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Let S be a commutative semigroup,𝑓, 𝑔 : 𝑆 → C and 𝜎 : 𝑆 → 𝑆 an involution. In this paper we consider the stability of involution-
exponential functional equations 󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑥) [resp., 𝜙 (𝑦)] , |𝑓(𝑥 + 𝜎𝑦) − 𝑓(𝑥)𝑔(𝑦)| ≤ 𝜙(𝑥)[resp., 𝜙(𝑦)] for
all 𝑥, 𝑦 ∈ 𝑆, where 𝜙 : 𝑆 → R+ satisfies the growth condition: there exists 𝐶 > 1 such that lim

𝑘→∞
𝐶−𝑘𝜙(𝑘𝑥) = 0 for each 𝑥 ∈ 𝑆.

We also consider the stability of 𝐿∞-version |𝑓(𝑥 + 𝜎𝑦) − 𝑓(𝑥)𝑓(𝑦)|
𝐿
∞
(R2𝑛) ≤ 𝜖, where 𝑓 : R𝑛 → C is a locally integrable function.

1. Introduction

Throughout this paper we denote by 𝑆, R,R+,C,R𝑛, a com-
mutative semigroup with an identity element, the set of real
numbers, nonnegative real numbers, complex numbers, and
the 𝑛-dimensional Euclidean space, respectively, and R𝑛

0
=

R𝑛\{0},C
0
= C\{0}, 𝜙 : 𝑆 → R+, 𝜖 ≥ 0. A function𝑚 : 𝑆 →

C is called exponential provided that 𝑚(𝑥 + 𝑦) = 𝑚(𝑥)𝑚(𝑦)
for all𝑥, 𝑦 ∈ 𝑆, and𝜎 : 𝑆 → 𝑆 is called an involution provided
that 𝜎(𝑥 + 𝑦) = 𝜎(𝑥) + 𝜎(𝑦) and 𝜎(𝜎(𝑥)) = 𝑥 for all 𝑥, 𝑦 ∈ 𝑆.
An exponential function 𝑚 : 𝑆 → C is called 𝜎-exponential
if 𝑚 satisfies 𝑚(𝜎𝑥) = 𝑚(𝑥) for all 𝑥 ∈ 𝑆 and denote by 𝑚

𝜎
a

𝜎-exponential function.
In [1], the following functional inequalities with involu-

tion are investigated:
󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑥) [resp. 𝜙 (𝑦)] , ∀𝑥, 𝑦 ∈ 𝑆,
(1)

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑥) [resp. 𝜙 (𝑦)] , ∀𝑥, 𝑦 ∈ 𝑆.

(2)

As a result, all unbounded functions 𝑓, 𝑔 satisfying the
inequalities (1) and (2) are exactly described only when 𝜙 is
a constant function while only one of unbounded functions
𝑓, 𝑔 satisfying each of (1) and (2) is exactly described when 𝜙
is an arbitrary unbounded function.

In this paper we investigate the functional inequalities (1)
and (2) by imposing some growth conditions on 𝜙, 𝑓, or 𝑔.
First, we introduce the condition on ℎ : 𝑆 → C:

inf
𝑥∈𝑆

1 + 𝜙 (𝑥)

|ℎ (𝑥)|
= 0, (3)

where ℎ will stand for 𝑓 and 𝑔.
Secondly, we introduce the condition on 𝜙; there exists

𝐶 > 1 such that

lim
𝑘→∞

𝐶−𝑘𝜙 (𝑘𝑥) = 0 (4)

for all 𝑥 ∈ 𝑆.
As a result, we completely determine 𝑓 and 𝑔 satisfying

each of the inequalities (1) and (2): if 𝑔 satisfies (3) [resp., 𝑓
satisfies (3)] or 𝜙 satisfies (4), then (𝑓, 𝑔) satisfying (1) [resp.,
(2)] are of the form

𝑓 (𝑥) = 𝑓 (0)𝑚
𝜎
(𝑥) ,

𝑔 (𝑥) = 𝑚
𝜎
(𝑥)

× [resp. 𝑓 (𝑥) = 𝑓 (0)𝑚 (𝑥) , 𝑔 (𝑥) = 𝑚 (𝜎𝑥)]

(5)

for all 𝑥 ∈ 𝑆, where 𝑚
𝜎
is a 𝜎-exponential function and 𝑚 is

an exponential function.
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2 Abstract and Applied Analysis

As an application of our result, we determine all unboun-
ded functions 𝑓, 𝑔 : R2

0
→ R satisfying the functional ine-

qualities

󵄨󵄨󵄨󵄨𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 − V𝑥) − 𝑔 (𝑥, 𝑦) 𝑓 (𝑢, V)󵄨󵄨󵄨󵄨

≤ 𝜙 (𝑥, 𝑦) [𝜙 (𝑢, V)] ,
(6)

󵄨󵄨󵄨󵄨𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 − V𝑥) − 𝑓 (𝑥, 𝑦) 𝑔 (𝑢, V)󵄨󵄨󵄨󵄨

≤ 𝜙 (𝑥, 𝑦) [𝜙 (𝑢, V)]
(7)

for all (𝑥, 𝑦), (𝑢, V) ∈ R2
0
, where 𝑓, 𝑔 satisfy (3) or 𝜙 : R2

0

→ R+ satisfies (4) (see [2–5] for related equations) and
determine all unbounded functions𝑓, 𝑔 : R4

0
→ R satisfying

the functional inequalities

󵄨󵄨󵄨󵄨𝑓 (𝑥
1
, 𝑦
1
, 𝑢
1
, V
1
) 𝑔 (𝑥
2
, 𝑦
2
, 𝑢
2
, V
2
)

− 𝑓 (𝑥
1
𝑥
2
+ 𝑦
1
𝑦
2
+ 𝑢
1
𝑢
2
+ V
1
V
2
, 𝑥
1
𝑦
2
− 𝑦
1
𝑥
2

+ 𝑢
1
V
2
− V
1
𝑢
2
, 𝑥
1
𝑢
2
− 𝑦
1
V
2
− 𝑢
1
𝑥
2

+V
1
𝑦
2
, 𝑥
1
V
2
+ 𝑦
1
𝑢
2
− 𝑢
1
𝑦
2
− V
1
𝑥
2
)
󵄨󵄨󵄨󵄨

≤ 𝜓 (𝑥
1
, 𝑦
1
, 𝑢
1
, V
1
) [𝜓 (𝑥

2
, 𝑦
2
, 𝑢
2
, V
2
)] ,

(8)

for all 𝑥
1
, 𝑦
1
, 𝑢
1
, V
1
, 𝑥
2
, 𝑦
2
, 𝑢
2
, and V

2
∈ R, where 𝑓, 𝑔 satisfy

(3) or 𝜓 : R4
0

→ R+ satisfies (4) (see [2, 4] for related equa-
tions). Finally, we consider the stability of 𝐿∞-version

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)
󵄨󵄨󵄨󵄨𝐿∞(R2𝑛) ≤ 𝜖, (9)

where𝑓 : R𝑛 → C is a locally integrable function.As a result,
we prove that every unbounded solution 𝑓 (i.e., ‖𝑓‖

𝐿
∞
(R𝑛) =

∞) of (9) satisfies

𝑓 (𝑥) = 𝑚(
𝑥 + 𝜎𝑥

2
) (10)

for almost every 𝑥 ∈ R𝑛, where 𝑚 : R𝑛 → C is an un-
bounded exponential function. Every bounded solution 𝑓
(i.e., ‖𝑓‖

𝐿
∞
(R𝑛) < ∞) satisfies

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(R𝑛) ≤

1

2
(1 + √1 + 4𝜖) ; (11)

If 𝜖 < 1/4, then 𝑓 satisfies either

1

2
(1 + √1 − 4𝜖) ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(R𝑛) ≤

1

2
(1 + √1 + 4𝜖) (12)

or

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(R𝑛) ≤

1

2
(1 − √1 − 4𝜖) . (13)

We refer the reader to [1, 6–16] for related functional
equations and their stabilities.We also refer the reader to [17–
19] for some recent developments on the issues of stability and
superstability for functional equations.

2. Stability of (1) and (2)
In this section we investigate unbounded functions𝑓, 𝑔 satis-
fying (1) and (2) when some of𝑓 and𝑔 satisfy (3) or 𝜙 satisfies
(4). For bounded solutions of (1) and (2) we refer the reader
to [1].

Lemma 1. Assume that 𝑚 : 𝑆 → C is an unbounded expo-
nential function and 𝜙 : 𝑆 → R+ satisfies (4). Then𝑚 satisfies
(3).

Proof. Since 𝑚 is unbounded, we can choose a 𝑥
0
∈ 𝑆 such

that |𝑚(𝑥
0
)| ≥ 𝐶, where 𝐶 > 1 is the constant in (4). Since 𝜙

satisfies (4) we have

lim
𝑘→∞

1 + 𝜙 (𝑘𝑥
0
)

󵄨󵄨󵄨󵄨𝑚 (𝑘𝑥
0
)
󵄨󵄨󵄨󵄨

= lim
𝑘→∞

1 + 𝜙 (𝑘𝑥
0
)

󵄨󵄨󵄨󵄨𝑚 (𝑥
0
)
󵄨󵄨󵄨󵄨
𝑘

≤ lim
𝑘→∞

(𝐶−𝑘 + 𝐶−𝑘𝜙 (𝑘𝑥
0
)) = 0.

(14)

This completes the proof.

Theorem 2. Let 𝑓, 𝑔 : 𝑆 → C be unbounded functions satis-
fying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑥) (15)

for all 𝑥, 𝑦 ∈ 𝑆. Then 𝑔 is a 𝜎-exponential function. In par-
ticular if 𝑔 satisfies (3) or 𝜙 satisfies (4), then there exists a 𝜎-
exponential function 𝑚

𝜎
: 𝑆 → C such that

𝑓 (𝑥) = 𝑓 (0)𝑚
𝜎
(𝑥) , 𝑔 (𝑥) = 𝑚

𝜎
(𝑥) (16)

for all 𝑥 ∈ 𝑆.

Proof. Choosing a sequence 𝑦
𝑛
∈ 𝑆, 𝑛 = 1, 2, 3, . . ., such that

|𝑓(𝑦
𝑛
)| → ∞ as 𝑛 → ∞, putting 𝑦 = 𝑦

𝑛
, 𝑛 = 1, 2, 3, . . .,

in (15), dividing the result by |𝑓(𝑦
𝑛
)|, and letting 𝑛 → ∞ we

have

𝑔 (𝑥) = lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

(17)

for all 𝑥 ∈ 𝑆. Putting 𝑥 = 0 in (15) we have
󵄨󵄨󵄨󵄨𝑓 (𝜎𝑦) − 𝑔 (0) 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (0) (18)

for all 𝑦 ∈ 𝑆. Multiplying both sides of (17) by 𝑔(𝑦) and using
(15), (17), and (18) we have

𝑔 (𝑦) 𝑔 (𝑥) = lim
𝑛→∞

𝑔 (𝑦) 𝑓 (𝑥 + 𝜎𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

= lim
𝑛→∞

𝑓 (𝑦 + 𝜎𝑥 + 𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

= lim
𝑛→∞

𝑔 (0) 𝑓 (𝑥 + 𝜎𝑦 + 𝜎𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

= 𝑔 (0) 𝑔 (𝑥 + 𝜎𝑦)

(19)

for all 𝑥, 𝑦 ∈ 𝑆. Dividing (19) by 𝑔(0)2 we have

𝑔
0
(𝑥) 𝑔
0
(𝑦) = 𝑔

0
(𝑥 + 𝜎𝑦) (20)

for all 𝑥, 𝑦 ∈ 𝑆, where 𝑔
0
(𝑥) = 𝑔(𝑥)/𝑔(0). From (20) we have

𝑔 (𝑥) = 𝑔 (0)𝑚
𝜎
(𝑥) (21)
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for some 𝜎-exponential𝑚
𝜎
. If 𝑔 satisfies (3) or 𝜙 satisfies (4),

then, by Lemma 1, we can choose a sequence 𝑥
𝑛

∈ 𝑆, 𝑛 =
1, 2, 3, . . ., such that (1 + 𝜙(𝑥

𝑛
))/|𝑔(𝑥

𝑛
)| → 0 as 𝑛 → ∞.

Putting 𝑥 = 𝑥
𝑛
, 𝑛 = 1, 2, 3, . . ., in (15), dividing the result by

|𝑔(𝑥
𝑛
)|, and letting 𝑛 → ∞ we have

𝑓 (𝑦) = lim
𝑛→∞

𝑓 (𝑥
𝑛
+ 𝜎𝑦)

𝑔 (𝑥
𝑛
)

(22)

for all 𝑦 ∈ 𝑆. Multiplying both sides of (22) by 𝑔(𝑥) and using
(15), (18), and (22) we have

𝑔 (𝑥) 𝑓 (𝑦) = lim
𝑛→∞

𝑔 (𝑥) 𝑓 (𝑥
𝑛
+ 𝜎𝑦)

𝑔 (𝑥
𝑛
)

= lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑥
𝑛
+ 𝑦)

𝑔 (𝑥
𝑛
)

= lim
𝑛→∞

𝑔 (0) 𝑓 (𝜎𝑥 + 𝜎𝑦 + 𝑥
𝑛
)

𝑔 (𝑥
𝑛
)

= 𝑔 (0) 𝑓 (𝑥 + 𝑦)

(23)

for all 𝑥, 𝑦 ∈ 𝑆. Putting 𝑦 = 0 in (23) and dividing the result
by 𝑔(0) we have

𝑓 (𝑥) = 𝑓 (0) 𝑔
0
(𝑥) = 𝑓 (0)𝑚

𝜎
(𝑥) (24)

for all 𝑥 ∈ 𝑆. Putting 𝑥 = 0 in (15) and using (24) we have
󵄨󵄨󵄨󵄨𝑓 (0) (1 − 𝑔 (0))

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑚𝜎 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (0) (25)

for all 𝑦 ∈ 𝑆. Since 𝑚
𝜎
is unbounded, from (25) we have

𝑔(0) = 1. Now, from (21) and (24) we get (16). This completes
the proof.

We denote by 𝑐⋅𝑥 the inner product of 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) ∈

C𝑛 and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛 which is defined as 𝑐 ⋅ 𝑥 =

∑
𝑛

𝑗=1
𝑐
𝑗
𝑥
𝑗
, and R𝑐 = (R𝑐

1
, . . . ,R𝑐

𝑛
), where R𝑐

𝑗
are the real

parts of 𝑐
𝑗
, 𝑗 = 1, 2, . . . , 𝑛. It is easy to see that if 𝑆 is uniquely

2-divisible (i.e., for each 𝑥 ∈ 𝑆 there exists a unique 𝑦 ∈ 𝑆
such that 2𝑦 = 𝑥), then𝑚

𝜎
is 𝜎-exponential if and only if

𝑚
𝜎
(𝑥) = 𝑚(

𝑥 + 𝜎𝑥

2
) , 𝑥 ∈ 𝑆 (26)

for some exponential function𝑚 : 𝑆 → C.

Corollary 3. Let 𝑃(𝑥), 𝑥 ∈ R𝑛, be a polynomial. Suppose that
𝑓, 𝑔 : R𝑛 → C are unbounded function satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ≤ |𝑃 (𝑥)| (27)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists a 𝜎-exponential function
𝑚
𝜎
: R𝑛 → C such that

𝑓 (𝑥) = 𝑓 (0)𝑚
𝜎
(𝑥) , 𝑔 (𝑥) = 𝑚

𝜎
(𝑥) (28)

for all 𝑥 ∈ R𝑛. In particular if 𝑔 is continuous, then there exists
𝑐 ∈ C𝑛,R(𝑐 + 𝑐𝜎) ̸= 0 such that

𝑓 (𝑥) = 𝑓 (0) 𝑒
(1/2)(𝑐+𝑐𝜎)⋅𝑥, 𝑔 (𝑥) = 𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 (29)

for all 𝑥 ∈ R𝑛.

Proof. It is easy to see that |𝑃(𝑥)| satisfies (4). Thus, by
Theorem 2 we get (28). Assume that 𝑔 is continuous. It is
well known that every continuous exponential functional𝑚 :
R𝑛 → C is given by 𝑚(𝑥) = 𝑒𝑐⋅𝑥 for some 𝑐 ∈ C𝑛. Thus,
from (26) we have 𝑚

𝜎
(𝑥) = 𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 for all 𝑥 ∈ R𝑛,

where 𝑐𝜎 denotes matrix multiplication. Thus, we get (29).
This completes the proof.

Remark 4. Let 𝑎, 𝑏 ∈ R𝑛 be two nonzero vectors that are not
parallel; that is, 𝑏 ̸= 𝑟𝑎 for all 𝑟 ∈ R. Then, the hyperplane
𝑏 ⋅ 𝑥 = 0 is not parallel to (𝑏−𝑎) ⋅𝑥 = 0 and hence there exists
𝑥
0
∈ R𝑛 such that 𝑏 ⋅ 𝑥

0
> 0 and (𝑏 − 𝑎) ⋅ 𝑥

0
> 0. If 𝑏 = 𝑡𝑎

for some 𝑡 ∈ R, then there exists 𝑥
0
∈ R𝑛 such that 𝑏 ⋅ 𝑥

0
> 0

and (𝑏 − 𝑎) ⋅ 𝑥
0
> 0 if and only if 𝑡 > 1. Thus, if 𝑏 ̸= 𝑡𝑎 for

all 𝑡 ≤ 1, then there exists 𝑥
0
∈ R𝑛 such that 𝑏 ⋅ 𝑥

0
> 0 and

(𝑏 − 𝑎) ⋅ 𝑥
0
> 0.

Corollary 5. Let 𝛾 ∈ R𝑛 be fixed. Suppose that𝑓, 𝑔 : R𝑛 → C

are unbounded continuous function satisfying
󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑒𝛾⋅𝑥 (30)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists 𝑐 ∈ C𝑛,R(𝑐 + 𝑐𝜎) ̸= 0 such
that 𝑔(𝑥) = 𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 for all 𝑥 ∈ R𝑛. If (1/2)R(𝑐 + 𝑐𝜎) ̸= 𝑡𝛾
for all 𝑡 ≤ 1, then one has

𝑓 (𝑥) = 𝑓 (0) 𝑒
(1/2)(𝑐+𝑐𝜎)⋅𝑥, 𝑔 (𝑥) = 𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 (31)

for all 𝑥 ∈ R𝑛.

Proof. Recall that every continuous 𝜎-exponential functional
𝑚
𝜎
: R𝑛 → C is given by

𝑚
𝜎
(𝑥) = 𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 (32)

for all 𝑥 ∈ R𝑛, where 𝑐𝜎 denotes matrix multiplication. If
(1/2)R(𝑐 + 𝑐𝜎) ̸= 𝑡𝛾 for all 𝑡 ≤ 1, then by Remark 4 there
exists 𝑥

0
∈ R𝑛 such that

1

2
(𝑐 + 𝑐𝜎) ⋅ 𝑥

0
> 0,

1

2
(𝑐 + 𝑐𝜎) ⋅ 𝑥

0
> 𝛾 ⋅ 𝑥

0
. (33)

From (32) and (33) we have

lim
𝑘→∞

1 + 𝑒𝛾⋅𝑘𝑥0

𝑔 (𝑘𝑥
0
)

=
1 + 𝑒𝛾⋅𝑘𝑥0

𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑘𝑥0
= 0, (34)

which implies that 𝑔 satisfies the condition (3). Thus, we get
(31). This completes the proof.

Theorem 6. Let 𝑓, 𝑔 : 𝑆 → C be unbounded functions satis-
fying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑦) (35)

for all 𝑥, 𝑦 ∈ 𝑆. Then there exists an unbounded 𝜎-exponential
function 𝑚

𝜎
: 𝑆 → C such that 𝑓(𝑥) = 𝑓(0)𝑚

𝜎
(𝑥) for all 𝑥 ∈

𝑆. In particular if 𝑓 satisfies (3) or 𝜙 satisfies (4), then one has

𝑓 (𝑥) = 𝑓 (0)𝑚
𝜎
(𝑥) , 𝑔 (𝑥) = 𝑚

𝜎
(𝑥) (36)

for all 𝑥 ∈ 𝑆.
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Proof. Putting 𝑦 = 0 in (35) we have
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (0) 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (0) (37)

for all 𝑥 ∈ 𝑆. Choose a sequence 𝑥
𝑛

∈ 𝑆, 𝑛 = 1, 2, 3, . . .,
such that |𝑔(𝑥

𝑛
)| → ∞ as 𝑛 → ∞. Putting 𝑥 = 𝑥

𝑛
, 𝑛 =

1, 2, 3, . . ., in (35), dividing the result by |𝑔(𝑥
𝑛
)|, letting 𝑛 →

∞, and using (37) we have

𝑓 (𝑦) = lim
𝑛→∞

𝑓 (𝑥
𝑛
+ 𝜎𝑦)

𝑔 (𝑥
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑔 (𝑥
𝑛
+ 𝜎𝑦)

𝑔 (𝑥
𝑛
)

(38)

for all 𝑦 ∈ 𝑆. Multiplying both sides of (38) by𝑓(𝑥) and using
(35) and (38) we have

𝑓 (𝑦) 𝑓 (𝑥) = lim
𝑛→∞

𝑓 (0) 𝑔 (𝑥
𝑛
+ 𝜎𝑦)𝑓 (𝑥)

𝑔 (𝑥
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑓 (𝑥
𝑛
+ 𝜎𝑦 + 𝜎𝑥)

𝑔 (𝑥
𝑛
)

= 𝑓 (0) 𝑓 (𝑥 + 𝑦)

(39)

for all 𝑥, 𝑦 ∈ 𝑆. From (39) we have 𝑓
0
(𝑥) := 𝑓(𝑥)/𝑓(0) is an

exponential function, say𝑚. Now, from (37) we can write

𝑓 (𝑥) = 𝑓 (0)𝑚 (𝑥) , 𝑔 (𝑥) = 𝑚 (𝑥) + 𝑟 (𝑥) (40)

for all 𝑥 ∈ 𝑆, where |𝑟(𝑥)| ≤ 𝜙(0)/|𝑓(0)| for all 𝑥 ∈ 𝑆. Putting
(40) in (35) and using the triangle inequality we have
󵄨󵄨󵄨󵄨𝑓 (0)𝑚 (𝑥)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑚 (𝜎𝑦) − 𝑚 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑦) + 𝑟 (𝑥)
󵄨󵄨󵄨󵄨𝑓 (𝑦)

󵄨󵄨󵄨󵄨

≤ 𝜙 (𝑦) +
𝜙 (0)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (0)
󵄨󵄨󵄨󵄨

(41)

for all 𝑥, 𝑦 ∈ 𝑆. Since 𝑚 is unbounded, from (41) we have
𝑚(𝜎𝑦) = 𝑚(𝑦) for all 𝑦 ∈ 𝑆. Assume that 𝑓 satisfies (3) or 𝜙
satisfies (4). Choose a sequence 𝑦

𝑛
∈ 𝑆, 𝑛 = 1, 2, 3, . . ., such

that (1 + 𝜙(𝑦
𝑛
))/|𝑓(𝑦

𝑛
)| → 0 as 𝑛 → 0. Putting 𝑦 = 𝑦

𝑛
, 𝑛 =

1, 2, 3, . . ., in (35), dividing the result by |𝑓(𝑦
𝑛
)|, letting 𝑛 →

0, and using (37) we have

𝑔 (𝑥) = lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑔 (𝑥 + 𝜎𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

(42)

for all 𝑥 ∈ 𝑆. Multiplying both sides of (42) by𝑓(𝑦) and using
(35) and (42) we have

𝑔 (𝑥) 𝑓 (𝑦) = lim
𝑛→∞

𝑓 (0) 𝑔 (𝑥 + 𝜎𝑦
𝑛
) 𝑓 (𝑦)

𝑓 (𝑦
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑓 (𝑥 + 𝜎𝑦 + 𝜎𝑦
𝑛
)

𝑓 (𝑦
𝑛
)

= 𝑓 (0) 𝑔 (𝑥 + 𝜎𝑦)

(43)

for all 𝑥, 𝑦 ∈ 𝑆. Putting 𝑥 = 0 in (43), replacing 𝜎𝑦 by 𝑥, and
dividing the result by 𝑓(0) we have

𝑔 (𝑥) = 𝑔 (0) 𝑓
0
(𝜎𝑥) = 𝑔 (0)𝑚

𝜎
(𝜎𝑥) = 𝑔 (0)𝑚

𝜎
(𝑥) (44)

for all 𝑥 ∈ 𝑆. Putting 𝑦 = 0 in (35) and using (40) and (44) we
get 𝑔(0) = 1. This completes the proof.

UsingTheorem 6 and applying the samemethod as in the
proof of Corollary 3 we have the following.

Corollary 7. Let 𝑃(𝑥), 𝑥 ∈ R𝑛, be a polynomial. Suppose that
𝑓, 𝑔 : R𝑛 → C are unbounded function satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑃 (𝑦)
󵄨󵄨󵄨󵄨 (45)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists a 𝜎-exponential function
𝑚
𝜎
: R𝑛 → C such that

𝑓 (𝑥) = 𝑓 (0)𝑚
𝜎
(𝑥) , 𝑔 (𝑥) = 𝑚

𝜎
(𝑥) (46)

for all 𝑥 ∈ R𝑛.

UsingTheorem 6 and applying the samemethod as in the
proof of Corollary 5 we have the following.

Corollary 8. Let 𝛾 ∈ R𝑛 be fixed. Suppose that𝑓, 𝑔 : R𝑛 → C

are unbounded continuous function satisfying
󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑔 (𝑥) 𝑓 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑒𝛾⋅𝑦 (47)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists 𝑐 ∈ C𝑛,R(𝑐 + 𝑐𝜎) ̸= 0 such
that𝑓(𝑥) = 𝑓(0)𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 for all 𝑥 ∈ R𝑛. If (1/2)R(𝑐+𝑐𝜎) ̸=
𝑡𝛾 for all 𝑡 ≤ 1, then one has

𝑓 (𝑥) = 𝑓 (0) 𝑒
(1/2)(𝑐+𝑐𝜎)⋅𝑥, 𝑔 (𝑥) = 𝑒(1/2)(𝑐+𝑐𝜎)⋅𝑥 (48)

for all 𝑥 ∈ R𝑛.

Theorem 9. Let 𝑓, 𝑔 : 𝑆 → C be unbounded functions satis-
fying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑥) (49)

for all 𝑥, 𝑦 ∈ 𝑆. Then there exists an unbounded exponential
𝑚 : 𝑆 → C such that 𝑓(𝑥) = 𝑓(0)𝑚(𝑥) for all 𝑥 ∈ 𝑆. In
particular if 𝑓 satisfies (3) or 𝜙 satisfies (4), then one has

𝑓 (𝑥) = 𝑓 (0)𝑚 (𝑥) , 𝑔 (𝑥) = 𝑚 (𝜎𝑥) (50)

for all 𝑥 ∈ 𝑆.

Proof. Putting 𝑥 = 0 in (49) we have
󵄨󵄨󵄨󵄨𝑓 (𝜎𝑦) − 𝑓 (0) 𝑔 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜙 (0) (51)

for all 𝑦 ∈ 𝑆. Choose a sequence 𝑦
𝑛
∈ 𝑆, 𝑛 = 1, 2, 3, . . ., such

that |𝑔(𝑦
𝑛
)| → ∞ as 𝑛 → ∞. Putting 𝑦 = 𝑦

𝑛
, 𝑛 = 1, 2, 3, . . .,

in (49), dividing the result by |𝑔(𝑦
𝑛
)|, letting 𝑛 → ∞, and

using (51) we have

𝑓 (𝑥) = lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑦
𝑛
)

𝑔 (𝑦
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑔 (𝜎𝑥 + 𝑦
𝑛
)

𝑔 (𝑦
𝑛
)

(52)

for all 𝑥 ∈ 𝑆. Multiplying both sides of (52) by 𝑓(𝑦) and using
(49) and (52) we have

𝑓 (𝑦) 𝑓 (𝑥) = lim
𝑛→∞

𝑓 (0) 𝑓 (𝑦) 𝑔 (𝜎𝑥 + 𝑦
𝑛
)

𝑔 (𝑦
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑓 (𝑦 + 𝑥 + 𝜎𝑦
𝑛
)

𝑔 (𝑦
𝑛
)

= 𝑓 (0) 𝑓 (𝑥 + 𝑦)

(53)
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for all 𝑥, 𝑦 ∈ 𝑆. From (53) we have 𝑓
0
(𝑥) := 𝑓(𝑥)/𝑓(0) is an

exponential function, say 𝑚. Assume that 𝑔 satisfies (3) or 𝜙
satisfies (4). Choose a sequence 𝑥

𝑛
∈ 𝑆, 𝑛 = 1, 2, 3, . . ., such

that (1 + 𝜙(𝑥
𝑛
))/|𝑓(𝑥

𝑛
)| → 0 as 𝑛 → 0. Putting 𝑥 = 𝑥

𝑛
, 𝑛 =

1, 2, 3, . . ., in (49), dividing the result by |𝑓(𝑥
𝑛
)|, letting 𝑛 →

0, and using (51) we have

𝑔 (𝑦) = lim
𝑛→∞

𝑓 (𝑥
𝑛
+ 𝜎𝑦)

𝑓 (𝑥
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑔 (𝑦 + 𝜎𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

(54)

for all 𝑦 ∈ 𝑆. Multiplying both sides of (54) by𝑓(𝑥) and using
(49) and (54) we have

𝑓 (𝑥) 𝑔 (𝑦) = lim
𝑛→∞

𝑓 (0) 𝑓 (𝑥) 𝑔 (𝑦 + 𝜎𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

= lim
𝑛→∞

𝑓 (0) 𝑓 (𝑥 + 𝜎𝑦 + 𝑥
𝑛
)

𝑓 (𝑥
𝑛
)

= 𝑓 (0) 𝑔 (𝜎𝑥 + 𝑦)

(55)

for all 𝑥, 𝑦 ∈ 𝑆. Putting 𝑦 = 0 in (55), replacing 𝜎𝑥 by 𝑥, and
dividing the result by 𝑓(0) we have

𝑔 (𝑥) = 𝑔 (0) 𝑓
0
(𝜎𝑥) = 𝑔 (0)𝑚 (𝜎𝑥) (56)

for all 𝑥 ∈ 𝑆. Putting 𝑥 = 0 in (49) and using (56) we get
𝑔(0) = 1. This completes the proof.

UsingTheorem 9 we have the following.

Corollary 10. Let𝑃(𝑥), 𝑥 ∈ R𝑛, be a polynomial. Suppose that
𝑓, 𝑔 : R𝑛 → C are unbounded function satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ |𝑃 (𝑥)| (57)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists an exponential function
𝑚 : R𝑛 → C such that

𝑓 (𝑥) = 𝑓 (0)𝑚 (𝑥) , 𝑔 (𝑥) = 𝑚 (𝜎𝑥) (58)

for all 𝑥 ∈ R𝑛.

Corollary 11. Let 𝛾 ∈ R𝑛 be fixed. Suppose that 𝑓, 𝑔 : R𝑛 →
C are unbounded continuous function satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑒𝛾⋅𝑥 (59)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists 𝑐 ∈ C𝑛,R𝑐 ̸= 0 such that
𝑓(𝑥) = 𝑓(0)𝑒𝑐⋅𝑥 for all 𝑥 ∈ R𝑛. If R𝑐 ̸= 𝑡𝛾 for all 𝑡 ≤ 1, then
we have

𝑓 (𝑥) = 𝑓 (0) 𝑒
𝑐⋅𝑥, 𝑔 (𝑥) = 𝑒𝑐𝜎⋅𝑥 (60)

for all 𝑥 ∈ R𝑛.

Theorem 12. Let 𝑓, 𝑔 : 𝑆 → C be unbounded functions satis-
fying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑦) (61)

for all𝑥, 𝑦 ∈ 𝑆.Then𝑔 is an exponential function. In particular,
if 𝑔 satisfies the condition (3) or 𝜙 satisfies (4), then there exists
an unbounded exponential𝑚 : 𝑆 → C such that

𝑓 (𝑥) = 𝑓 (0)𝑚 (𝑥) , 𝑔 (𝑥) = 𝑚 (𝜎𝑥) (62)

for all 𝑥 ∈ 𝑆.

Proof. Choose a sequence 𝑥
𝑛

∈ 𝑆, 𝑛 = 1, 2, 3, . . ., such that
|𝑓(𝑥
𝑛
)| → ∞ as 𝑛 → ∞. Putting 𝑥 = 𝑥

𝑛
, 𝑛 = 1, 2, 3, . . .,

in (61), dividing the result by |𝑓(𝑥
𝑛
)|, and letting 𝑛 → ∞ we

have

𝑔 (𝑦) = lim
𝑛→∞

𝑓 (𝑥
𝑛
+ 𝜎𝑦)

𝑓 (𝑥
𝑛
)

(63)

for all 𝑦 ∈ 𝑆. Multiplying both sides of (63) by 𝑔(𝑥) and using
(61) and (63) we have

𝑔 (𝑦) 𝑔 (𝑥) = lim
𝑛→∞

𝑓 (𝑥
𝑛
+ 𝜎𝑦) 𝑔 (𝑥)

𝑓 (𝑥
𝑛
)

= lim
𝑛→∞

𝑓 (𝑥
𝑛
+ 𝜎𝑦 + 𝜎𝑥)

𝑓 (𝑥
𝑛
)

= 𝑔 (𝑥 + 𝑦)

(64)

for all 𝑥, 𝑦 ∈ 𝑆. Therefore, 𝑔 is an exponential function,
say 𝑚. Assume that 𝑔 satisfies (3) or 𝜙 satisfies (4). Choose
a sequence 𝑦

𝑛
∈ 𝑆, 𝑛 = 1, 2, 3, . . ., such that (1 + 𝜙(𝑦

𝑛
))/

|𝑔(𝑦
𝑛
)| → 0 as 𝑛 → ∞. Putting 𝑦 = 𝑦

𝑛
, 𝑛 = 1, 2, 3, . . .,

in (61), dividing the result by |𝑔(𝑦
𝑛
)|, and letting 𝑛 → ∞ we

have

𝑓 (𝑥) = lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑦
𝑛
)

𝑔 (𝑦
𝑛
)

(65)

for all 𝑥 ∈ 𝑆. Multiplying both sides of (65) by 𝑔(𝑦) and using
(61) and (65) we have

𝑓 (𝑥) 𝑔 (𝑦) = lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑦
𝑛
) 𝑔 (𝑦)

𝑔 (𝑦
𝑛
)

= lim
𝑛→∞

𝑓 (𝑥 + 𝜎𝑦
𝑛
+ 𝜎𝑦)

𝑔 (𝑦
𝑛
)

= 𝑓 (𝑥 + 𝜎𝑦)

(66)

for all 𝑥, 𝑦 ∈ 𝑆. Putting 𝑥 = 0 and replacing 𝑦 by 𝜎𝑥 in (66)
we have 𝑓(𝑥) = 𝑓(0)𝑚(𝜎𝑥) for all 𝑥 ∈ 𝑆. Replacing 𝑚(𝑥) by
𝑚(𝜎𝑥), we get (62). This completes the proof.

UsingTheorem 12 we have the following.

Corollary 13. Let𝑃(𝑥), 𝑥 ∈ R𝑛, be a polynomial. Suppose that
𝑓, 𝑔 : R𝑛 → C are unbounded function satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑃 (𝑦)
󵄨󵄨󵄨󵄨 (67)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists an exponential function
𝑚 : R𝑛 → C such that

𝑓 (𝑥) = 𝑓 (0)𝑚 (𝑥) , 𝑔 (𝑥) = 𝑚 (𝜎𝑥) (68)

for all 𝑥 ∈ R𝑛.

Corollary 14. Let 𝛾 ∈ R𝑛 be fixed. Suppose that 𝑓, 𝑔 : R𝑛 →
C are unbounded continuous function satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑒𝛾⋅𝑦 (69)

for all 𝑥, 𝑦 ∈ R𝑛. Then there exists 𝑐 ∈ C𝑛,R𝑐 ̸= 0 such that
𝑔(𝑥) = 𝑒𝑐𝜎⋅𝑥 for all 𝑥 ∈ 𝑆. IfR𝑐 ̸= 𝑡𝛾 for all 𝑡 ≤ 1, then we have

𝑓 (𝑥) = 𝑓 (0) 𝑒
𝑐⋅𝑥, 𝑔 (𝑥) = 𝑒𝑐𝜎⋅𝑥 (70)

for all 𝑥 ∈ 𝑆.
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3. Applications

In this section we consider the stability of (6)∼(8). A function
𝑀 : (0,∞) → R is called multiplicative function provided
that 𝑀(𝑥𝑦) = 𝑀(𝑥)𝑀(𝑦) for all 𝑥, 𝑦 > 0. Let 𝐹(𝑥 + 𝑦𝑖) =
𝑓(𝑥, 𝑦), 𝐺(𝑥 + 𝑖𝑦) = 𝑔(𝑥, 𝑦), and Φ(𝑥 + 𝑦𝑖) = 𝜙(𝑥, 𝑦) for all
(𝑥, 𝑦) ∈ R2

0
. Then the functional inequalities (6) and (7) are

converted to

|𝐹 (𝑧𝑤) − 𝐺 (𝑧) 𝐹 (𝑤)| ≤ Φ (𝑧) [resp., Φ (𝑤)] , (71)

|𝐹 (𝑧𝑤) − 𝐹 (𝑧) 𝐺 (𝑤)| ≤ Φ (𝑧) [resp., Φ (𝑤)] (72)

for all 𝑧, 𝑤 ∈ C
0
.

Viewing C
0
as a multiplicative group, letting 𝜎(𝑧) = 𝑧,

and applying Theorems 2 and 6 to the inequalities (71) we
have the following.

Theorem 15. Let 𝑓, 𝑔 : R2
0

→ R be unbounded functions
satisfying (6). Then 𝑓, 𝑔 are of the form

𝑓 (𝑥, 𝑦) = 𝑓 (1, 0)𝑀(√𝑥2 + 𝑦2) ,

𝑔 (𝑥, 𝑦) = 𝑀(√𝑥2 + 𝑦2)

(73)

for all 𝑥, 𝑦 ∈ R, where 𝑀 : (0,∞) → R is a multiplicative
function.

Applying Theorems 9 and 12 to the inequalities (72) we
have the following.

Theorem 16. Let 𝑓, 𝑔 : R2
0

→ R be unbounded functions
satisfying (7). Then 𝑓, 𝑔 are of the form

𝑓 (𝑥, 𝑦) = 𝑓 (1, 0)𝑀(√𝑥2 + 𝑦2)𝐸(tan−1 (
𝑦

𝑥
)) ,

𝑔 (𝑥, 𝑦) = 𝑀(√𝑥2 + 𝑦2)𝐸(−tan−1 (
𝑦

𝑥
))

(74)

for all (𝑥, 𝑦) ∈ R2
0
, where 𝑀 : (0,∞) → R is a multiplicative

function and 𝐸 : R → R is an exponential function satisfying
𝐸(2𝜋) = 1.

Let H = {𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 | 𝑎, 𝑏, 𝑐, 𝑑 ∈ R} be the set of
quaternions. Recall that 𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖,
𝑘𝑖 = 𝑗, 𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, and 𝑖𝑘 = −𝑗 and the conjugate of
𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 ∈ H is given by 𝑞∗ = 𝑎 − 𝑏𝑖 − 𝑐𝑗 − 𝑑𝑘.
We denote ‖𝑞‖ = √𝑞𝑞∗ = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2. Let 𝐹(𝑥 + 𝑦𝑖 +
𝑢𝑗 + V𝑘) = 𝑓(𝑥, 𝑦, 𝑢, V), 𝐺(𝑥 + 𝑖𝑦 + 𝑢𝑗 + V𝑘) = 𝑔(𝑥, 𝑦, 𝑢, V),
andΦ(𝑥+𝑦𝑖 + 𝑢𝑗 + V𝑘) = 𝜙(𝑥, 𝑦, 𝑢, V) for all (𝑥, 𝑦, 𝑢, V) ∈ R4

0
.

Then the functional inequalities (8) are converted to

󵄨󵄨󵄨󵄨𝐹 (𝑞𝑝∗) − 𝐺 (𝑞) 𝐹 (𝑝)
󵄨󵄨󵄨󵄨 ≤ Φ (𝑞) [resp., Φ (𝑝)] (75)

for all 𝑝, 𝑞 ∈ H \ {0}.
Applying Theorems 2 and 6 to the inequalities (75) we

have the following.

Theorem 17. Let 𝑓, 𝑔 : R4
0

→ R be unbounded functions
satisfying (8). Then 𝑓, 𝑔 are of the form

𝑓 (𝑥, 𝑦, 𝑢, V) = 𝑓 (1, 0, 0, 0)𝑀(√𝑥2 + 𝑦2 + 𝑢2 + V2) ,

𝑔 (𝑥, 𝑦, 𝑢, V) = 𝑀(√𝑥2 + 𝑦2 + 𝑢2 + V2)
(76)

for all (𝑥, 𝑦, 𝑢, V) ∈ R4
0
, where 𝑀 : (0,∞) → R is a multi-

plicative function.

4. Stability in 𝐿∞-Version

Let 𝑓 : R𝑛 → C be a locally integrable function and 𝜎 :
R𝑛 → R𝑛 an involution. In this section, we consider an 𝐿∞-
version of the stability of functional equation

𝑓 (𝑥 + 𝜎𝑦) = 𝑓 (𝑥) 𝑓 (𝑦) (77)

for almost every (𝑥, 𝑦) ∈ R2𝑛. More precisely, we study the
functional inequality

󵄩󵄩󵄩󵄩𝑓(𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)
󵄩󵄩󵄩󵄩𝐿∞(R2𝑛) ≤ 𝜖. (78)

As is well known, inequality (78) implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ (𝑓 (𝑥 + 𝜎𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)) 𝜑 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜖

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿1(R2𝑛)

(79)

for all 𝜑 ∈ 𝐿1(R4).
We first employ 𝛿 : R𝑛 → R defined by

𝛿 (𝑥) = {
𝑞𝑒−(1−|𝑥|

2

)
−1

, if |𝑥| < 1

0, if |𝑥| ≥ 1,
(80)

where 𝑞 = (∫
|𝑥|<1

𝑒−(1−|𝑥|
2

)
−1

𝑑𝑥)
−1

. It is easy to see that 𝛿 is an
infinitely differentiable function with support {𝑥 : |𝑥| ≤ 1}.

Let 𝑓 be a locally integrable function on R𝑛 and 𝛿
𝑡
(𝑥) :=

𝑡−𝑛𝛿(𝑥/𝑡), 𝑡 > 0. Then for each 𝑡 > 0,

𝑓 ∗ 𝛿
𝑡
(𝑥) = ∫

R𝑛
𝑓 (𝜉) 𝛿

𝑡
(𝑥 − 𝜉) 𝑑𝜉 (81)

is a smooth function and 𝑓∗ 𝛿
𝑡
(𝑥) → 𝑓(𝑥) for almost every

𝑥 ∈ R𝑛 as 𝑡 → 0+.
In the following, we exclude the case when 𝑓(𝑥) = 0 for

almost every 𝑥 ∈ R𝑛.

Theorem 18. Let 𝑓 : R𝑛 → C satisfy (78). Then either there
exists an unbounded exponential function 𝑚 : R𝑛 → C such
that

𝑓 (𝑥) = 𝑚(
𝑥 + 𝜎𝑥

2
) (82)

for almost every 𝑥 ∈ R𝑛, or else

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(R𝑛) ≤

1

2
(1 + √1 + 4𝜖) . (83)
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If 𝜖 < 1/4, then either

1

2
(1 + √1 − 4𝜖) ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(R𝑛) ≤

1

2
(1 + √1 + 4𝜖) (84)

or

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(R𝑛) ≤

1

2
(1 − √1 − 4𝜖) . (85)

Proof. Applying 𝜑(𝑥󸀠, 𝑦󸀠) = 𝛿
𝑡
(𝑥 − 𝑥󸀠)𝛿

𝑠
(𝑦 − 𝑦󸀠) in (79) we

have

∬𝑓(𝑥󸀠 + 𝜎𝑦󸀠) 𝛿
𝑡
(𝑥 − 𝑥󸀠) 𝛿

𝑠
(𝑦 − 𝑦󸀠) 𝑑𝑥󸀠𝑑𝑦󸀠

= ∫𝑓 (𝑧󸀠) (∫𝛿
𝑡
(𝑥 − 𝑧󸀠 + 𝜎𝑦󸀠) 𝛿

𝑠
(𝑦 − 𝑦󸀠) 𝑑𝑦󸀠)𝑑𝑧󸀠

= ∫𝑓 (𝑧󸀠) (∫ 𝛿
𝑡
(𝑥 − 𝑧󸀠 + 𝜎𝑦󸀠) (𝛿

𝑠
∘ 𝜎)

× (𝜎𝑦 − 𝜎𝑦󸀠) 𝑑𝑦󸀠)𝑑𝑧󸀠

= ∫𝑓 (𝑧󸀠) (∫𝛿
𝑡
(𝑥 − 𝑧󸀠 + 𝑦󸀠) (𝛿

𝑠
∘ 𝜎) (𝜎𝑦 − 𝑦󸀠) 𝑑𝑦󸀠)𝑑𝑧󸀠

= ∫𝑓 (𝑧󸀠) (∫ 𝛿
𝑡
(𝑦󸀠) (𝛿

𝑠
∘ 𝜎) (𝑥 + 𝜎𝑦 − 𝑧󸀠 − 𝑦󸀠) 𝑑𝑦󸀠)𝑑𝑧󸀠

= ∫𝑓 (𝑧󸀠) 𝛿
𝑡
∗ (𝛿 ∘ 𝜎)

𝑠
(𝑥 + 𝜎𝑦 − 𝑧󸀠) 𝑑𝑧󸀠

= (𝑓 ∗ 𝛿
𝑡
∗ (𝛿 ∘ 𝜎)

𝑠
) (𝑥 + 𝜎𝑦) .

(86)

We also have

∬𝑓(𝑥󸀠) 𝑓 (𝑦󸀠) 𝛿
𝑡
(𝑥 − 𝑥󸀠) 𝛿

𝑠
(𝑦 − 𝑦󸀠) 𝑑𝑥󸀠𝑑𝑦󸀠

= ∫𝑓 (𝑦󸀠) (∫𝑓 (𝑥󸀠) 𝛿
𝑡
(𝑥 − 𝑥󸀠) 𝑑𝑥󸀠) 𝛿

𝑠
(𝑦 − 𝑦󸀠) 𝑑𝑦󸀠

= (𝑓 ∗ 𝛿
𝑡
) (𝑥) ∫𝑓 (𝑦󸀠) (𝑓 ∗ 𝛿

𝑠
) (𝑦 − 𝑦󸀠) 𝑑𝑦

= (𝑓 ∗ 𝛿
𝑡
) (𝑥) (𝑓 ∗ 𝛿

𝑠
) (𝑦) .

(87)

Thus, the inequality (78) is converted to the classical fun-
ctional inequality

󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑡
∗ 𝛿𝜎
𝑠
) (𝑥 + 𝜎𝑦) − (𝑓 ∗ 𝛿

𝑡
) (𝑥) (𝑓 ∗ 𝛿

𝑠
) (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜖
(88)

for all 𝑥, 𝑦 ∈ R𝑛, where 𝛿𝜎 = 𝛿 ∘ 𝜎.
Choosing 𝑦

0
∈ R, 𝑠

0
> 0 such that (𝑓 ∗ 𝛿

𝑠
0

)(𝑦
0
) ̸= 0, put-

ting 𝑦 = 𝑦
0
, 𝑠 = 𝑠

0
in (88), using the triangle inequality, and

dividing the result by |(𝑓 ∗ 𝛿
𝑠
0

)(𝑦
0
)| we have

󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑡
) (𝑥)

󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑡
∗ 𝛿𝜎
𝑠
0

) (𝑥 + 𝜎𝑦
0
)
󵄨󵄨󵄨󵄨󵄨 + 𝜖

󵄨󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑠
0

) (𝑦
0
)
󵄨󵄨󵄨󵄨󵄨

(89)

for all𝑥 ∈ R𝑛. Since (𝑓∗𝛿
𝑡
∗𝛿𝜎
𝑠
0

)(𝑥+𝜎𝑦
0
) → (𝑓∗𝛿𝜎

𝑠
0

)(𝑥+𝜎𝑦
0
)

as 𝑡 → 0+, it follows that

𝐹 (𝑥) := lim sup
𝑡→0
+

(𝑓 ∗ 𝛿
𝑡
) (𝑥) (90)

exists for all 𝑥 ∈ R𝑛. Since (𝑓 ∗ 𝛿
𝑡
)(𝑥) → 𝑓(𝑥) for almost

every 𝑥 ∈ R𝑛, it follows from (90) that

𝐹 (𝑥) = 𝑓 (𝑥) (91)

for almost every 𝑥 ∈ R𝑛.
Fixing 𝑦 ∈ R𝑛 and letting 𝑠 → 0+ so that (𝑓 ∗ 𝛿

𝑠
)(𝑦) →

𝐹(𝑦) in (88), we have
󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿

𝑡
) (𝑥 + 𝜎𝑦) − (𝑓 ∗ 𝛿

𝑡
) (𝑥) 𝐹 (𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜖 (92)

for all 𝑥, 𝑦 ∈ R𝑛. We first consider the case when 𝐹 is
unbounded. Let 𝑦

𝑛
∈ R𝑛, 𝑛 = 1, 2, 3, . . ., be a sequence such

that |𝐹(𝑦
𝑛
)| → ∞. Putting 𝑦 = 𝑦

𝑛
in (92), dividing the result

by |𝐹(𝑦
𝑛
)|, and letting 𝑛 → ∞ we have

(𝑓 ∗ 𝛿
𝑡
) (𝑥) = lim

𝑛→∞

(𝑓 ∗ 𝛿
𝑡
) (𝑥 + 𝜎𝑦

𝑛
)

𝐹 (𝑦
𝑛
)

(93)

for all (𝑥, 𝑦) ∈ R𝑛. Multiplying 𝐹(𝑦) in (93) and using (92)
and (93) we have

(𝑓 ∗ 𝛿
𝑡
) (𝑥) 𝐹 (𝑦) = lim

𝑛→∞

(𝑓 ∗ 𝛿
𝑡
) (𝑥 + 𝜎𝑦

𝑛
) 𝐹 (𝑦)

𝐹 (𝑦
𝑛
)

= lim
𝑛→∞

(𝑓 ∗ 𝛿
𝑡
) (𝑥 + 𝜎𝑦 + 𝜎𝑦

𝑛
)

𝐹 (𝑦
𝑛
)

= (𝑓 ∗ 𝛿
𝑡
) (𝑥 + 𝜎𝑦)

(94)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡 > 0. Putting 𝑥 = 0 in (94) we have

(𝑓 ∗ 𝛿
𝑡
) (0) 𝐹 (𝑦) = (𝑓 ∗ 𝛿

𝑡
) (𝜎𝑦) (95)

for all 𝑦 ∈ R𝑛, 𝑡 > 0. From (95) we have (𝑓 ∗ 𝛿
𝑡
)(0) ̸= 0 for

some 𝑡 > 0. Putting (95) in (94) we have

𝐹 (𝜎𝑥) 𝐹 (𝑦) = 𝐹 (𝑦 + 𝜎𝑥) (96)

for all 𝑥, 𝑦 ∈ R𝑛. From (96) 𝐹 is an exponential function.
Now, we prove that

𝐹 (𝑥) = 𝐹 (𝜎𝑥) (97)

for all 𝑥 ∈ R𝑛. In view of (94), replacing (𝑓 ∗ 𝛿
𝑡
)(𝑥) by (𝑓 ∗

𝛿
𝑡
)(0)𝐹(𝜎𝑥) and (𝑓 ∗ 𝛿

𝑠
)(𝑦) by (𝑓 ∗ 𝛿

𝑠
)(0)𝐹(𝜎𝑦) in (88) and

letting 𝑠 → 0+ so that (𝑓 ∗ 𝛿
𝑠
)(0) → 𝐹(0) we have

󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑡
) (𝑥 + 𝜎𝑦) − (𝑓 ∗ 𝛿

𝑡
) (0) 𝐹 (𝜎𝑥) 𝐹 (𝜎𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜖 (98)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡 > 0. Using (95) and (98) we have
󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿

𝑡
) (0) 𝐹 (𝑦 + 𝜎𝑥) − (𝑓 ∗ 𝛿

𝑡
) (0) 𝐹 (𝜎𝑥) 𝐹 (𝜎𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜖.
(99)
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Letting 𝑡 → 0+ in (99) so that (𝑓 ∗ 𝛿
𝑡
)(0) → 𝐹(0) we have

󵄨󵄨󵄨󵄨𝐹 (𝑦 + 𝜎𝑥) − 𝐹 (𝜎𝑥) 𝐹 (𝜎𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜖 (100)

for all 𝑥, 𝑦 ∈ R. Since 𝐹 is an exponential function, it follows
from (100) that

|𝐹 (𝜎𝑥)|
󵄨󵄨󵄨󵄨𝐹 (𝑦) − 𝐹 (𝜎𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝜖 (101)

for all 𝑥, 𝑦 ∈ R𝑛. Since 𝐹 is unbounded, from (101) we have
𝐹(𝑦) = 𝐹(𝜎𝑦) for all 𝑦 ∈ R𝑛. Now, 𝐹 is written in the form

𝐹 (𝑥) = 𝐹(
𝑥

2
+

𝑥

2
) = 𝐹(

𝑥

2
)𝐹(

𝑥

2
)

= 𝐹(
𝑥

2
)𝐹(

𝜎𝑥

2
) = 𝐹(

𝑥 + 𝜎𝑥

2
)

(102)

for all 𝑥, 𝑦 ∈ R𝑛. Conversely, let 𝐹(𝑥) = 𝑚((𝑥+𝜎𝑥)/2), where
𝑚 : R𝑛 → C is an arbitrary exponential function. Then 𝐹
is an exponential function satisfying 𝐹(𝑥) = 𝐹(𝜎𝑥) for all
𝑥 ∈ R𝑛. Thus, we get (82). From now on, we assume that 𝐹 is
bounded, say |𝐹(𝑥)| ≤ 𝑀 for all 𝑥 ∈ R𝑛.Then, it follows from
(91) that ‖𝑓‖

𝐿
∞
(R𝑛) ≤ 𝑀. Thus, we have

󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑡
) (𝑥)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ 𝑓 (𝑥󸀠) 𝛿 (𝑥 − 𝑥󸀠) 𝑑𝑥󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀∫
󵄨󵄨󵄨󵄨󵄨𝛿 (𝑥 − 𝑥󸀠)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
󸀠 = 𝑀

(103)

for all 𝑥 ∈ R𝑛. From the inequality (92), using the method in
Theorem 10 of [1] we have

󵄨󵄨󵄨󵄨(𝑓 ∗ 𝛿
𝑡
) (𝑥) (

󵄨󵄨󵄨󵄨𝐹 (𝑦)
󵄨󵄨󵄨󵄨 − 1)

󵄨󵄨󵄨󵄨 ≤ 𝜖 (104)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡 > 0. Fixing 𝑥 ∈ R𝑛 and letting 𝑡 → 0+ in
(104) we have

󵄨󵄨󵄨󵄨𝐹 (𝑥) (
󵄨󵄨󵄨󵄨𝐹 (𝑦)

󵄨󵄨󵄨󵄨 − 1)
󵄨󵄨󵄨󵄨 ≤ 𝜖 (105)

for all 𝑥, 𝑦 ∈ R. From (105), using the method inTheorem 10
of [1] we have

|𝐹 (𝑥)| ≤
1

2
(1 + √1 − 4𝜖) (106)

for all 𝑥 ∈ R, and if 𝜖 < 1/4, then we have either

1

2
(1 − √1 + 4𝜖) ≤ |𝐹 (𝑥)| ≤

1

2
(1 + √1 + 4𝜖) (107)

for all 𝑥 ∈ R or

|𝐹 (𝑥)| ≤
1

2
(1 − √1 − 4𝜖) (108)

for all 𝑥 ∈ R. Since 𝑓(𝑥) = 𝐹(𝑥) almost every 𝑥 ∈ R𝑛, we get
(83), (84), and (85). This completes the proof.
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