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A two-city SIR epidemic model with transport-related infections is proposed. Some good analytical results are given for this model.
If the basic reproduction numberR

0𝛾
≤ 1, there exists a disease-free equilibriumwhich is globally asymptotically stable.There exists

an endemic equilibrium which is locally asymptotically stable if the basic reproduction numberR
0𝛾
> 1. We also show the perma-

nence of this SIRmodel. In addition, sufficient conditions are established for global asymptotic stability of the endemic equilibrium.

1. Introduction

Epidemiology is the study of the spread of disease in time and
space, aiming at tracing factors that give rise to their occur-
rence. Since Kermark andMckendrick in [1] built up a system
to study epidemiology in 1927, the concept of “compartment
modeling” iswidely used until now. From then on,many great
epidemic models are proposed and researched [2–5], which
assume that population lives in the fixed region, without
travel. However, in fact, people usually travel among different
regions; thusmodels involving dispersal are indispensable. To
control the spread of an infectious disease, we have to know
how the growth and spread of the disease affect its outbreak.
And there are many factors that lead to the dynamics of an
infectious disease of humans, such as human behavior as
population dislocations, living styles, sexual practices, and
rising international travel. On the other hand, climate change
enables diseases and vectors to expand their range. Since the
first AIDS case was reported in the United States in June 1981,
the number of cases and deaths among persons with AIDS
increased rapidly during the 1980s followed by substantial
declines in new cases and deaths in the late 1990s. In 2003,
SARS began in Guangdong province of China; however, it

broke out at last in almost all parts of China and some
other cities in the world due to dispersal [6]. Recently, some
epidemic models have been proposed to understand the
spread dynamics of infectious disease.

Ahmed et al. in [7] introduced a model with travel
between populations. In addition, Sattenspiel and Herring
considered the same type of model but applied it to travel
between populations in the Canadian subarctic, which can
be thought of as a closed population where travel is easily
quantified [8]. Ding et al. [9] and Sattenspiel et al. [10, 11] have
also discussed othermodels for the spread of a disease among
two patches and 𝑛 patches. In [12], Wang andMulone studied
an SIS model with standard incidence rate on population
dispersal among 𝑛 patches. Wang and Zhao [13] proposed
an SEIR epidemic model, assuming that the susceptible and
exposed individuals have constant immigration rates. What
is more, Wang and Zhao [14] formulated a general SEIRS for
multispecies on multipatches, and the role of quarantine in
the form of travel restriction was discussed.

All these investigations ignore the possibility for the indi-
viduals to become infective during travel. In paper [15], Allen
et al. have proposed the following SIS epidemic model to
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understand the effect of transport-related infection ondisease
spread for the first time:
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(1)

For many diseases (e.g., influenza, measles, chickenpox,
etc.), after recovery, the individuals have immunity to the
disease. Thus, an SIR or SIRS model is more suitable for
this kind of disease. In this paper, we will study the effect of
transport-related infection. Our results show that transport-
related infection can make the disease endemic even if both
the isolated regions are disease free.

We consider a model with state variables 𝑆
𝑖
, 𝐼
𝑖
, 𝑅
𝑖
that

represent the number of susceptible, infected, and removed
individuals in city 𝑖 (𝑖 = 1, 2), respectively.The basic assump-
tions underlying the dynamics of the system are as follows.

(i) We assume that both cities are identical.

(ii) All newborns, denoted by 𝑎, join into the susceptible
class per unit time.

(iii) Natural death rate for susceptible, infected, and
removed individuals is a constant per capita rate 𝑏.

(iv) Disease is transmitted with the standard form inci-
dence rate 𝛽𝑆

𝑖
𝐼
𝑖
/𝑆
𝑖
+ 𝐼
𝑖
+ 𝑅
𝑖
, 𝑖 = 1, 2 within city 𝑖.

The transmission rate within a city is a constant 𝛽.

(v) Wemay assume that a susceptible individual goes into
the infected part after infection.

(vi) Susceptible, infected, and removed individuals of
every city 𝑖 leave for city 𝑗 (𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2) at a per
capita rate 𝛼. We assume that two cities are connected
by the direct transport such as airplanes or trains.

(vii) When the individuals in city 𝑖 travel to city 𝑗, disease is
transmitted with the incidence rate 𝛾(𝛼𝑆

𝑖
)(𝛼𝐼
𝑖
)/𝛼𝑆
𝑖
+
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+ 𝐼
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+ 𝑅
𝑖
, 𝑖 = 1, 2 with a transmission

rate 𝛾𝛼.

(viii) The rate constant for recovery is denoted by 𝑑, and the
per capita mortality rate for infected individual is 𝑐.
Since this includes both natural and disease induced
mortality, we have 𝑐 > 𝑏.

(ix) We suppose that individuals who are traveling do not
give birth and do not take death. Further we assume
that removed individuals do not lose immunity dur-
ing travel.

These assumptions lead to a model of the following form:
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(2)
From the biological point of view, the term 𝛼𝑆

𝑖
represents

the susceptible leaving city 𝑖 and 𝛾𝛼𝑆
𝑖
𝐼
𝑖
/(𝑆
𝑖
+ 𝐼
𝑖
+ 𝑅
𝑖
) denote

individuals in 𝛼𝑆
𝑖
becoming infected during travel from city 𝑖

to 𝑗. Hence, 𝛼𝑆
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) should be nonnegative.

Therefore, we always suppose 0 ≤ 𝛾 ≤ 1 in the following
discussion.

The paper is organized as follows. In next section, we will
research the existence of equilibria and their local stability. In
Section 3, we will discuss permanence of the SIR model and
some sufficient conditions for global stability of equilibrium
in Section 4. In the final section, we will discuss our results
and give some numerical simulations.

2. Local Stability

The assumption that both cities are identical, that is, demo-
graphic parameters are the same for each city, has enabled
us to obtain an analytic expression for the equilibria. It is
easy to check that system (2) has a disease-free equilibrium
𝐸
0
(𝑆
0
, 0, 0, 𝑆

0
, 0, 0) for all parameter values, where 𝑆0 = 𝑎/𝑏.

According to the concept of next generation matrix in Li et
al. [16] and reproduction number presented in Liu et al. [17],
we can define

𝐹 =(

(

0 0 0 0 0 0
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0 𝛾𝛼 0 0 𝛽 0

0 0 0 0 0 0

)

)
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) .
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Hence the reproduction number for system (2) is
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Here 𝜌(𝐹𝑉−1) represents the spectral radius of the matrix
𝐹𝑉
−1. When R
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The Jacobian matrix for the right hand of system (2) is
given by
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Firstly, we study stability of the disease-free equilibrium
𝐸
0
.

Theorem 1. IfR
0𝛾
< 1, then𝐸

0
is locally asymptotically stable,

and ifR
0𝛾
> 1, then 𝐸

0
is unstable.

Proof. Evaluating (6)–(10) at 𝐸
0
, we have the following Jaco-

bian matrix:

𝐽 (𝐸
0
) = (

𝐴 𝐵

𝐵 𝐴
) , (11)
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where

𝐴 = (

−𝑏 − 𝛼 −𝛽 0

0 𝛽 − 𝑐 − 𝛼 − 𝑏 − 𝑑 0

0 𝑑 −𝑏 − 𝛼

) ,

𝐵 = (

𝛼 −𝛾𝛼 0

0 𝛼 + 𝛾𝛼 0

0 0 𝛼

) .

(12)

By Allen et al. [15], the eigenvalues of 𝐽(𝐸
0
) are identical

to those of 𝐴 + 𝐵 and 𝐴 − 𝐵 since

𝐴 + 𝐵 = (

−𝑏 −𝛽 − 𝛾𝛼 0

0 𝛽 − 𝑐 − 𝑏 − 𝑑 + 𝛾𝛼 0

0 𝑑 −𝑏

) ,

𝐴 − 𝐵 = (

−𝑏 − 2𝛼 −𝛽 + 𝛾𝛼 0

0 𝛽 − 𝑐 − 𝑏 − 𝑑 − (2 + 𝛾) 𝛼 0

0 𝑑 −𝑏 − 2𝛼

) .

(13)
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1
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2
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3
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𝑐 − 𝑏 − 𝑑 + 𝛾𝛼 and the eigenvalues of 𝐴 − 𝐵 are 𝜆
1
= −𝑏 − 2𝛼,

𝜆
2
= −𝑏−2𝛼, 𝜆

3
= 𝛽−𝑐−𝑏−𝑑−2𝛼−𝛾𝛼. ByR

0𝛾
< 1, we have

𝛽 + 𝛾𝛼 < 𝑏 + 𝑑 + 𝑐; we can conclude that all six eigenvalues of
𝐽(𝐸
0
) are negative. WhenR

0𝛾
> 1, we have 𝛽+𝛾𝛼 > 𝑏+𝑑+ 𝑐

which implies𝜆
3
> 0, sowe obtain that at least one eigenvalue

of 𝐽(𝐸
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) is positive. Hence 𝐸
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is locally asymptotically stable

if R
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< 1 and 𝐸

0
is unstable if R
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> 1. This completes the

proof.

Next, we research the stability of 𝐸
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. Evaluating (6)–(10)

at 𝐸
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and using (5), we have the following Jacobianmatrix for
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(𝑏 + 𝑑)R2
0𝛾

𝑏𝛽 (R0𝛾−1)

(𝑏 + 𝑑)R2
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𝑏𝛾𝛼

𝑏 + 𝑑
(1 −
1

R0𝛾
)

2

−

𝛾𝛼 (𝑑R0𝛾 + 𝑏)

(𝑏 + 𝑑)R2
0𝛾

𝑏𝛾𝛼 (R0𝛾 − 1)

(𝑏 + 𝑑)R2
0𝛾

𝑏𝛾𝛼

𝑏 + 𝑑
(1 −
1

R0𝛾
)

2

𝛼 +

𝛾𝛼 (𝑑R0𝛾 + 𝑏)

(𝑏 + 𝑑)R2
0𝛾

−

𝑏𝛾𝛼 (R0𝛾 − 1)

(𝑏 + 𝑑)R2
0𝛾

0 0 𝛼

).

(15)

Similar to the proof ofTheorem 1, to calculate the eigenvalues
of 𝐽(𝐸

+
) is equivalent to calculating the eigenvalues of matrix

𝐴 + 𝐵 and 𝐴 − 𝐵, where

𝐴 + 𝐵 =(

(

−
𝑏 (𝛽 + 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

− 𝑏 −

(𝛽 + 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

𝑏 (𝛽 + 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

𝑏 (𝛽 + 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2
(𝛽 + 𝛾𝛼) (𝑑R

0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

− (𝑐 + 𝑏 + 𝑑) −

𝑏 (𝛽 + 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

0 𝑑 −𝑏

)

)

,

𝐴 − 𝐵 =(

(

−
𝑏 (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

− 𝑏 − 2𝛼 −

(𝛽 − 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

𝑏 (𝛽 − 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

𝑏 (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2
(𝛽 − 𝛾𝛼) (𝑑R

0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

− (𝑐 + 𝑏 + 𝑑 + 2𝛼) −

𝑏 (𝛽 − 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

0 𝑑 −𝑏 − 2𝛼

)

)

.

(16)

However, different from the case for 𝐸
0
, the eigenvalues of

matrices 𝐴 + 𝐵 and 𝐴 − 𝐵 cannot be calculated explicitly. We
will use the Routh-Hurwitz Theorem to study the stability of
𝐸
+
. Note that𝐴+𝐵 and𝐴−𝐵 have the same form as follows:

𝐽 = (

𝑎
11
𝑎
12
𝑎
13

𝑎
21
𝑎
22
𝑎
23

0 𝑎
32
𝑎
33

) . (17)

The characteristic polynomial of matrix 𝐽 is 𝜆3 + 𝐴
1
𝜆
2
+

𝐴
2
𝜆 + 𝐴

3
= 0, where 𝐴

1
= − tr(𝐽), 𝐴

2
= 𝐽
1
+ 𝐽
2
+ 𝐽
3
, and

𝐴
3
= − det(𝐽) and 𝐽

1
= 𝑎
11
𝑎
22
− 𝑎
21
𝑎
12
, 𝐽
2
= 𝑎
11
𝑎
33
, and

𝐽
3
= 𝑎
22
𝑎
33
− 𝑎
23
𝑎
32
. For convenience, we state the Routh-

Hurwitz Theorem for above matrix.

Lemma 2. 𝐽 is stable (i.e., each eigenvalue of 𝐽 has negative
real part) if and only if the following conditions hold:

(i) 𝐴
1
> 0,

(ii) 𝐴
3
> 0,

(iii) 𝐴
1
𝐴
2
− 𝐴
3
> 0.

Using Lemma 2, we have the following stability result for
𝐸
+
.
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Theorem 3. If R
0𝛾

> 1, then 𝐸
+
is locally asymptotically

stable.

Proof. Consider the matrices 𝐴 and 𝐵 in 𝐽(𝐸
+
), the Jacobian

matrix of system (2) at 𝐸
+
. It suffices to check that both𝐴+𝐵

and𝐴−𝐵 satisfy the conditions in Lemma 2. Firstly, we check
them for𝐴+𝐵 as the following three steps. For simplification,
we will refer the entries of 𝐴 + 𝐵 as 𝑎

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3.

(i) 𝐴
1
> 0. Obviously, 𝑎

11
< 0 and 𝑎

33
< 0. By (4),

𝑎
22
=

(𝛽 + 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

− (𝑐 + 𝑏 + 𝑑)

= ((𝛽 + 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏R
0𝛾
)

+ (𝛽 + 𝛾𝛼) (𝑏 − 𝑏R
0𝛾
)) × ((𝑏 + 𝑑)R

2

0𝛾
)
−1

− (𝑐 + 𝑏 + 𝑑)

=

𝑏 (𝛽 + 𝛾𝛼) (1 −R
0𝛾
)

(𝑏 + 𝑑)R2
0𝛾

.

(18)

Since R
0𝛾
> 1, we have 𝑎

22
< 0. Thus 𝐴

1
= − tr(𝐴 + 𝐵) =

−(𝑎
11
+ 𝑎
22
+ 𝑎
33
) > 0.

(ii) 𝐽
𝑖
> 0, 𝑖 = 1, 2, 3. Obviously, 𝑎

𝑖𝑖
< 0, 𝑖 = 1, 2, 3, 𝑎

12
<

0, 𝑎
21
> 0, 𝑎

23
< 0, 𝑎

32
> 0. So 𝐽

1
= 𝑎
11
𝑎
22
− 𝑎
21
𝑎
12
> 0,

𝐽
2
= 𝑎
11
𝑎
33
> 0, 𝐽
3
= 𝑎
22
𝑎
33
− 𝑎
23
𝑎
32
> 0.

(iii) 𝐴
3
> 0, 𝐴

1
𝐴
2
− 𝐴
3
> 0. Since 𝑎

21
> 0, 𝐽

3
> 0, we

obtain

𝐴
3
= − det (𝐴 + 𝐵)

= − (𝑎
11
𝑎
22
𝑎
33
+ 𝑎
13
𝑎
21
𝑎
32
− 𝑎
12
𝑎
21
𝑎
33
− 𝑎
11
𝑎
23
𝑎
32
)

= 𝑏𝐽
3
+ 𝑏 (𝑐 + 𝑏 + 𝑑) 𝑎

21
> 0.

(19)

We also have

𝐴
1
𝐴
2
− 𝐴
3

= − (𝑎
11
+ 𝑎
22
+ 𝑎
33
) (𝐽
1
+ 𝐽
2
+ 𝐽
3
) + det (𝐴 + 𝐵)

= −𝑎
11
(𝐽
1
+ 𝐽
2
) − 𝑎
22
(𝐽
1
+ 𝐽
2
+ 𝐽
3
) − 𝑎
33
(𝐽
2
+ 𝐽
3
)

+ 𝑎
13
𝑎
21
𝑎
32
− 𝑎
11
𝑎
22
𝑎
33
.

(20)

Thus,𝐴
1
𝐴
2
−𝐴
3
> 0 by the fact that 𝑎

𝑖𝑖
< 0, 𝐽
𝑖
> 0, 𝑖 = 1, 2, 3,

and 𝑎
13
> 0, 𝑎
21
> 0, 𝑎
32
> 0. Therefore, by Lemma 2,𝐴+𝐵 is

stable. Next we check 𝐴 − 𝐵 as follows. For convenience, we
also refer the entries of 𝐴 − 𝐵 as 𝑎

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3.

(i)𝐴
1
> 0. Obviously, 𝑎

33
< 0. Since 0 < (1−1/R

0𝛾
)
2
< 1

whenR
0𝛾
> 1 and also noting that 0 ≤ 𝛾 ≤ 1, we have

𝑎
11
= −

𝑏 (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

− 𝑏 − 2𝛼

= −
𝑏𝛽

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

− 𝑏

− (2 −
𝑏𝛾

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

)𝛼 < 0;

(21)

the same to (18), one has

𝑎
22
=

(𝛽 − 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

− (𝑐 + 𝑏 + 𝑑 + 2𝛼)

≤

(𝛽 + 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

− (𝑐 + 𝑏 + 𝑑) < 0.

(22)

Thus, 𝐴
1
= − tr(𝐴 − 𝐵) = −(𝑎

11
+ 𝑎
22
+ 𝑎
33
) > 0.

(ii) 𝐽
𝑖
> 0, 𝑖 = 1, 2, 3. Since 𝑎

𝑖𝑖
< 0, 𝑖 = 1, 2, 3. Obviously

𝐽
2
= 𝑎
11
𝑎
33
> 0. For 𝐽

1
, we have

𝐽
1
= 𝑎
11
𝑎
22
− 𝑎
21
𝑎
12
= (𝑎
11
+ 𝑎
21
) 𝑎
22
− (𝑎
12
+ 𝑎
22
) 𝑎
21

= (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼)

−

(𝑏 + 2𝛼) (𝛽 − 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

+
𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

.

(23)

𝐽
1
> 0 can be shown as the following two cases.

Case 1 (𝛽 − 𝛾𝛼 > 0). By (4), we obtain that

𝑏 + 𝑑 + 𝑐 = (𝛽 + 𝛾𝛼)
1

R
0𝛾

= (𝛽 − 𝛾𝛼 + 2𝛾𝛼)
1

R
0𝛾

. (24)

Thus, 𝐽
1
can be rewritten as

𝐽
1
> (𝑏 + 2𝛼) [2𝛼 + (𝛽 − 𝛾𝛼 + 2𝛾𝛼)

1

R
0𝛾

]

− (𝑏 + 2𝛼) (𝛽 − 𝛾𝛼)
1

R
0𝛾

+
𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

= (𝑏 + 2𝛼)(2𝛼 + 2𝛾𝛼
1

R
0𝛾

)

+
𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

.

(25)

SinceR
0𝛾
> 1, it is clear that 𝐽

1
> 0.
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Case 2 (𝛽 − 𝛾𝛼 ≤ 0). According toR
0𝛾
> 1, we have

𝐽
1
= (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼)

−

(𝑏 + 2𝛼) (𝛽 − 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

𝑏 + 𝑑

+
𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

𝑏 + 𝑑

−
2𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

(𝑏 + 𝑑)R
0𝛾

+
𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

(𝑏 + 𝑑)R2
0𝛾

>

[𝑏𝑑 + 𝑏
2
+ 2𝑑𝛼 + 𝑏𝛽 + 𝑏𝛼 (2 − 𝛾)] (𝑐 + 𝑏 + 𝑑 + 2𝛼)

𝑏 + 𝑑

−

(𝑏 + 2𝛼) (𝛽 − 𝛾𝛼) (𝑑R0𝛾 + 𝑏)

𝑏 + 𝑑

−
𝑏 (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

(𝑏 + 𝑑)R2
0𝛾

.

(26)

Since 0 ≤ 𝛾 ≤ 1, clearly we have 𝐽
1
> 0. The same to above

analysis, for 𝐽
3
, we also obtain that

𝐽
3
= 𝑎
22
𝑎
33
− 𝑎
23
𝑎
32

= −

(𝑏 + 2𝛼) (𝛽 − 𝛾𝛼) (𝑑R
0𝛾
+ 𝑏)

(𝑏 + 𝑑)R2
0𝛾

+ (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼)

+

𝑏𝑑 (𝛽 − 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

.

(27)

𝐽
3
> 0 can be shown as the following two cases.

Case 1 (𝛽 − 𝛾𝛼 > 0). Consider

𝐽
3
> (𝑏 + 2𝛼) [2𝛼 + (𝛽 − 𝛾𝛼 + 2𝛾𝛼)

1

R
0𝛾

]

− (𝑏 + 2𝛼) (𝛽 − 𝛾𝛼)
1

R
0𝛾

+

𝑏𝑑 (𝛽 − 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

= (𝑏 + 2𝛼)(2𝛼 + 2𝛾𝛼
1

R
0𝛾

) +

𝑏𝑑 (𝛽 − 𝛾𝛼) (R
0𝛾
− 1)

(𝑏 + 𝑑)R2
0𝛾

.

(28)

SinceR
0𝛾
> 1, we have 𝐽

3
> 0.

Case 2 (𝛽 − 𝛾𝛼 ≤ 0). Consider

𝐽
3
= − (𝛽 − 𝛾𝛼)

𝑏𝑑R
0𝛾
+ 𝑏
2
+ 2𝑑𝛼R

0𝛾
+ 2𝑏𝛼 − 𝑏𝑑R

0𝛾
+ 𝑏𝑑

(𝑏 + 𝑑)R2
0𝛾

+ (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼)

=

− (𝛽 − 𝛾𝛼) (𝑏
2
+ 2𝑑𝛼R

0𝛾
+ 2𝑏𝛼 + 𝑏𝑑)

(𝑏 + 𝑑)R2
0𝛾

+ (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) > 0.

(29)

(iii) 𝐴
3
> 0, 𝐴

1
𝐴
2
− 𝐴
3
> 0

𝐴
3
= − det (𝐴 − 𝐵)

= − (𝑎
11
𝑎
22
𝑎
33
+ 𝑎
13
𝑎
21
𝑎
32

− 𝑎
12
𝑎
21
𝑎
33
− 𝑎
11
𝑎
23
𝑎
32
)

= (𝑏 + 2𝛼) 𝐽3 +
𝑏 (𝛽 − 𝛾𝛼)

𝑏 + 𝑑
(1 −

1

R
0𝛾

)

2

× (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) .

(30)

Case 1 (𝛽 − 𝛾𝛼 > 0). Due to 𝐽
3
> 0, so 𝐴

3
> 0.

Case 2 (𝛽 − 𝛾𝛼 ≤ 0). According toR
0𝛾
> 1, we have

𝐴
3
= (𝑏 + 2𝛼) [

− (𝛽 − 𝛾𝛼) (𝑏
2
+ 2𝑑𝛼R

0𝛾
+ 2𝑏𝛼 + 𝑏𝑑)

(𝑏 + 𝑑)R2
0𝛾

+ (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) ]

+
𝑏 (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

𝑏 + 𝑑

−
2𝑏 (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

(𝑏 + 𝑑)R
0𝛾

+
𝑏 (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

(𝑏 + 𝑑)R2
0𝛾

> −

(𝛽 − 𝛾𝛼) (𝑏 + 2𝛼) (𝑏
2
+ 2𝑑𝛼R

0𝛾
+ 2𝑏𝛼 + 𝑏𝑑)

(𝑏 + 𝑑)R2
0𝛾

+ (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) [𝑏
2
+ 𝑏𝑑 + 2𝑑𝛼 + 𝑏𝛽

+ (2 − 𝛾) 𝑏𝛼] × (𝑏 + 𝑑)
−1

−
𝑏 (𝑏 + 2𝛼) (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝛽 − 𝛾𝛼)

(𝑏 + 𝑑)R2
0𝛾

> 0.

(31)



Journal of Applied Mathematics 7

Since 0 ≤ 𝛾 ≤ 1, clearly one has 𝐴
3
> 0. On the other hand,

𝐴
1
𝐴
2
− 𝐴
3
= − (𝑎

11
+ 𝑎
22
+ 𝑎
33
) (𝐽
1
+ 𝐽
2
+ 𝐽
3
) + det (𝐴 − 𝐵)

= −𝑎
11
(𝐽
1
+ 𝐽
2
) − 𝑎
22
(𝐽
1
+ 𝐽
2
+ 𝐽
3
)

− 𝑎
33
(𝐽
2
+ 𝐽
3
) + 𝑎
13
𝑎
21
𝑎
32
− 𝑎
11
𝑎
22
𝑎
33

(32)

because 𝑎
13
𝑎
21
𝑎
32
= (𝑏
2
𝑑(𝛽−𝛾𝛼)

2
(R
0𝛾
−1)/(𝑏+𝑑)

2
R2
0𝛾
)(1−

(1/R
0𝛾
))
2
> 0. So 𝐴

1
𝐴
2
− 𝐴
3
> 0, since 𝑎

𝑖𝑖
< 0, 𝐽

𝑖
> 0,

𝑖 = 1, 2, 3.
Therefore, 𝐴

1
𝐴
2
− 𝐴
3
> 0. By Lemma 2, 𝐴 − 𝐵 is

also stable. Hence 𝐸
+
is locally asymptotically stable. This

completes the proof.

3. Permanence

Firstly, we consider permanence of the disease. Set initial
conditions as 𝑆

𝑖
(0) ≥ 0, 𝐼

𝑖
(0) ≥ 0, and 𝑅

𝑖
(0) ≥ 0 for 𝑖 = 1, 2. It

is easy to check that all solutions of system (2) are nonnegative
(i.e., 𝑆

𝑖
(𝑡) ≥ 0, 𝐼

𝑖
(𝑡) ≥ 0, and 𝑅

𝑖
(𝑡) ≥ 0 for 𝑡 ≥ 0 and 𝑖 = 1, 2)

under the assumption 0 ≤ 𝛾 ≤ 1. The following result shows
that system (2) is ultimately bounded above.

Theorem 4. There exists an𝑀 > 0 such that for any solution
(𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑅
1
(𝑡), 𝑆
2
(𝑡), 𝐼
2
(𝑡), 𝑅
2
(𝑡)) of system (2) with initial

values 𝑆
𝑖
(0) ≥ 0, 𝐼

𝑖
(0) ≥ 0, and 𝑅

𝑖
(0) ≥ 0, 𝑖 = 1, 2, there must

be a 𝑡
1
> 0 such that 𝑆

𝑖
(𝑡) ≤ 𝑀, 𝐼

𝑖
(𝑡) ≤ 𝑀, and 𝑅

𝑖
(𝑡) ≤ 𝑀 for

𝑖 = 1, 2 and 𝑡 ≥ 𝑡
1
.

Proof. Let 𝑉(𝑡) = 𝑆
1
(𝑡) + 𝐼

1
(𝑡) + 𝑅

1
(𝑡) + 𝑆

2
(𝑡) + 𝐼

2
(𝑡) + 𝑅

2
(𝑡).

We have

𝑉̇ (𝑡) = 2𝑎 − 𝑏𝑆1 − 𝑐𝐼1 − 𝑏𝐼1 − 𝑏𝑅1 − 𝑏𝑆2 − 𝑐𝐼2 − 𝑏𝐼2 − 𝑏𝑅2

= 2𝑎 − 𝑏𝑆
1
− (𝑏 + 𝑐) 𝐼

1
− 𝑏𝑅
1
− 𝑏𝑆
2

− (𝑏 + 𝑐) 𝐼
2
− 𝑏𝑅
2
≤ 2𝑎 − 𝑏𝑉.

(33)

Hence, by comparison theory of differential equations, it is
easy to verify that there exists 𝑡

1
> 0 such that 𝑉(𝑡) ≤ 𝑀 ≜

(2𝑎/𝑏) + 𝜀, 𝑡 ≥ 𝑡
1
for 𝜀 > 0. Then 𝑆

𝑖
(𝑡) ≤ 𝑉(𝑡) ≤ 𝑀, 𝐼

𝑖
(𝑡) ≤

𝑉(𝑡) ≤ 𝑀, and 𝑅
𝑖
(𝑡) ≤ 𝑉(𝑡) ≤ 𝑀 for 𝑡 ≥ 𝑡

1
. This completes

the proof.

Theorem 5. LetR
0𝛾
> 1. Then there exists an 𝜀 > 0 such that

every solution (𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑅
1
(𝑡), 𝑆
2
(𝑡), 𝐼
2
(𝑡), 𝑅
2
(𝑡)) of system

(2)with initial values 𝑆
𝑖
(0) ≥ 0, 𝐼

1
(0)+𝐼

2
(0) > 0 and𝑅

𝑖
(0) ≥ 0

for 𝑖 = 1, 2 satisfies

lim inf
𝑡→∞

𝑆
𝑖 (𝑡) ≥ 𝜀, lim inf

𝑡→∞

𝐼
𝑖 (𝑡) ≥ 𝜀,

lim inf
𝑡→∞

𝑅
𝑖
(𝑡) ≥ 𝜀, 𝑖 = 1, 2.

(34)

Proof. By system (2) and the fact that 0 ≤ 𝛾 ≤ 1, we have
̇𝑆
𝑖
≥ 𝑎 − (𝛽 + 𝑏 + 𝛼) 𝑆

𝑖
, 𝑖 = 1, 2. (35)

Hence, 𝑆
𝑖
is always ultimately lower bounded by some

positive constant; see, for example, 𝑚
𝑠
= 𝑎/(2(𝛽 + 𝑏 + 𝛼)),

which is independent of initial values. And so is 𝑅
𝑖
if both

𝐼
1
and 𝐼

2
are ultimately lower bounded by some positive

constant independent of initial values. Therefore, it suffices
to prove that lim inf

𝑡→∞
𝐼
𝑖
(𝑡) ≥ 𝜀, 𝑖 = 1, 2.

The result follows from an application of Theorem 4.6 in
Arino et al. [18]. Define

𝑋 = {(𝑆
1
, 𝐼
1
, 𝑅
1
, 𝑆
2
, 𝐼
2
, 𝑅
2
) | 𝑆
𝑖
≥ 0, 𝐼

𝑖
≥ 0, 𝑅

𝑖
≥ 0, 𝑖 = 1, 2} ,

𝑋
0
= {(𝑆
1
, 𝐼
1
, 𝑅
1
, 𝑆
2
, 𝐼
2
, 𝑅
2
) ∈ 𝑋 | 𝐼

1
+ 𝐼
2
> 0, 𝑖 = 1, 2} ,

𝜕𝑋
0
= 𝑋 \ 𝑋

0
.

(36)

It then suffices to show that system (2) is uniformly persistent
with respect to (𝑋

0
, 𝜕𝑋
0
).

Next, 𝑋 is positively invariant with respect to system (2).
It is easy to verify that 𝐼

1
(𝑡) + 𝐼

2
(𝑡) > 0, 𝑖 = 1, 2 for 𝑡 > 0 if

𝑆
𝑖
(0) ≥ 0, 𝑅

𝑖
(0) ≥ 0, and 𝐼

1
(0) + 𝐼

2
(0) > 0 for 𝑖 = 1, 2. This

𝑋
0
is also positively invariant. Furthermore, by Theorem 4,

there exists a compact set 𝐵 in which all solutions of system
(2) initiated in 𝑋 will enter and remain forever after. The
compactness condition (𝐶

4.2
) in Arino et al. [18] is easily

verified for this set 𝐵. Denote

𝑀
𝜕
= {(𝑆
1
(0) , 𝐼
1
(0) , 𝑅

1
(0) , 𝑆
2
(0) , 𝐼
2
(0) , 𝑅

2
(0)) |

(𝑆
1
(𝑡) , 𝐼
1
(𝑡) , 𝑅
1
(𝑡) , 𝑆
2
(𝑡) , 𝐼
2
(𝑡) , 𝑅
2
(𝑡)) ∈ 𝜕𝑋

0
,

∀𝑡 ≥ 0} .

(37)

We now show that

𝑀
𝜕
= {(𝑆
1
, 0, 𝑅
1
, 𝑆
2
, 0, 𝑅
2
) | 𝑆
𝑖
≥ 0, 𝑅

𝑖
≥ 0, 𝑖 = 1, 2} . (38)

Suppose that (𝑆
1
(0), 𝐼
1
(0), 𝑅
1
(0), 𝑆
2
(0), 𝐼
2
(0), 𝑅
2
(0)) ∈ 𝑀

𝜕
. It

suffices to show 𝐼
𝑖
(𝑡) = 0 for any 𝑡 ≥ 0 and 𝑖 = 1, 2. If

not, there exists 𝑡
0
≥ 0 such that 𝐼

1
(𝑡
0
) > 0 or 𝐼

2
(𝑡
0
) > 0.

Hence, 𝐼
1
(𝑡
0
) + 𝐼
2
(𝑡
0
) > 0 and (𝑆

1
(𝑡
0
), 𝐼
1
(𝑡
0
), 𝑅
1
(𝑡
0
), 𝑆
2
(𝑡
0
),

𝐼
2
(𝑡
0
), 𝑅
2
(𝑡
0
)) ∈ 𝑋

0
, which contradicts (𝑆

1
(0), 𝐼
1
(0), 𝑅
1
(0),

𝑆
2
(0), 𝐼
2
(0), 𝑅
2
(0)) ∈ 𝑀

𝜕
. This proves (38).

Denote the omega limit set of the solutions of system
(2) starting in (𝑆

1
(0), 𝐼
1
(0), 𝑅
1
(0), 𝑆
2
(0), 𝐼
2
(0), 𝑅
2
(0)) ∈ 𝑋

by 𝜔(𝑆
1
(0), 𝐼
1
(0), 𝑅
1
(0), 𝑆
2
(0), 𝐼
2
(0), 𝑅
2
(0)) (which exists by

Theorem 4). Let

Ω = ∪ {𝜔 (𝑆
1
(0) , 𝐼
1
(0) , 𝑅

1
(0) , 𝑆
2
(0) , 𝐼
2
(0) , 𝑅

2
(0)) |

(𝑆
1
(0) , 𝐼

1
(0) , 𝑅

1
(0) , 𝑆
2
(0) , 𝐼
2
(0) , 𝑅

2
(0)) ∈ 𝑀

𝜕
} .

(39)

Restricting system (2) on𝑀
𝜕
gives

̇𝑆
1
= 𝑎 − (𝑏 + 𝛼) 𝑆1 + 𝛼𝑆2,

𝑅̇
1
= − (𝑏 + 𝛼) 𝑅

1
+ 𝛼𝑅
2
,

̇𝑆
2
= 𝑎 − (𝑏 + 𝛼) 𝑆2 + 𝛼𝑆1,

𝑅̇
2
= − (𝑏 + 𝛼) 𝑅

2
+ 𝛼𝑅
1
.

(40)
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It is easy to verify that system (40) has a unique equilibrium
𝐸
1
(𝑆
0
, 0, 𝑆
0
, 0), where 𝑆0 = 𝑎/𝑏. And thus 𝐸

0
(𝑆
0
, 0, 0, 𝑆

0
, 0, 0)

is the unique equilibrium of system (2) in 𝑀
𝜕
. It is easy to

check that 𝐸
1
is locally asymptotically stable. Hence, it is also

globally asymptotically stable since system (40) is a linear
system. Thus Ω = {𝐸

0
}. And 𝐸

0
is a covering of Ω, which

is isolated (since 𝐸
0
is the unique equilibrium) and is acyclic

(since there exists no solution in𝑀
𝜕
which links 𝐸

0
to itself).

Finally, the proof will be done if we show that 𝐸
0
is a weak

repeller for𝑋
0
; that is,

lim sup
𝑡→∞

dist ((𝑆
1 (𝑡), 𝐼1 (𝑡), 𝑅1 (𝑡), 𝑆2 (𝑡), 𝐼2 (𝑡), 𝑅2 (𝑡)), 𝐸0)>0,

(41)

where (𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑅
1
(𝑡), 𝑆
2
(𝑡), 𝐼
2
(𝑡), 𝑅
2
(𝑡)) is the solution

of system (2) with initial value (𝑆
1
(0), 𝐼
1
(0), 𝑅
1
(0), 𝑆
2
(0),

𝐼
2
(0), 𝑅
2
(0)) ∈ 𝑋

0
. By the proof of Lemma 3.5 in Cui et al.

[19], (41) is valid if

𝑊
𝑆
(𝐸
0
) ∩ 𝑋
0
= 𝜙, (42)

where 𝑊𝑠(𝐸
0
) denotes the stable manifold of 𝐸

0
. Sup-

pose (42) is not valid; then there exists a solution (𝑆
1
(𝑡),

𝐼
1
(𝑡), 𝑅
1
(𝑡), 𝑆
2
(𝑡), 𝐼
2
(𝑡), 𝑅
2
(𝑡)) ∈ 𝑋

0
, 𝑡 ≥ 0 of system (2) with

initial value (𝑆
1
(0), 𝐼
1
(0), 𝑅
1
(0), 𝑆
2
(0), 𝐼
2
(0), 𝑅
2
(0)) ∈ 𝑋

0
,

such that

𝑆
𝑖
(𝑡) 󳨀→ 𝑆

0
, 𝐼
𝑖
(𝑡) 󳨀→ 0, 𝑅

𝑖
(𝑡) 󳨀→ 0

as 𝑡 󳨀→ ∞, 𝑖 = 1, 2.

(43)

Since R
0𝛾
= (𝛽 + 𝛾𝛼)/(𝑏 + 𝑑 + 𝑐) > 1, we can choose 𝛿 > 0

which is small enough such that 𝑆0 − 𝛿 > 0 and

𝑚
𝛿
≜

(𝛽 + 𝛾𝛼) (𝑆
0
− 𝛿)

𝑆
0

− (𝑏 + 𝑑 + 𝑐) > 0.
(44)

Define 𝑉 = 𝐼
1
+ 𝐼
2
. For 𝑆0 − 𝛿 > 0, by (43) there exists 𝑡

1
> 0

such that

𝑆
0
− 𝛿 < 𝑆

𝑖
(𝑡) < 𝑆

0
+ 𝛿, 0 < 𝐼

𝑖
(𝑡) < 𝛿, 0 < 𝑅

𝑖
(𝑡) < 𝛿,

𝑡 ≥ 𝑡
1
, 𝑖 = 1, 2.

(45)

Hence by system (2),

𝑉̇ = (𝛽 + 𝛾𝛼) (
𝑆
1
𝐼
1

𝑆
1
+ 𝐼
1
+ 𝑅
1

+
𝑆
2
𝐼
2

𝑆
2
+ 𝐼
2
+ 𝑅
2

)

− (𝑐 + 𝑏 + 𝑑) (𝐼
1
+ 𝐼
2
)

≥ (𝛽 + 𝛾𝛼)(
𝑆
0
− 𝛿

𝑆
0
− 𝛿 + 𝛿

𝐼
1
+

𝑆
0
− 𝛿

𝑆
0
− 𝛿 + 𝛿

𝐼
2
)

− (𝑐 + 𝑑 + 𝑏) (𝐼1 + 𝐼2)

= 𝑚
𝛿
𝑉,

(46)

for 𝑡 ≥ 𝑡
1
. Hence, 𝑉(𝑡) ≥ 𝑉(𝑡

1
) exp(𝑚

𝛿
(𝑡 − 𝑡
1
)). By (44), we

have 𝑉(𝑡) → ∞ as 𝑡 → ∞, which contradicts (43). Thus
(42) holds, which completes the proof.

4. Global Stability

First of all, we will discuss the global stability of 𝐸
0
under the

conditionR
0𝛾
≤ 1.

Theorem 6. If R
0𝛾
≤ 1, then 𝐸

0
is globally asymptotically

stable.

Proof. Consider the following function:

𝑉 (𝑡) = 𝐼
1
+ 𝐼
2
. (47)

Its derivative along the solutions of system (2) is

𝑉̇ (𝑡) = (𝛽 + 𝛾𝛼) (
𝑆
1
𝐼
1

𝑆
1
+ 𝐼
1
+ 𝑅
1

+
𝑆
2
𝐼
2

𝑆
2
+ 𝐼
2
+ 𝑅
2

)

− (𝑐 + 𝑏 + 𝑑) (𝐼1 + 𝐼2) .

(48)

IfR
0𝛾
< 1, then

𝑉̇ (𝑡) ≤ [(𝛽 + 𝛾𝛼) − (𝑐 + 𝑏 + 𝑑)] (𝐼1 + 𝐼2) ≤ 0. (49)

IfR
0𝛾
= 1, then

𝑉̇ (𝑡) = − (𝛽 + 𝛾𝛼) [
𝐼
1
(𝐼
1
+ 𝑅
1
)

𝑆
1
+ 𝐼
1
+ 𝑅
1

+
𝐼
2
(𝐼
2
+ 𝑅
2
)

𝑆
2
+ 𝐼
2
+ 𝑅
2

] ≤ 0.

(50)

WhenR
0𝛾
≤ 1, we set

𝐿 = {(𝑆
1
, 𝐼
1
, 𝑅
1
, 𝑆
2
, 𝐼
2
, 𝑅
2
) | 𝑉̇ (𝑡) = 0}

= {(𝑆
1
, 𝐼
1
, 𝑅
1
, 𝑆
2
, 𝐼
2
, 𝑅
2
) | 𝐼
1
= 0, 𝐼
2
= 0} .

(51)

Restricting system (2) on the set 𝐿, we have 𝑑(𝑅
1
+ 𝑅
2
)/𝑑𝑡 =

−𝑏(𝑅
1
+𝑅
2
), then lim

𝑡→∞
𝑅
𝑖
(𝑡) = 0 for 𝑖 = 1, 2.𝑑(𝑆

1
+𝑆
2
)/𝑑𝑡 =

2𝑎−𝑏(𝑆
1
+𝑆
2
), then lim

𝑡→∞
𝑆
𝑖
(𝑡) = 𝑎/𝑏 for 𝑖 = 1, 2.Therefore,

𝑀 = {𝐸
0
} is the largest positively invariant subset of 𝐿. By

Lyapunov-LaSalle theorem, 𝐸
0
is global asymptotically stable

providedR
0𝛾
≤ 1. This completes the proof.

Theorems 4 and 5 imply that system (2) is permanent if
R
0𝛾
> 1. Next, we consider the global asymptotic stability of

𝐸
+
. The set𝑋

0
defined in proof of Theorem 5 will be used.

Theorem 7. Suppose that

𝑏 + 2𝛼 > max{9
2

󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
,
𝑑

2
+
󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
} . (52)

Then the endemic equilibrium point 𝐸
+
is globally asymptoti-

cally stable on𝑋
0
forR
0𝛾
> 1.

Proof. ByTheorem let us consider the function:

𝑉 (𝑡) = {(𝑆1 (𝑡) − 𝑆2 (𝑡))
2
+ (𝐼
1 (𝑡) − 𝐼2 (𝑡))

2

+(𝑅
1 (𝑡) − 𝑅2 (𝑡))

2
} × (2)

−1
.

(53)
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The time derivative of 𝑉(𝑡) along the solution of system (2)
becomes

𝑉̇ = ( ̇𝑆
1
− ̇𝑆
2
) (𝑆
1
− 𝑆
2
) + ( ̇𝐼
1
− ̇𝐼
2
) (𝐼
1
− 𝐼
2
)

+ (𝑅̇
1
− 𝑅̇
2
) (𝑅
1
− 𝑅
2
)

= {(𝛽 − 𝛾𝛼) (
𝑆
2
𝐼
2

𝑆
2
+ 𝑅
2
+ 𝐼
2

−
𝑆
1
𝐼
1

𝑆
1
+ 𝐼
1
+ 𝑅
1

)

− (𝑏 + 2𝛼) (𝑆
1
− 𝑆
2
) } (𝑆
1
− 𝑆
2
)

+ {(𝛽 − 𝛾𝛼) (
𝑆
1
𝐼
1

𝑆
1
+ 𝐼
1
+ 𝑅
1

−
𝑆
2
𝐼
2

𝑆
2
+ 𝑅
2
+ 𝐼
2

)

− (𝑐 + 𝑏 + 𝑑 + 2𝛼) (𝐼
1
− 𝐼
2
) } (𝐼
1
− 𝐼
2
)

+ {𝑑 (𝐼
1
− 𝐼
2
) − (𝑏 + 2𝛼) (𝑅

1
− 𝑅
2
)} (𝑅
1
− 𝑅
2
) .

(54)

Note that

𝑆
2
𝐼
2

𝑆
2
+ 𝐼
2
+ 𝑅
2

−
𝑆
1
𝐼
1

𝑆
1
+ 𝐼
1
+ 𝑅
1

=
𝑆
1
𝑆
2
𝐼
2
+ 𝑆
2
𝐼
1
𝐼
2
+ 𝑆
2
𝐼
2
𝑅
1
− 𝑆
1
𝐼
1
𝑆
2
− 𝑆
1
𝐼
1
𝑆
2
− 𝑆
1
𝐼
1
𝑅
2

(𝑆
1
+ 𝐼
1
+ 𝑅
1
) (𝑆
2
+ 𝐼
2
+ 𝑅
2
)

≤ 2
󵄨󵄨󵄨󵄨
𝐼
2
− 𝐼
1

󵄨󵄨󵄨󵄨
+ 2

󵄨󵄨󵄨󵄨
𝑆
2
− 𝑆
1

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑅
1
− 𝑅
2

󵄨󵄨󵄨󵄨
,

(55)

which gives the following:

𝑉̇ ≤ − (𝑏 + 2𝛼) (𝑆
1
− 𝑆
2
)
2
− (𝑐 + 2𝛼 + 𝑏 + 𝑑) (𝐼

1
− 𝐼
2
)
2

− (𝑏 + 2𝛼) (𝑅1 − 𝑅2)
2
+ 𝑑 (𝐼

1
− 𝐼
2
) (𝑅
1
− 𝑅
2
)

+ (𝛽 − 𝛾𝛼) (
𝑆
2
𝐼
2

𝑆
2
+ 𝐼
2
+ 𝑅
2

−
𝑆
1
𝐼
1

𝑆
1
+ 𝐼
1
+ 𝑅
1

)

× (𝑆
1
− 𝑆
2
− 𝐼
1
+ 𝐼
2
)

≤ − (𝑏 + 2𝛼) (𝑆1 − 𝑆2)
2
− (𝑐 + 2𝛼 + 𝑏 + 𝑑) (𝐼1 − 𝐼2)

2

− (𝑏 + 2𝛼) (𝑅
1
− 𝑅
2
)
2
+ 𝑑

󵄨󵄨󵄨󵄨
𝐼
1
− 𝐼
2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨
𝑅
1
− 𝑅
2

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
(2
󵄨󵄨󵄨󵄨
𝐼
1
− 𝐼
2

󵄨󵄨󵄨󵄨
+ 2

󵄨󵄨󵄨󵄨
𝑆
1
− 𝑆
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝑅
1
− 𝑅
2

󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨
𝑆
1
− 𝑆
2

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
𝐼
1
− 𝐼
2

󵄨󵄨󵄨󵄨
)

≤ − {(𝑏 + 2𝛼) −
9

2

󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
}
󵄨󵄨󵄨󵄨
𝑆
1
− 𝑆
2

󵄨󵄨󵄨󵄨

2

− {(𝑐 + 2𝛼 + 𝑏 +
1

2
𝑑) −

9

2

󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
}
󵄨󵄨󵄨󵄨
𝐼
1
− 𝐼
2

󵄨󵄨󵄨󵄨

2

− {(𝑏 + 2𝛼) −
󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
−
1

2
𝑑}
󵄨󵄨󵄨󵄨
𝑅
1
− 𝑅
2

󵄨󵄨󵄨󵄨

2
.

(56)

The above quadratic form is negative definite if and only if

𝑏 + 2𝛼 >
9

2

󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
, 𝑏 + 2𝛼 >

𝑑

2
+
󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
. (57)

It is easy to check that the above conditions are satisfied if
and only if (52) is satisfied. Hence we can find some positive
constant𝜆 = min{𝑏+2𝛼−(9/2)|𝛽−𝛾𝛼|, 𝑏+2𝛼−(𝑑/2)−|𝛽−𝛾𝛼|}
satisfying

𝑉̇ ≤ 𝜆 {(𝑆
1
− 𝑆
2
)
2
+ (𝐼
1
− 𝐼
2
)
2
+ (𝑅
1
− 𝑅
2
)
2
} = −2𝜆𝑉 (𝑡) ,

(58)

which shows that for any solution (𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑅
1
(𝑡), 𝑆
2
(𝑡),

𝐼
2
(𝑡), 𝑅
2
(𝑡)) of system (2), we have

lim
𝑡→∞

{𝑆
1 (𝑡) − 𝑆2 (𝑡)} = 0,

lim
𝑡→∞

{𝐼
1 (𝑡) − 𝐼2 (𝑡)} = 0,

lim
𝑡→∞

{𝑅
1 (𝑡) − 𝑅2 (𝑡)} = 0.

(59)

By Lyapunov’s theorem, we know that 𝜔(𝑥)∩R6
+
is contained

in the set {𝑥 ∈ R6
+
| 𝑉̇ = 0} = {(𝑆

1
, 𝐼
1
, 𝑅
1
, 𝑆
2
, 𝐼
2
, 𝑅
2
) ∈

R6
+
| 𝑆
1
= 𝑆
2
, 𝐼
1
= 𝐼
2
, 𝑅
1
= 𝑅
2
}. Here 𝜔(𝑥) is the 𝜔-limit set

of the solution of system (2) with an initial value 𝑥 and R6
+

is the state space {𝑥 ∈ R6 | 𝑥 ≥ 0}. On the set Ω = {(𝑆
1
, 𝐼
1
,

𝑅
1
, 𝑆
2
, 𝐼
2
, 𝑅
2
) ∈ R6

+
| 𝑆
1
= 𝑆
2
, 𝐼
1
= 𝐼
2
, 𝑅
1
= 𝑅
2
}, we now

consider the following system for 𝑆 = 𝑆
𝑖
, 𝐼 = 𝐼

𝑖
, and 𝑅 =

𝑅
𝑖
(𝑖 = 1, 2); that is,

̇𝑆 = 𝑎 − 𝑏𝑆 −
(𝛽 + 𝛾𝛼) 𝑆𝐼

𝑆 + 𝐼 + 𝑅
= 𝑓 (𝑆, 𝐼, 𝑅) ,

̇𝐼 =
(𝛽 + 𝛾𝛼) 𝑆𝐼

𝑆 + 𝐼 + 𝑅
− (𝑐 + 𝑏 + 𝑑) 𝐼 = 𝑔 (𝑆, 𝐼, 𝑅) ,

𝑅̇ = 𝑑𝐼 − 𝑏𝑅 = ℎ (𝑆, 𝐼, 𝑅) .

(60)

It is trivial that the equilibrium (𝑆
∗
, 𝐼
∗
, 𝑅
∗
) of system (60) is

globally asymptotically stable and the equilibrium (𝑎/𝑏, 0, 0)

is unstable asR
0𝛾
> 1. This shows that the endemic equilib-

rium 𝐸
+
of system (2) is globally asymptotically stable. This

completes the proof.

5. Numerical Simulations and Discussion

In this paper, a two-city SIR epidemic model with transport-
related infections is proposed. According to Theorems 1 and
3, we obtain that there exist a disease-free equilibrium and an
endemic equilibrium which are locally asymptotically stable
if the basic reproduction number R

0𝛾
≤ 1 and R

0𝛾
> 1,

respectively. Theorems 4 and 5 provide the permanence of
this SIR model. In addition, sufficient conditions are estab-
lished in Theorems 6 and 7 for global asymptotic stability
of the disease-free and the endemic equilibrium, severally.
The following numerical simulations, we will present, are to
explain the feasibility of our main results.
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Figure 1: (a) shows movement paths of 𝑆
1
, 𝐼
1
, and 𝑅

1
as functions of time 𝑡. (b) shows movement paths of 𝑆

2
, 𝐼
2
, and 𝑅

2
as functions of time

𝑡. Here 𝑎 = 1, 𝑏 = 0.2, 𝑐 = 0.4, 𝑑 = 0.2, 𝛼 = 0.3, 𝛽 = 0.6, and 𝛾 = 0.5. Initial data are 0.6, 0.5, 0.3, 0.2, 0.7, 0.4.

If we set 𝑎 = 1, 𝑏 = 0.2, 𝑐 = 0.4, 𝑑 = 0.2, 𝛼 = 0.3, 𝛽 = 0.6,
and 𝛾 = 0.5, by a simple computation, we derive

R
0𝛾
= 0.9375 < 1. (61)

Obviously, the assumptions ofTheorems 1 and 6 are satisfied,
so disease-free equilibrium of system (2) is globally asymp-
totically stable. From Figure 1, it is easy to observe that if 𝛼 is
relatively small, then both isolated cities are disease free and
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Figure 2: (a) shows movement paths of 𝑆
1
, 𝐼
1
, and 𝑅

1
as functions of time 𝑡. (b) shows movement paths of 𝑆

2
, 𝐼
2
, and 𝑅

2
as functions of time

𝑡. Here 𝑎 = 1, 𝑏 = 0.2, 𝑐 = 0.4, 𝑑 = 0.2, 𝛼 = 0.8, 𝛽 = 0.6, and 𝛾 = 0.5. Initial data are 0.6, 0.5, 0.3, 0.2, 0.7, 0.4.
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the transport-related infection may not lead to the disease
becoming endemic.

On the other hand, if we have 𝑎 = 1, 𝑏 = 0.2, 𝑐 = 0.4,
𝑑 = 0.2, 𝛼 = 0.3, 𝛽 = 0.6, and 𝛾 = 0.5, we have

R
0𝛾
= 1.2500 > 1. (62)

The assumption of Theorem 3 is satisfied, and since

𝑏 + 2𝛼 −max{9
2

󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
,
𝑑

2
+
󵄨󵄨󵄨󵄨
𝛽 − 𝛾𝛼

󵄨󵄨󵄨󵄨
} = 0.9000 > 0,

(63)

it is not difficult to prove Theorem 7. Hence, the endemic
equilibrium of system (2) is globally asymptotically stable.
Figure 2 shows that if 𝛼 is relatively large, then the disease
is endemic in the two isolated cities and the transport-related
infection will surely lead to the disease becoming endemic.
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