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We propose a kind of evolving network which shows tree structure. The model is a combination of preferential attachment model
and uniform model. We show that the proportional degree sequence {𝑝𝑘}𝑘>1 obeys power law, exponential distribution, and other
forms according to the relation of 𝑘 and parameter𝑚.

1. Introduction

In recent ten years, there has been much interest in under-
standing the properties of real large-scale complex networks
which describe a wide range of systems in nature and society.
Examples of such networks appear in communications, biol-
ogy, social science, economics, and so forth [1]. In pursuit of
such understanding, mathematicians and physicists usually
use random graphs to model all these real-life networks. In
the investigation of various complex networks, the degree
distribution is always the main concern because it charac-
terizes the fundamental topological properties of complex
networks which show importance in network control, esti-
mation, and sensor [2–8]. Several models were introduced
to explain the properties. Bollobás [9] proposed a model
with 𝑛 vertices and 𝑚 edges. In this model, the degree
distribution is approximately Poisson distribution. Later,
Barabási and Albert [10] proposed the following model: at
each time step, add a new vertex V and a fixed number
𝑟 of edges originating at V and directed towards vertices
chosen at random with probability proportional to their
degrees. Based on simulation and heuristic approximation,
they predicted that the degree distribution behaves like 𝑑−3
for all 𝑟 ≥ 1. The result was confirmed by Barabási et al. [11,
12]. In order to generate power laws with arbitrary exponents,

Dorogovtsev et al. [13] and Drine et al. [14] introduced the
following natural generalization of the above model: the
destination of the 𝑟 new edges added at each time step
is chosen with probability proportional to the degree plus
an initial attractiveness 𝛼𝑟; they gave a nonrigorous argu-
ment that the degree distribution 𝑝𝑑 behaves like 𝑑

−2−𝛼 for
large 𝑑.

In some real networks, experiments show that the distri-
bution obeys neither power law nor exponential. To explain
the phenomenon, we propose a model as follows: starting
with a single vertex, at each time step, a new vertex is
added and linked to one of the existing vertices, which is
chosen according the following rule: at time 𝑚, 2𝑚, 3𝑚, . . .,
where 𝑚 is integer, we choose one of the existing vertices
with probability proportional to the degree; that is, we have
probability 𝑘/𝑠𝑛, where 𝑘 is the degree of the vertex chosen
and 𝑠𝑛 is the total degree of vertices; at another time step,
we choose one of the existing vertices with equal probability.
Related models were also proposed by Krapivsky and Redner
[15] and Li [16] to describe the organization of growing
networks. In this paper, we will focus on the distribution
of evolving network and the distribution of the number of
vertices with given degree will be considered in Section 2.
In Section 3, we will consider the asymptotic degree distri-
bution.
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2. The Number of Vertices with Given Degrees

Let𝐷𝑛(𝑘) denote the number of vertices with degree 𝑘 at time
𝑛. We will consider the case 𝑘 = 1, 2 in this section and the
case 𝑘 > 2 will be considered in the next section. As 𝑘 = 1,
we obtain the following result.

Lemma 1. In the evolving network, the expectation of the
number of degree 1 satisfies

ED𝑛 (1) =
2𝑚

4𝑚 − 1
𝑛. (1)

Proof. Herein after,= denotes asymptotic equivalence as 𝑛 →
∞. From the way the network is formed, we can see that, for
𝑛 > 1, the number of vertices of degree 1 does not change if we
attach a new vertex V𝑛 to a vertex with degree 1 and increases
by 1 if we attach V𝑛 to vertices of degree larger than 1 after
joining the vertex V𝑛. Assuming 𝑛 is multiple of 𝑚, that is,
𝑛 = 𝑘𝑚, where 𝑘 is integer number, and taking expectation of
𝐷𝑛(1), we obtain

ED𝑘𝑚 (1) = (1 −
1

2 (𝑘𝑚 − 1)
)ED𝑘𝑚−1 (1) + 1

= (1 −
1

2 (𝑘𝑚 − 1)
)

× [ED𝑘𝑚−2 (1) (1 −
1

𝑘𝑚 − 2
) + 1] + 1

= (1 −
1

2 (𝑘𝑚 − 1)
) (1 −

1

𝑘𝑚 − 2
)ED𝑘𝑚−2 (1)

+ (1 −
1

2 (𝑘𝑚 − 1)
) + 1.

(2)

The first equation shows that when we add a new vertex and
link it to one of existing vertices with preferential attachment,
the number of vertex increases by 1, while the second
equation comes from the uniform attachment. Continuing
the iteration and noticing the boundary condition ED1(1) =
0, we have

ED𝑘𝑚 (1) =
𝑘𝑚

∑
𝑗=1

[𝑗/𝑚]

∏
𝑖=0

(1 −
1

2 [(𝑘 − 𝑖)𝑚 − 1]
)

×
𝑗

∏
V=2

(1 −
1

𝑘𝑚 − V
)

× (
[𝑗/𝑚]

∏
𝑠=0

(1 −
1

(𝑘 − 𝑖)𝑚 − 1
))

−1

.

(3)

Considering the term

[𝑗/𝑚]

∏
𝑖=0

(1 −
1

2 [(𝑘 − 𝑖)𝑚 − 1]
)
𝑗

∏
V=2

(1 −
1

𝑘𝑚 − V
)

× (
[𝑗/𝑚]

∏
𝑠=0

(1 −
1

(𝑘 − 𝑖)𝑚 − 1
))

−1

,

(4)

we have

𝑒ln∏
[𝑗/𝑚]

𝑖=0
(1−(1/2[(𝑘−𝑖)𝑚−1]))∏

𝑗

V=2(1−(1/(𝑘𝑚−V)))−ln∏
[𝑗/𝑚]

𝑠=0
(1−(1/((𝑘−𝑖)𝑚−1)))

= 𝑒−∑
[𝑗/𝑚]

𝑖=0
(1/2[(𝑘−𝑖)𝑚−1])−∑

𝑗

V=2(1/(𝑘𝑚−V))+∑
[𝑗/𝑚]

𝑖=0
(1/((𝑘−𝑖)𝑚−1))

= 𝑒−(1/(2𝑘−1)) ∫
[𝑗/𝑚]

𝑡=0
(1/(1−(𝑚𝑡/(2𝑘−1))))𝑑𝑡−(1/𝑘𝑚) ∫

𝑗

V=2(1/(1−(V/𝑘𝑚)))𝑑V+(1/(𝑘𝑚−1)) ∫
[𝑗/𝑚]

𝑡=0
(1/(1−(𝑚𝑡/(𝑘𝑚−1))))𝑑𝑡

= (1 −
𝑗

𝑘𝑚
)
(1−(1/2𝑚))

.

(5)

We obtain that

ED𝑘𝑚 (1) =
𝑘𝑚

∑
𝑗=1

(1 −
𝑗

𝑘𝑚
)
(1−(1/2𝑚))

=
2𝑚

4𝑚 − 1
⋅ 𝑘𝑚

(6)

when 𝑛 is not a multiple of𝑚, assuming 𝑛 = 𝑘𝑚+ 𝑠, 1 < 𝑠 <
𝑚, where 𝑘 is an integer number; we also obtain

ED𝑘𝑚+𝑠 (1)

= ED𝑘𝑚+𝑠−1 (1) (1 −
1

𝑘𝑚 + 𝑠 − 1
) + 1

= ⋅ ⋅ ⋅
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= (1 −
1

𝑘𝑚 + 𝑠 − 1
)

× (1 −
1

𝑘𝑚 + 𝑠 − 2
) ⋅ ⋅ ⋅ (1 −

1

𝑘𝑚
)ED𝑚
𝑘𝑚

(1)

+ (1 −
1

𝑘𝑚 + 𝑠 − 1
)

× (1 −
1

𝑘𝑚 + 𝑠 − 2
) ⋅ ⋅ ⋅ (1 −

1

𝑘𝑚 + 1
)

+ ⋅ ⋅ ⋅ + (1 −
1

𝑘𝑚 + 𝑠 − 1
) (1 −

1

𝑘𝑚 + 𝑠 − 2
)

+ (1 −
1

𝑘𝑚 + 𝑠 − 1
) .

(7)

When 𝑛 is large enough, we can see that

ED𝑘𝑚 (1) = ED𝑘𝑚+𝑠 (1) (1 + 𝑜 (1)) . (8)

As a result, we have

ED𝑛 (1) =
2𝑚

4𝑚 − 1
𝑛. (9)

Now we discuss the number of degree 2 in the network;
we have the following.

Lemma 2. For 𝑛 > 2,

ED𝑛 (2) =
2𝑚 − 1

8𝑚 − 2
𝑛. (10)

Proof. We prove the case that 𝑛 is a multiple of𝑚 and assume
𝑛 = 𝑘𝑚, where 𝑘 is an integer number; considering the
expectation of𝐷𝑛(2), we have

ED𝑘𝑚 (2) = (1 −
2

2 (𝑘𝑚 − 1)
)ED𝑘𝑚−1 (2) +

ED𝑘𝑚−1 (1)
2 (𝑘𝑚 − 1)

= (1 −
1

𝑘𝑚 − 1
) [ED𝑘𝑚−2 (2) (1 −

1

𝑘𝑚 − 2
)

+
ED𝑘𝑚−2 (1)
𝑘𝑚 − 2

] +
ED𝑘𝑚−1 (1)
2 (𝑘𝑚 − 1)

.

(11)

Noticing the boundary condition ED2(2) = 0 and Lemma 1,
we have

ED𝑘𝑚 (2) = (
𝑘𝑚

∑
𝑗=1

𝑗

∏
𝑖=1

(1 −
1

𝑘𝑚 − 𝑖
)

−
1

2

𝑘

∑
𝑗=1

𝑗𝑚

∏
V=1

(1 −
1

𝑘𝑚 − V
))

2𝑚

4𝑚 − 1
.

(12)

By the estimation ln(1 + 𝑥) = 𝑥 and the fact that

𝑗

∏
𝑖=1

(1 −
1

𝑘𝑚 − 𝑖
) = 1 −

𝑗

𝑘𝑚
,

𝑗𝑚

∏
V=0

(1 −
1

𝑘𝑚 − V
) = 1 −

𝑗

𝑘
,

(13)

we obtain that

ED𝑘𝑚 (2) =
2𝑚

4𝑚 − 1
[

[

𝑘𝑚

∑
𝑗=1

(1 −
𝑗

𝑘𝑚
) −

1

2

𝑘

∑
𝑗=0

(1 −
𝑗

𝑘
)]

]

= 𝑘𝑚
2𝑚

4𝑚 − 1
[∫
1

0

(1 − 𝑥) 𝑑𝑥 −
1

2
∫
1

0

(1 − 𝑥) 𝑑𝑥]

=
2𝑚 − 1

8𝑚 − 2
⋅ 𝑘𝑚.

(14)

The case 𝑛, which is not a multiple of 𝑚, is the same as
Lemma 1, just a little tedious.

3. Asymptotic Degree Distribution of Network

Let

𝑝𝑘 (𝑛) =
𝐷𝑛 (𝑘)

𝑛
(15)

denote the proportion of vertices with degree 𝑘 at time 𝑛.
Considering the expectation of 𝐷𝑛(𝑘), we have the following
theorem.

Theorem 3. For arbitrary 𝑘 > 1 and 𝑛, the expectation of the
number of degree 𝑘 satisfies

ED𝑛 (𝑘) =
2𝑚

4𝑚 − 1

𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2
𝑛. (16)

Proof. The case 𝑘 = 1, 2 is just the result of Lemmas 1 and 2.
Assume the result is true for 𝑘; that is,

ED𝑛 (𝑘) =
2𝑚

4𝑚 − 1

𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2
𝑛. (17)
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Wewill prove the result is true for 𝑘+1.We just prove the case
𝑛 is a multiple of𝑚; that is, 𝑛 = 𝑙𝑚, where 𝑙 is integer number.
From the network constructed, we have

ED𝑚𝑙 (𝑘 + 1)

= (1 −
𝑘 + 1

2 (𝑚𝑙 − 1)
)ED𝑚𝑙−1 (𝑘 + 1)

+
𝑘

2 (𝑚𝑙 − 1)
ED𝑚𝑙−1 (𝑘)

= (1 −
𝑘 + 1

2 (𝑚𝑙 − 1)
)

× [ED𝑚𝑙−2 (𝑘 + 1) (1 −
1

𝑚𝑙 − 2
) +

ED𝑚𝑙−2 (𝑘)
𝑚𝑙 − 2

]

+
𝑘

2 (𝑚𝑙 − 1)
ED𝑚𝑙−1 (𝑘) .

(18)

Continuing the iteration and noticing the boundary condi-
tion ED𝑠(𝑘 + 1) = 0, 𝑠 < 𝑘, we obtain that

ED𝑚𝑙 (𝑘 + 1)

=
2𝑚

4𝑚 − 1

𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2

×
𝑙𝑚

∑
𝑗=1

[𝑗/𝑚]

∏
𝑖=0

(1 −
𝑘 + 1

2 (𝑙 − 𝑖)𝑚 − 1
)
𝑗

∏
V=1

(1 −
1

𝑙𝑚 − V
)

× (
[𝑗/𝑚]

∏
𝑖=0

(1 −
1

(𝑙 − 𝑖)𝑚 − 1
))

−1

+
𝑘 − 2

2

2𝑚

4𝑚 − 1

×
𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2

𝑙

∑
𝑗=1

𝑗

∏
𝑖=0

(1 −
𝑘 + 1

2 (𝑙 − 𝑖)𝑚 − 1
)

×
𝑗

∏
V=1

(1 −
1

𝑙𝑚 − V
) × (

𝑗

∏
𝑖=0

(1 −
1

(𝑙 − 𝑖)𝑚 − 1
))

−1

.

(19)

Noticing the fact that

[𝑗/𝑚]

∏
𝑖=0

(1 −
𝑘 + 1

2 (𝑙 − 𝑖)𝑚 − 1
)
𝑗

∏
V=1

(1 −
1

𝑙𝑚 − V
)

× (
[𝑗/𝑚]

∏
𝑖=0

(1 −
1

(𝑙 − 𝑖)𝑚 − 1
))

−1

= (1 −
𝑗

𝑙𝑚
)
(((𝑘−1)/2𝑚)+1)

,

(20)

𝑗

∏
𝑖=0

(1 −
𝑘 + 1

2 (𝑙 − 𝑖)𝑚 − 1
)
𝑗𝑚

∏
V=1

(1 −
1

𝑙𝑚 − V
)

× (
𝑗

∏
𝑖=0

(1 −
1

(𝑙 − 𝑖)𝑚 − 1
)(1 −

𝑗

𝑙𝑚
)
(((𝑘−1)/2𝑚)+1)

)

−1

= (1 −
𝑗

𝑙
)
(((𝑘−1)/2𝑚)+1)

.

(21)

We obtain

ED𝑙𝑚 (𝑘 + 1)

=
2𝑚

4𝑚 − 1

𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2

×
𝑙𝑚

∑
𝑗=1

(1 −
𝑗

𝑙𝑚
)
(((𝑘−1)/2𝑚)+1)

+
𝑘 − 2

2

2𝑚

4𝑚 − 1

×
𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2

𝑙

∑
𝑗=1

(1 −
𝑗

𝑙
)
(((𝑘−1)/2𝑚)+1)

=
2𝑚

4𝑚 − 1

𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2
∫
1

0

(1 − 𝑥)(((𝑘−1)/2𝑚)+1)𝑑𝑥 ⋅ 𝑙𝑚

+
𝑘 − 2

2

2𝑚

4𝑚 − 1

×
𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2
∫
1

0

(1 − 𝑥)(((𝑘−1)/2𝑚)+1)𝑑𝑥 ⋅ 𝑙

=
2𝑚

4𝑚 − 1

𝑘

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2
(1 +

𝑘 − 2

2𝑚
)

⋅
2𝑚

4𝑚 + 𝑘 − 1
⋅ 𝑙𝑚

=
2𝑚

4𝑚 − 1

𝑘+1

∏
𝑖=2

2𝑚 + 𝑖 − 3

4𝑚 + 𝑗 − 2
⋅ 𝑙𝑚.

(22)

The result is true for 𝑘 + 1.

From Theorem 3, we can see that lim𝑛→∞(ED𝑛(𝑘)/𝑛)
exists; we denote it by 𝑝𝑘. Now we consider the relation of
𝑝𝑘 and 𝑝𝑘(𝑛); we introduce the following lemma.

Lemma 4. There exists a bound constant 𝐶(𝑘) such that for
arbitrary 𝑎 > 0,

𝑃 (𝐷𝑛 (𝑘) − ED𝑛 (𝑘)
 ≥ 𝑎) ≤ 2𝑒−𝑎

2
/2𝐶(𝑘)

2
𝑛. (23)

Proof. Let F𝑛 = 𝜎(𝐷1(1), . . . , 𝐷𝑘(1), 𝐷𝑘(2), . . . 𝐷𝑘(𝑘), . . . ,
𝐷𝑛(1), . . . 𝐷𝑛(𝑘) . . . , 𝐷𝑛(𝑛)) denote the 𝜎-algbra. For 𝑚 =
0, 1, . . . , 𝑛, we define

𝑀𝑚 = 𝐸 (𝐷𝑘 (𝑛) | F𝑚) . (24)
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By the tower property of conditional expectation and the fact
that the 𝜎-algbra F𝑛 can be deduced from F𝑛+1, we obtain
that, for𝑚 < 𝑛,

𝐸 (𝑀𝑚+1 | F𝑚) = 𝐸 [𝐸 (𝐷𝑛 (𝑘) | F𝑚+1) | F𝑚]

= 𝐸 (𝐷𝑛 (𝑘) | F𝑚)

= 𝑀𝑚.

(25)

Noticing the fact that

𝐸 [𝑀𝑚
] = 𝐸𝑀𝑚 = ED𝑛 (𝑘) < 𝑛 < ∞, (26)

we have {𝑀𝑚}
𝑛

𝑚=0
as a martingale sequence. According to the

definition of the𝜎-algbra, we know theF0 has no information
of the network andF𝑛 has the whole information, so we have

𝑀0 = 𝐸 [𝐷𝑛 (𝑘) | F0] = ED𝑛 (𝑘) ,

𝑀𝑛 = 𝐸 [𝐷𝑛 (𝑘) | F𝑛] = 𝐷𝑛 (𝑘) .
(27)

Therefore, we have

𝐷𝑛 (𝑘) − ED𝑛 (𝑘) = 𝑀𝑛 −𝑀0 =
𝑛

∑
𝑗=0

(𝑀𝑗+1 −𝑀𝑗) . (28)

Now we prove that there exists a bound constant 𝐶(𝑘),
such that |𝑀𝑗+1 − 𝑀𝑗| ≤ 𝐶(𝑘). We will prove the result by
induction. For the case 𝑘 = 1, we have

𝑀𝑗+1 −𝑀𝑗


=
𝐸 (𝐷𝑛 (1) | F𝑗+1) − 𝐸 (𝐷𝑛 (1) | F𝑗)



=
𝐸 (𝐷𝑛 (1) − 𝐷𝑛−1 (1) | F𝑗+1)

− 𝐸 (𝐷𝑛 (1) − 𝐷𝑛−1 (1) | F𝑗)

+𝐸 (𝐷𝑛−1 (1) | F𝑗+1) − 𝐸 (𝐷𝑛−1 (1) | F𝑗)


=
𝐸 (𝐸 (𝐷𝑛 (1) − 𝐷𝑛−1 (1) | F𝑛−1) | F𝑗+1)

− 𝐸 (𝐸 (𝐷𝑛 (1) − 𝐷𝑛−1 (1) | F𝑛−1) | F𝑗)

+𝐸 (𝐷𝑛−1 (1) | F𝑗+1) − 𝐸 (𝐷𝑛−1 (1) | F𝑗)


= (1 −
1

𝑛 − 1
)

×
𝐸 (𝐷𝑛−1 (1) | F𝑗+1) − 𝐸 (𝐷𝑛−1 (1) | F𝑗)

 .

(29)

Continuing the iteration and noticing the fact that
𝐸(𝐷𝑚(1) | F𝑗+1) − 𝐸(𝐷𝑚(1) | F𝑗) = 0, for 𝑚 < 𝑗, we obtain
that
𝑀𝑗+1 −𝑀𝑗



=
𝑛−1

∏
𝑖=𝑗

(1 −
1

𝑖
)
[𝑛/𝑚]

∏
𝑠=1

(1 −
1

2 (𝑠𝑚 − 1)
)

× (
[𝑛/𝑚]

∏
𝑠=1

(1 −
1

𝑠𝑚 − 1
))

−1

⋅
𝐸 (𝐷𝑗+1 (1) | F𝑗+1) − 𝐸 (𝐷𝑗+1 (1) | F𝑗)



=
𝑛−1

∏
𝑖=𝑗

(1 −
1

𝑖
)
[𝑛/𝑚]

∏
𝑠=1

(1 −
1

2 (𝑠𝑚 − 1)
)

× (
[𝑛/𝑚]

∏
𝑠=1

(1 −
1

𝑠𝑚 − 1
))

−1

⋅
(𝐷𝑗+1 (1) − 𝐷𝑗 (1)) − 𝐸 (𝐷𝑗+1 (1) − 𝐷𝑗 (1) | F𝑗)

 .

(30)

Obviously,

𝐷𝑗+1 (1) − 𝐷𝑗 (1)
 ≤ 1,

𝑛−1

∏
𝑖=𝑗

(1 −
1

𝑖
)
[𝑛/𝑚]

∏
𝑠=1

(1 −
1

2 (𝑠𝑚 − 1)
)

× (
[𝑛/𝑚]

∏
𝑠=1

(1 −
1

𝑠𝑚 − 1
))

−1

≤ 1,

(31)

so we have
𝑀𝑗+1 −𝑀𝑗

 ≤ 2. (32)

Assume the result is true for 𝑘; that is, there exists a bound
constant 𝐶(𝑘), such that

𝑀𝑗+1 −𝑀𝑗
 ≤ 𝐶 (𝑘) . (33)

For 𝑘 + 1, by the definition of𝑀𝑗+1, we have

𝑀𝑗+1 −𝑀𝑗


=
𝐸 (𝐷𝑛 (𝑘 + 1) | F𝑗+1) − 𝐸 (𝐷𝑛 (𝑘 + 1) | F𝑗)



= (1 −
1

𝑛 − 1
)

×
𝐸 (𝐷𝑛 (𝑘 + 1) | F𝑗+1) − 𝐸 (𝐷𝑛−1 (𝑘 + 1) | F𝑗)



+
1

𝑛 − 1
[𝐸 (𝐷𝑛−1 (𝑘) | F𝑗+1) − 𝐸 (𝐷𝑛−1 (𝑘) | F𝑗)] .

(34)
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Continuing the iteration and using the assumption for 𝑘, we
obtain that

𝑀𝑗+1 −𝑀𝑗


≤
𝑛−1

∏
V=𝑗+1

(1 −
1

V
)
[𝑛/𝑚]

∏
𝑖=[(𝑗+1)/𝑚]

(1 −
𝑘 + 1

2 (𝑖𝑚 − 1)
)

× (
[𝑛/𝑚]

∏
𝑖=[(𝑗+1)/𝑚]

(1 −
1

(𝑖𝑚 − 1)
))

−1

⋅
𝐸 (𝐷𝑗+1 (𝑘 + 1) | F𝑗+1) − 𝐸 (𝐷𝑗+1 (𝑘 + 1) | F𝑗)



+
𝑛−𝑗−1

∑
V=1

V

∏
𝑠=1

(1 −
1

𝑛 − 𝑠
)

1

𝑛 − V − 1
𝐶 (𝑘)

+
[(𝑛−𝑗−1)/𝑚]

∑
V=0

𝑛−([𝑛/𝑚]−V)𝑚

∏
𝑠=1

(1 −
1

𝑛 − 𝑠
)

⋅
V

∏
𝑠=0

(1 −
𝑘 + 1

2 (([𝑛/𝑚] − 𝑠)𝑚 − 1)
)

× (
𝑗

∏
𝑠=0

(1 −
1

([𝑛/𝑚] − 𝑠)𝑚 − 1
𝐶(𝑘)))

−1

.

(35)

Noticing the fact that 1 − ((𝑘 + 1)/2𝑗) < 1 − (1/𝑗) and
𝑛−1

∏
V=𝑗+1

(1 −
1

V
)
[𝑛/𝑚]

∏
𝑖=[(𝑗+1)/𝑚]

(1 −
𝑘 + 1

2 (𝑖𝑚 − 1)
)

× (
[𝑛/𝑚]

∏
𝑖=[(𝑗+1)/𝑚]

(1 −
1

(𝑖𝑚 − 1)
))

−1

≤ 1,

(36)

we obtain that
𝑀𝑗+1 −𝑀𝑗

 ≤ 2 +
𝑛 − 𝑗 − 1

𝑛 − 1
𝐶 (𝑘) +

[(𝑛 − 𝑗 − 1) /𝑚]

𝑛 − 1
𝐶 (𝑘)

≤ 2 + 𝐶 (𝑘) (1 +
1

𝑚
) .

(37)

We just let 𝐶(𝑘 + 1) = 2 + 𝐶(𝑘)(1 + (1/𝑚)) and the result for
𝑘+1 is proved. By Asume-Hoeffding’s inequality, we have the
following for arbitrary 𝑎 > 0:

𝑃 (𝐷𝑛 (𝑘) − ED𝑛 (𝑘)
 ≥ 𝑎) ≤ 2𝑒−𝑎

2
/2𝐶(𝑘)

2
𝑛. (38)

Theorem 5. For a fixed 𝑘, one has
lim
𝑛→∞

𝑝𝑘 (𝑛) = 𝑝𝑘 𝑎.𝑒. (39)

Proof. By the Borel-Cantelli Lemma, we need to prove the
following for arbitrary 𝜀:

∞

∑
𝑛=1

𝑃 (𝑝𝑘 (𝑛) − 𝑝𝑘
 > 𝜀) < ∞. (40)

We have
∞

∑
𝑛=1

𝑃 (𝑝𝑘 (𝑛) − 𝑝𝑘
 > 𝜀)

=
∞

∑
𝑛=1

𝑃(


𝐷𝑛 (𝑘)

𝑛
−
ED𝑛 (𝑘)

𝑛
+
ED𝑛 (𝑘)

𝑛
− 𝑝𝑘


> 𝜀)

≤
∞

∑
𝑛=1

𝑃(


𝐷𝑛 (𝑘)

𝑛
−
ED𝑛 (𝑘)

𝑛


≥
𝜀

2
)

+
∞

∑
𝑛=1

𝑃(


ED𝑛 (𝑘)
𝑛

− 𝑝𝑘

≥
𝜀

2
) .

(41)

Noticing that lim𝑛→∞ED𝑘(𝑛)/𝑛 = 𝑝𝑘 and using Lemma 4,
we obtain that there exists𝑁, such that

∞

∑
𝑛=1

𝑃 (𝑝𝑘 (𝑛) − 𝑝𝑘
 > 𝜀)

≤
∞

∑
𝑛=1

𝑃(𝐷𝑛 (𝑘) − ED𝑛 (𝑘)
 ≥

𝜀

2
𝑛) + 𝑁

≤
∞

∑
𝑛=1

2𝑒−(𝜀
2
/4)𝑛 + 𝑁

< ∞.

(42)

Remark 6. As a result, we can see that the distribution 𝑝𝑘
obeys the following rule.

When 𝑚 ≪ 𝑘, 𝑝𝑘 ∝ 𝑘−(2𝑚+1), the degree distribution
obeys power law; when 𝑚 ≫ 𝑘, 𝑝𝑘 ∝ 2−𝑘, the degree dis-
tribution obeys exponential distribution; otherwise, 𝑝𝑘 =

(2𝑚/(4𝑚 − 1))∏𝑘
𝑗=2

((2𝑚 + 𝑗 − 3)/(4𝑚 + 𝑗 − 2)).
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