schistosoma japonicum transmission dynamics
and control: model calibration and control prediction,” Tropical
Medicine and International Health, vol. 10, no. 3, pp. 263–278,
2005.

[6] W. F. Lucas, Modules in Applied Mathematics: Life Science
Models, vol. 3, Springer, New York, NY, USA, 1983.

[7] F. C. Hoppensteadt and C. S. Peskin, Mathematics in Medicine
and the Life Science, Springer, New York, NY, USA, 1992.

[8] K. Wu, “Mathematical model and transmission dynamics of
schistosomiasis and its application,” China Tropical Medicine,
vol. 5, no. 4, pp. 837–844, 2005 (Chinese).

[9] D. Lu, Q. Jiang, T. Wang et al., “Study on the ecology of snails
in Chengcun reservoir irrigation area of Jiangxian county,”
Chininese Journal of Parasit Diseases Control, vol. 18, no. 1, pp.
52–55, 2005 (Chinese).

[10] B. R. Tang andY. Kuang, “Existence, uniqueness and asymptotic
stability of periodic solutions of periodic functional-differential
systems,” The Tohoku Mathematical Journal, vol. 49, no. 2, pp.
217–239, 1997.

[11] X. H. Tang and Y. G. Zhou, “Periodic solutions of a class of
nonlinear functional differential equations and global attractiv-
ity,” Acta Mathematica Sinica, vol. 49, no. 4, pp. 899–908, 2006
(Chinese).

[12] M. Fan and X. Zou, “Global asymptotic stability of a class of
nonautonomous integro-differential systems and applications,”
Nonlinear Analysis, vol. 57, no. 1, pp. 111–135, 2004.

[13] D. Guo, Nonlinear Functional Analysis, Shandong Science and
technology Publishing House, Jinan, China, 2001 (Chinese).

[14] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-
Differential Equations, vol. 99, Springer, New York, NY, USA,
1993.

[15] K. Gopalsamy, Stability and Oscillations in Delay Differential
Equations of Population Dynamics, vol. 74, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1992.


