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Different numerical methods have been implemented to simulate internal natural convection heat transfer and also to identify the
most accurate and efficient one. A laterally heated square enclosure, filled with air, was studied. A FORTRAN code based on the
lattice Boltzmann method (LBM) was developed for this purpose. The finite difference method was applied to discretize the LBM
equations. Furthermore, for comparison purpose, the commercially available CFD package FLUENT, which uses finite volume
Method (FVM), was also used to simulate the same problem. Different discretization schemes, being the first order upwind, second
order upwind, power law, and QUICK, were used with the finite volume solver where the SIMPLE and SIMPLEC algorithms linked
the velocity-pressure terms. The results were also compared with existing experimental and numerical data. It was observed that the
finite volume method requires less CPU usage time and yields more accurate results compared to the LBM. It has been noted that the
Ist order upwind/SIMPLEC combination converges comparatively quickly with a very high accuracy especially at the boundaries.
Interestingly, all variants of FVM discretization/pressure-velocity linking methods lead to almost the same number of iterations to
converge but higher-order schemes ask for longer iterations.

1. Introduction

Studying heat transfer and fluid flow using computational
methods is easier [1], safer [2], and much less costly [3] com-
pared to experimental techniques. There are a large number
of problems which can be simulated with great accuracy to
replicate experiments with high resolutions [4]. There are
currently a range of approaches with the potential to serve in
modeling heat transfer and fluid flows, such as the finite dif-
ference method (FDM), finite element method (FEM), finite
volume method (FVM), lattice boltzmann method (LBM),
boundary elements method (BEM), molecular dynamics
simulation, and direct simulation Monte Carlo. The most
widely employed approaches in the field of thermofluids

are the first four [5]. However, application of FDM can be
difficult when complex geometries are involved [6]. The FEM
schemes can be intricate for solving conservative equations,
while the nonstandard FEMs have low computational efhi-
ciency [7]. Application of FVM is difficult and complex
to cases with complex moving boundaries [8]. LBM is a
compressible model for ideal gases and can theoretically
always simulate the compressible Navier-Stokes equations.
With the Chapman-Enskog expansion [9], LBM can simulate
incompressible flow for low Mach numbers (Ma < 0.15) albeit
at the expense of a compressibility error [10, 11]. Besides,
regular square grids used with LBM make it very hard to
extend the simulation to curved boundaries [12]. All in all,
the accuracy of all these numerical approaches is dependent
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FIGURE 1: Schematic of analyzed configuration.

on the problem configuration, discretization scheme, and
numerical algorithm used [5]. As such, an important question
to answer is about finding the best approach to solve a certain
problem subject to computational efficiency and accuracy as
the most important constrains. Along these lines, Rouboa
and Monteiro [13] investigated the heat transfer phenomenon
during cast solidification in a complicated configuration
by FVM and FDM. A comparison between the numerical
results and experimental ones indicated that both discretiza-
tion approaches produced good outcome, with FVM being
slightly better as it uses more information than FDM to cap-
ture spatial temperature variations. Despite recent progress
in computing power and techniques, the literature review
indicates a lack of comprehensive studies on selecting the
ideal means of analyzing internal heat transfer and fluid flow
problems. In particular, an optimal solution technique and
procedure to simulate internal natural convection are yet
to be presented. To fill this gap in the literature, laminar
natural convection heat transfer of air inside a laterally heated
square enclosure is investigated using both FVM and LBM.
The simulation results were compared against those from
the literature. Particular attention was given to different
discretization techniques as well as pressure-velocity linking
approaches to find the best method for simulating internal
free convection problems.

2. Governing Equations

2.1. Finite Volume Method. Continuity, momentum, and
energy equations were employed for flow analysis in a system
depicted by Figurel. Density was computed by invoking
the Boussinesq approximation for AT < 30°C [14]. The
governing equations are written as follows [15].

Continuity equation:

au ov

a3y " 0
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Momentum equations in X and Y directions:
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2.2. Lattice Boltzmann Method. The hydrodynamic and ther-
mal Boltzmann equations with using density-momentum
and internal energy distribution functions (double popula-
tion) are as follows [16, 17]:

ofi  ofi .
E uxa Q(f)__f(i_fi)’

9g; 9g; 2
e 2L =0(g)- f.Z =05c-uPQ(f) - f.Z
at +Clotaxa (gl) .fl 1 Oslc ul (.fl) .fl 1

- g
gl gl __fiZi-

Tg

(4)

Double population LBM model (TLBM) uses two separated
distribution functions f and g for hydrodynamic and ther-
mal fields, respectively. This model is the latest one among
different presented models of thermal LBMs. In addition, it
shows more accuracy and stability during the solution pro-
cess. As LBM solution process naturally tends to divergence
having a stable approach like TLBM helps the convergence.
Microscopic velocities for a D2Q9 lattice model are [12]

i-1 . i-1 .
¢ = (cos ——71, sin —n), i=1,2,3,4,
2 2

= \/E(cos[(i;S)”Jfg]>Sin[(i;5)ﬂ+%])’ (5)

i=5,6,7,8,

¢, =(0,0).

Heat dissipation and hydrodynamic and thermal equilibrium
distribution functions are given by

Su, ou,
Z;= (Cioc - uoc) [ St +Cioc£] >

9(¢; - u)2 - 3_112]

fiezwl»p[l+3(ci-u)+

2 2
i=0,1,...,8
4 1
Wy = 9’ W1234 = 3> Ws567.8 = 36’
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where pe = pRT and w is the weight function. Equation (4)
in discretized forms [18] reads

fi (x+ At t + At) — f; (x,t)
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21f
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The two last equations are implicit. Thus, the new functions
f; and g; are developed to address this problem:

fi=fiv 2L (f- 1), (8)

2Tf
_ At o At
=g+ — (g - )+ — f.7..
i gl+2Tg (g9:—g7) + 5 fiZi )

Collision and streaming steps of LBM are simulated by
applying (7)-(9) as follows:

ﬁ(x+ciAt,t+At) - fi(x,1)
= t) - fi (x1)],
Tf+05At [/ o) = 7 ()]
J; (x + ¢ At t + At) — G; (x, 1)
At
= t D] -—L—f7.
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(10)

Finally, the hydrodynamic and thermal variables can be

obtained as
p=21
pu= Zcifi’ (11)

A
T2
1

pe=pRT =}, -

3. Boundary Conditions

Figure 1 illustrates a schematic of the configuration analyzed
in the present study along with the boundary conditions.

The nonequilibrium bounce-back model is used to simu-
late the no-slip boundary condition on the walls in LBM. This
model improves accuracy compared to the usual bounce-
back boundary condition and satisfies the zero mass flow
rates at nodes on the wall. The collision occurs on the
nodes located at the solid-fluid boundaries and distribution
functions are reflected in a suitable direction, satisfying the
equilibrium conditions [19].

The macroscopic boundary conditions for the present
study are

T=T, 0<y<l1

T=T, 0<y<l1 x=1,

a—T:O u=v=0 0<x<1 y=0, (12)
oy

oT

@20 u=v=0

0<x<1 y=1

4. Numerical Procedure

Our FVM solver uses the implicit line-by-line tridiagonal
matrix algorithm [20, 21] to linearize the system of algebraic
equations. First order upwind [22], second order upwind
[23], power law [24], and Quadratic Upstream Interpola-
tion for Convective Kinetics (QUICK) [25] schemes were
applied in different trails to solve the same problem while
the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) [26, 27] and SIMPLE-Consistent (SIMPLEC) [28,
29] procedures were selected for pressure-velocity coupling.
The convergence criterion, maximum absolute error in each
dependent variable, was set at 1077

In LBM, the zero values for U(x, y), V(x, y), and T(x, y)
are applied as the initial conditions. However, to avoid
problems in estimating the macroscopic variables in (12),
the initial fluid density is set to unity. LBM dimensionless
numbers Re, Ra, and Pr are defined identical to those of
classical Navier-Stokes equations. However, the macroscopic
numerical value should be calculated beforehand. For exam-
ple, for Pr, one has the kinematics viscosity and thermal
diffusivity determined in LBM as v = 7,RT and a = 27,RT,
where 7 and 7, are hydrodynamic and thermal relaxation
times and R is the gas constant. The Prandtl number can



then be written as Pr = v/a = TfRT/ZTgRT = Tf/ZTg. For

Ra = GrPr = gBATH’/va the values of v and & are now
known based on relaxation times, while the numerical values
of g, B, H, AT are predetermined and fixed.

4.1. Gravity Effects in LBM. The Boussinesq approximation
was used as p = p[1 — B(T - T)] to give buoyancy force per
unit mass defined as G = ﬁg(T—T) and f = G-(c - u) f¢/RT.
Hence, the discretized Boltzmann equation is written as

fi‘fieJrG'(Ci_u)
Tf RT

Ofi+ (V) fi=~ 15

fi (x + At t + At) - f; (x,1)

Attp 3G (ciy - v) ’
Tf + 0.5At C2 a
(13)

- L[ﬁ-ffh

Tf + 0.5At

Applying (8) and taking into consideration the effects of
gravity, one has

p-Yh u=(5) Y
V= <%>Zﬁq}, + %G,

i

(14)

while for thermal macroscopic variables (11) is applied.

4.2. Deriving Navier-Stokes Equations from LBM. In order
to derive Navier-Stokes equations from the incompress-
ible lattice Boltzmann equation by using Chapman-Enskog
expansion the discretized form of Boltzmann equation can
be written as

_fi (x,1) - f{ (x,1)

fi (x+ ALt + At) - fi(x,t) = "
f

(15)

With Kn = € as a small (perturbation) variable, the Chap-
man-Enskog expansion for f, and 9, reads

=)
0 1 2 (2
fi= zgnfi(n) =fi()+[€fi()+€ fi()+'”]
n=0
— fi(eq) + [fi(neq)] , 16)

0= &0, =0, +ed, +---.

n=0

None of the nonequilibrium parts of the above equations
should be used for estimating the macroscopic properties p
and pu:

zgnfi(") =0 VYn>0,
i

17)
Zcis"fi(") =0 Vn>O0.
i
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Using these equations together with Tailor expansion of
Boltzmann equation around At, the terms which are smaller
than (At) dropped, and then substitute into (15), we have

1
[at TG V] fi(O) = _fi_>
0 T
f
2 (18)
1 y S
o, £ + (1 - —) [0, + ;- V] [V = -~
2Tf Tf

Macroscopic density and velocity variables can be achieved
by applying the first and second order of moments, leading to

3y f+V- (Zc,. f,.“’)) =0,
3, <2cif}°)> +V- [H“” +At(1 - %)H(l)] =0(af),

f
(19)

where

0 _ (0)
IT = ZCicifi 5
i

(1) _ (1)
I = Zcicifi .
i

(20)

Amount of fi(o) is determined by using f = w;p[1+3(c;-u)+
(9(c; -u)?/2)-(3u?/2)] and then using the zero and first order
of moments of (18) together with fi(o):

0,p+V-(pu)=0,

o, p =0,
(21
0, (pu) +V - (puu) +V (pcsz) =0,

0, p+V- (2va - At (Tf - 0.5) V- (puuu)) =0,
where

2
(22)

(21, -1) At
—

V=

Finally, making use of V- u = 0,Vp = 0 at incompressible
limit and ignoring the term V - (puuu) in (21), continuity and
momentum equations are recovered. In addition, the thermal
energy equation would be recovered in a similar way; see [30,
31] for more details.

5. Grid Independence

Structured nonuniform grid distributions were applied for
FVM simulations with a grid cluster near the walls to capture
sharp velocity and temperature gradients. For LBM simu-
lations structured grids based on D2Q9 lattice are applied.
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TaBLE 1: Grid independence tests (FVM and QUICK/SIMPLEC).

Number of grids 15987 31974 47961 63948 Experimental value [32]
Maximum X-velocity 0.001 0.001 0.0012 0.0012 —
Dimensionless temperature at the middle of the cavity 0.460 0.465 0.489 0.493 0.51
TaBLE 2: Grid independence tests (LBM).
Number of grids 10000 32400 48400 67600 84100 Experimental value [32]
Maximum X-velocity 0.0004 0.0008 0.0010 0.0010 0.00103 —
Dimensionless temperature at the middle of the cavity ~ 0.430 0.449 0.463 0.471 0.475 0.51
TaBLE 3: Thermophysical properties of air [33].

P C, 7 k B Gr Pr Ra
1.127 1007 1.9114x107° 0.0271 0.006092 2.662 x 10° 0.71 1.890 x 10°

Extensive grid independence checks were performed, as
indicated by Tables 1 and 2, to observe that a grid with 47961
and 67600 cells for all FVM solvers and LBM, respectively,
leads to mesh-independent results.

6. Results

Our numerical results, from different solvers, were compared
with benchmark experimental data from Krane and Jessee
[32] as well as the numerical predictions of Khanafer et al.
[34], Oztop and Abu-Nada [35], and Bakhshan and Emrani
[33]. The main dimensionless parameters were the Rayleigh
and Prandtl numbers, which are constant at 1.89 x 10° and
0.71, respectively. The fluid thermophysical properties, as well
as dimensionless numbers, are shown in Table 3.

For Pr = 0.71 and Ra = 1.89 x 10°, the dimensionless
temperature and vertical velocity profiles at midheight are
plotted in Figures 2 and 3 and contrasted with the results
from [32-35]. These figures illustrate a superior adaptation
between the present simulation results using the FVM and
LBM models and those of [32-35] works. Although previous
research shows that, for complicated turbulent fluid flow
problems, the QUICK/SIMPLEC is the most accurate choice
[33], Figures 2(a) and 3(a) indicate that for laminar internal
convection heat transfer problems there is no dramatic dif-
ference among the studied discretization approaches. How-
ever, it is obvious from Figures 2 and 3 that the FVM
results are more accurate than those of LBM. This could
be attributed to the compressible nature of LBM [36, 37],
which creates a compressibility error for incompressible
flows [12]. Among the discretization/pressure-velocity link-
ing approaches examined, 1st order upwind/SIMPLEC has
the closest results to experimental benchmark data, especially
for the temperature contours in the range 0.20 < X < 0.80.
With vertical velocity distribution, however, the difference
among FVM approaches is quite negligible. Nevertheless, the
fact that the accuracy and stability of the convective terms
comprise a contrasting pair is a general perception in the
field of computational heat transfer. For instance, the first
order upwind scheme is entirely stable even with strong false

diffusion [38], while the second or third order schemes like
QUICK are conditionally stable [25].

Table 4 successfully compares our numerical results with
those available in the literature under similar conditions and
geometry over a range of Ra values with Pr = 0.7. Slight
discrepancies are observed in this table between some of the
present work results and those of [34, 39-42] because of the
differences between the employed discretization methods, as
well as mesh generation types, as one would expect.

Table 5 provides the comparison of number of iterations
and required CPU usage time for the different discretization
methods considered here. As seen, LBM may take 4-5 times
longer to converge and 8-9 times more iterations compared
to FVM. There are two reasons for this. The first one is
attributed to the way LBM handles heat transfer. Although in
the present work the appropriate internal energy distribution
function, g, [43] was used to obtain the temperature field,
this model even tends to diverge. Furthermore, with LBM
modeling the corners ask for a large number of fine grids near
the corners. These two matters cause the LBM solutions to be
comparatively more time consuming.

According to Table5, the number of iterations for
all FVM discretization method/pressure-velocity linking
approaches is nearly equal. In this case, the difference
between the QUICK/SIMPLEC method that necessitates the
largest number of iterations and the lowest one (power
law/SIMPLE) is only 79 iterations, that is, a 5.2% difference.
With respect to CPU usage time, these proportions are to
some extent different. For example, when comparing the
most time consuming method (QUICK/SIMPLEC) with the
Ist order upwind/SIMPLEC approach, this time disparity is
about 4.94%, while the number of iterations differs by only
1.65%. As expected, higher-order accurate schemes are more
time consuming.

The effects of the solution method, discretization scheme,
and pressure/velocity coupling approach on the streamlines
and X-velocity are illustrated by Figures 4 and 5. Two
elliptical vortexes generally appear at the center of the cavity
as a predominant feature of buoyancy-induced flow in a
laterally heated square enclosure. In this context, the Ist
order upwind scheme has the most precise results among
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FIGURE 4: Streamlines contours.
TaBLE 4: Comparison of the average Nusselt number along the hot wall with those in the literature.
Ra =10’ Ra = 10* Ra=10’ Ra = 10°
Khanafer et al. [34], FVM 1.118 2.245 4.522 8.826
Barakos et al. [39], FVM 1.114 2.245 4.510 8.806
Markatos and Pericleous [40], FDM 1.108 2.201 4.430 8.754
de Vahl Davis [41], FDM 1.118 2.243 4.519 8.799
Fusegi et al. [42], 3-D FDM 1.105 2.302 4.646 9.012
1st upwind/SIMPLE 1.115 2.233 4.508 8.756
Ist upwind/SIMPLEC 1.120 2.242 4.516 8.795
2nd upwind/SIMPLE 1116 2.236 4.465 8.761
2nd upwind/SIMPLEC 1.119 2.240 4.489 8.799
Power law/SIMPLE 1.115 2.235 4.465 8.754
Power law/SIMPLEC 1.116 2.238 4.475 8.765
QUICK/SIMPLE 1.119 2.242 4.502 8.786
QUICK/SIMPLEC 1.113 2.230 4.479 8.757
LBM 1.108 2.210 4.456 8.756
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TABLE 5: Number of iterations and solving time for different discretization method.

0004

Discretization method/pressure-velocity

Type of method Case number o Number of iterations Solving time (s)
linking approach

1 Ist upwind/SIMPLE 1571 482
2 1st upwind/SIMPLEC 1572 486
3 2nd upwind/SIMPLE 1597 502

Finite volume method 4 2nd upwind/SIMPLEC 1598 509
5 Power law/SIMPLE 1520 469
6 Power law/SIMPLEC 1521 474
7 QUICK/SIMPLE 1598 510
8 QUICK/SIMPLEC 1599 519

Lattice Boltzmann method 1 Well-known finite difference method 47507 3360
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the studied discretization schemes, especially in the north-
west and southeast sides of the enclosure. Regarding the
pressure/velocity coupling approaches, the maximum stream
function values for the SIMPLE and SIMPLEC approaches
are 0.0003 and 0.0003066, respectively, translating into 2.2%
difference while the CPU usage time difference is only 4 s. For
LBM, the value of stream function is 0.000278.

For the velocity contours in the X direction Figure 5
shows that the U-velocity contours have cross-diagonal simi-
larity towards the Y = X axis. Thus, all the methods analyzed
present comparable results with no obvious difference.

Figure 6 demonstrates the local Nusselt number distribu-
tions along the left hot wall. For all discretization schemes,
the Nusselt number is high near the bottom of the left wall
(because of extreme temperature variations) and declines
towards the top of the wall. The comparison between different
solvers reveals that the 1st order upwind scheme predicts the
maximum Nusselt number while LBM leads to the lowest one
with some fluctuations along the hot wall. Interestingly, LBM
uses about 40% more grids in that region compared to FVM
ones.

7. Conclusions

Numerical tests using the finite volume and lattice Boltzmann
methods with various discretization schemes and pressure-
velocity linking algorithms were conducted to obtain the
optimum discretization/linking approaches to address the
internal convective heat transfer problems. The flow and
temperature fields, as well as number of iterations and solving
time, were evaluated.

The significant observations made in this study are sum-
marized as follows.

(1) The finite volume method results are more accurate
compared to those of LBM, especially at the corners.

(2) LBM needs a 4-5-fold CPU usage time and 8-9
times more iterations compared to the finite volume
method to solve the problem considered here.

(3) Among the studied discretization/pressure-velocity
linking algorithms, the 1st order upwind/SIMPLEC
provides the most precise results against experimental
benchmark data, especially in the boundary layers.

(4) The numbers of iterations for all FVM discretization/
pressure-velocity linking methods are nearly equal.

(5) The higher-order accurate schemes are more time
consuming.

One, however, notes that the above observations are valid
within the limits of the parameters and problem considered in
this study and could not be generalized to other cases without
further investigations.
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Nomenclature

X, y: Cartesian coordinates (m)
f: Density-momentum distribution function

H, L: Enclosure height and width (m)
Gr: Grashof number (gBATL v™?)

g: Gravitational acceleration (m s%)
Z: Heat dissipation

g: Internal energy distribution function
c Microscopic velocity vector

Pr: Prandtl number (va™?)

p: Pressure (N m?)

Ra: Rayleigh number (Gr Pr)

Cp Specific heat capacity (J kg' K')
T,t: Temperature, time (K), (S)

k: Thermal conductivity (W m 'K

u = (u,v): Velocities vector and its components in X
and Y directions (ms').

Greek Symbols

p:  Dynamic viscosity (PaS)

p: Density (kgm?)

7, Internal energy relaxation times

v: Kinematics viscosity (m?sh)

751 Momentum relaxation times

B: Thermal expansion coefficient (K

a: Thermal diffusivity, x-y direction
components (m?sh).

Subscripts

¢: Cold wall

e: Equilibrium distribution function

h: Hot wall

i: Lattice velocity direction.
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