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Two nonstandard finite difference schemes are derived to solve the regularized long wave equation. The criteria for choosing the
“best” nonstandard approximation to the nonlinear term in the regularized longwave equation come from considering themodified
equation.The two “best” nonstandard numerical schemes are shown to preserve conserved quantities when compared to an implicit
scheme in which the nonlinear term is approximated in the usual way. Comparisons to the single solitary wave solution show
significantly better results, measured in the 𝐿

2
and 𝐿

∞
norms, when compared to results obtained using a Petrov-Galerkin finite

element method and a splitted quadratic B-spline collocation method. The growth in the error when simulating the single solitary
wave solution using the two “best” nonstandard numerical schemes is shown to be linear implying the nonstandard finite difference
schemes are conservative. The formation of an undular bore for both steep and shallow initial profiles is captured without the
formation of numerical instabilities.

1. Introduction

In this paper we derive two nonstandard finite difference
schemes to solve the regularized long wave (RLW) equation.
TheRLWequation has been derived by Peregrine [1] tomodel
the propagation of a unidirectional weakly nonlinear and
weakly dispersive water wave known as an undular bore.
The model equation is given by the mixed space-time partial
differential equation:
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= 0, 𝑥 ∈ R, 𝑡 > 0, (1)

where

𝑢 (𝑥, 0) = 𝑔 (𝑥) , 𝑥 ∈ R. (2)

The RLW equation (1) satisfies the Dirichlet boundary condi-
tions

𝑢 󳨀→ 0, 𝑥 ±∞. (3)

Benjamin et al. [2] have proposed the RLW equation (1) as an
alternative to the Korteweg de Vries (KdV) equation [3]
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tomodel phenomena in wave propagation and other physical
systems. The criteria for selecting the “best” nonstandard
approximation to the nonlinear term in the RLW equation
come from considering the effects of the modified equation
on the single solitary wave solution admitted by the RLW
equation (1). The modified equation is obtained by consid-
ering coefficients O(Δ𝑡/Δ𝑥2) of a Taylor series expansion of
an implicit scheme andnonstandard finite difference schemes
approximating the RLW equation. We show that the two
“best” nonstandard approximations to the nonlinear term
make the nonstandard finite difference schemes approximat-
ing the RLW equation (1) second-order accurate, that is,
O(Δ𝑡2/Δ𝑥4), where Δ𝑡 is the time step length and Δ𝑥 is the
spatial step length. To the best of our knowledge this is the
first paper in which the analysis of the modified equation has
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been used to justify the choice of nonstandard approximation
to a nonlinear term.

The nonstandard finite difference schemes are reduced
to linear tridiagonal systems that are solved using a Thomas
algorithm [4]. We show that the nonstandard numerical
schemes preserve the conserved quantities (these quantities
have been obtained by Olver [5]):
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𝑢 𝑑𝑥, (5)
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3
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2
) 𝑑𝑥. (7)

For completeness, we show that a standard implicit scheme
in which the nonlinear term is approximated in the usual way
does not preserve (5)–(7). Numerical solutions obtained from
simulations of the nonstandard finite difference schemes
modelling the single solitary wave solution [1] of the RLW
equation (1) given by

𝑢 (𝑥, 𝑡) = 3V sech2 (𝑘
0
𝑥 + 𝑘
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𝑡 + 𝑥
0
) , (8)
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, 𝑘
1
= −

1

2
√V (1 + V), (9)

and 𝑥
0
is an arbitrary constant, show significantly better

results when measured in the 𝐿
2
and 𝐿

∞
norms when

compared to simulations of the single solitary wave solution
using a Petrov-Galerkin finite element method [6] and a
splitted quadratic B-spline collocation method [7]. We also
show that a nonstandard finite difference scheme is able to
capture the formation of an undular bore for both steep and
shallow initial profiles without the formation of numerical
instabilities on the solution profile.

Various numerical approaches have been developed to
solve the RLW equation (1). Peregrine [1] implemented a
finite difference scheme to solve (1) that is first-order accurate
in time and second-order accurate in space. Eilbeck and
McGuire [8, 9] have derived a three-level second-order
accurate space and time scheme. An implicit finite difference
scheme has been implemented by Kutluay and Esen [10]. Jain
et al. [11] have developed a numerical scheme that is second-
order accurate in both space and time based on cubic spline
interpolations. Bona et al. [12] review fourth-order finite
difference schemes to solve (1). Numerical methods based
on spline Galerkin techniques have also been implemented
[7, 13–19]. An analysis of finite element techniques applied
to the RLW equation has been undertaken by Luo and
Liu [20]. Pseudospectral methods have been developed by
Ben-yu and Manoranjan [21] and Sloan [22] with exten-
sions to Chebyshev collocation methods investigated by Ali
[23]. Avilez-Valente and Seabra-Santos [6] show that their
approach using a Petrov-Galerkin finite elementmethod out-
performsnumericalmethods based on splineGalerkin aswell
as pseudospectral methods but is equivalent to the splitted

quadratic B-spline collocation method introduced by Daǧ
et al. [7]. Avilez-Valente and Seabra-Santos [6] use finite
elements in both time and space. They introduce additional
streamline upwind terms in the weight functions to ensure
that dispersion correction and selective dissipation occur.
Two versions of the numerical scheme are derived. A non-
linear version of the resulting predictor-corrector scheme
is found to be third-order accurate. A linear version of
the resulting scheme is found to be fourth-order accurate.
Both versions of the numerical scheme are implicit and
conditionally stable. Raslan [24] has employed a collocation
method based on a cubic B-spline method to solve the RLW
equation. Bhardwaj and Shankar [25] developed a numerical
technique based on quintic splines. Cubic [26], quartic [27],
and quintic [28, 29] B-spline collocation methods applied
to a splitted RLW equation have been investigated to solve
(1). Irk [30] extends the work of Bhardwaj and Shankar
[25] by considering an Adams-Moulton time-integration
scheme coupled with a quintic spline collocation method for
the spatial variable. Araújo and Durán [31] have discussed
the importance of using numerical schemes that conserve
the invariants of (1). More specifically, they show that the
error growth in schemes that are conservative is linear
whilst nonconservative schemes have quadratic growth in
the errors. Araújo and Durán [31] base their results on the
fact that the RLW equation admits a Hamiltonian structure.
Also, one of its invariants is generated by a symmetry group.
Solitary wave solutions admitted by the RLW equation then
occur as critical points of the Hamiltonian function [31].This
geometric interpretation of the solitary wave solution is used
to determine the relationship between numerical schemes
that conserve quantities (5)–(7) and the linear growth in
error. Cai derives the Bridge’s multisymplectic form of the
RLW equation to derive a ten-point multisymplectic scheme
to solve the RLW equation [32].

Avilez-Valente and Seabra-Santos [6] perform a thor-
ough comparison of their results with the work of Daǧ
[14], Daǧ et al. [7], Gardner et al. [17], Gardner et al. [18], and
Jain et al. [11]. Avilez-Valente and Seabra-Santos [6] conclude
that their Petrov-Galerkin finite element formulation and the
splitted quadratic B-spline collocation method implemented
by Daǧ et al. [7] are the most effective approaches for solving
the RLW equation. We compare our results to the results
obtained by Avilez-Valente and Seabra-Santos [6] and Daǧ
et al. [7]. We show the results obtained by Avilez-Valente
and Seabra-Santos [6] and Daǧ et al. [7] in Tables 1 and 2,
respectively. In Tables 1 and 2 the 𝐿

2
and 𝐿

∞
norms are given

by
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where 𝑢∗(𝑥
𝑖
, 𝑡
𝑗
) is the value of the single solitary wave

solution (8) to the RLW equation at 𝑥 = 𝑥
𝑖
and 𝑡 = 𝑡

𝑗
for

V = 0.1 and 𝑥
0
= 0.
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Table 1: Table of values obtained by Avilez-Valente and Seabra-Santos [6] using a Petrov-Galerkin finite element method.

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞
× 10
3

0 3.979927 0.8104625 2.579007 0.00000 0.00000
4 3.979944 0.8104625 2.579007 0.01549 0.00695
8 3.979947 0.8104625 2.579007 0.03000 0.01343
12 3.979946 0.8104625 2.579007 0.04306 0.01868
16 3.979939 0.8104625 2.579007 0.05464 0.02292
20 3.979909 0.8104625 2.579007 0.06493 0.02643

Table 2: Table of values obtained by Daǧ et al. [7] using a splitted quadratic B-spline collocation method.

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞
× 10
3

0 3.979926 0.8104646 2.579007 0.00000 0.00000
4 3.979930 0.8104626 2.578998 0.01757 0.00693
8 3.979924 0.8104606 2.578994 0.02249 0.00887
12 3.979926 0.8104621 2.578997 0.03355 0.01072
16 3.979918 0.8104624 2.578999 0.04075 0.01224
20 3.979890 0.8104625 2.578999 0.04315 0.01321

The work undertaken in this paper is a major contri-
bution to the field because of the accuracy of the results
obtained for the low computational cost when compared
to other methods. An example of the high computational
cost that can be incurred to obtain accurate results can be
seen in the work of Bona et al. [12]. Bona et al. [12] have
implemented a Runge-Kutta approximation as a first step in
a leap frog approximation to the time derivative. Bona et al.
[12] approximate the spatial derivatives using a Gregory-
Euler-Maclaurin (GEM) schemewhich has a truncation error
O(Δ𝑥4). Bona et al. [12] showed that by using a semidiscrete
scheme they could obtain a tridiagonal system. Bona et al.
[12] compare leap frog (LF), fourth-order Runge-Kutta (RK),
and multistep (MS) predictor-corrector approximations to
the time derivative. Fourth-order discretizations in space
that lead to Störmer-Numerov (SN) type schemes [33] are
also considered. Fourth-order Runge-Kutta approximations
to the time derivative coupled with the SN approximation
to the spatial derivative (SN-RK schemes) were simulated.
The SN-RK scheme performed worse in the simulations
undertaken by Bona et al. [12]. The Petrov-Galerkin finite
element method of Avilez-Valente and Seabra-Santos [6] is
also reduced to a tridiagonal system but has to be evaluated
several times at each time step because of the high-order
time integration method involved. The splitted quadratic B-
spline collocation scheme implemented by Daǧ et al. [7]
leads to a pentadiagonal system that also has to be evaluated
multiple times at each time step because of the high-order
time integrationmethod that is chosen. Asmentioned earlier,
the nonstandard finite difference schemes are reduced to
linear tridiagonal systems that we solve using a Thomas
algorithm [4]. The implicit nature of the schemes means that
at each time step the system matrix is recalculated and the
system resolved. This is computationally not as expensive as
the methods mentioned above.

In this paper we investigate nonstandard approximations
to the nonlinear term in the RLW equation to derive non-
standard finite difference schemes approximating (1). An
introduction to nonstandard finite difference schemes and
their applications to differential equations is given in the
paper by Mickens [34]. Applications to ordinary differential
equations are discussed in Mickens [35] and Anguelov and
Lubuma [36].Theoretical developments of nonstandard finite
difference schemes and their applications to partial differ-
ential equations are investigated by Anguelov and Lubuma
[37]. Mickens [38] considers the general application of
nonstandard finite difference schemes to nonlinear reaction-
advection equations. Mickens [39] extends these results by
considering reaction-diffusion equations and derives positiv-
ity preserving nonstandard finite difference schemes. Jordan
[40] derives a nonstandard finite difference scheme satisfying
a positivity condition to model heat transfer with a quartic
nonlinearity. Mickens [41] constructs nonstandard finite dif-
ference schemes to solve a Fisher partial differential equation
that has application in ecology. Positivity preserving schemes
forMaxwell-Cattaneowave equations are derived byMickens
and Jordan [42].

In this paper we select the “best” nonstandard approx-
imation to the nonlinear term in the RLW equation by
investigating the effects of the modified equation on the
single solitary wave solution (8). Warming and Hyett [43]
investigate the stability of simple linear partial differential
equations by investigating the modified partial differential
equation. In a series of papers Villatoro and Ramos [44–
47] used the modified equation approach to analyze and
improve the efficiency of an Euler forward difference method
to solve linear and nonlinear differential equations. Junk and
Yang [48] combine a modified equation and truncation error
analysis in an asymptotic analysis of finite difference schemes.
Rus and Villatoro [49] derive high-order finite difference
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schemes that preserve conserved quantities for Rosenau-
Hyman equation based on the correspondingmodified equa-
tions.

The paper is divided up as follows: in Section 2 we derive
and analyze the nonstandard finite difference schemes. The
numerical schemes are simulated in Section 3. Concluding
remarks are made in Section 4.

2. Analysis of Modified Equation

In this section we analyze the modified equation that we
obtain from a finite difference approximation of the RLW
equation (1). We define 𝑢𝑗

𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑗
), where the spatial

domain is discretized into 𝑛 + 1 points and 𝑥
𝑖
= 𝑖Δ𝑥,

where Δ𝑥 is the spatial step length. The time 𝑡
𝑗
is defined by

𝑡
𝑗
= 𝑗Δ𝑡, where Δ𝑡 is the time step length. Central difference

approximations to the spatial derivatives are given by
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2
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A forward difference approximation to the time derivative is
given by

𝜕𝑢
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≈
𝑢
𝑗+1

𝑖
− 𝑢
𝑗

𝑖

Δ𝑡
+ O (Δ𝑡) . (13)

We write the RLW equation (1) as

𝜕
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= 0. (14)

Substituting (11), (12), and (13) with (14) we obtain an implicit
numerical scheme given by

−
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(15)

where we have approximated the partial derivative 𝜕𝑢/𝜕𝑥
explicitly. To obtain the modified equation we substitute the
Taylor series approximations
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𝑖
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to obtain the partial differential equation
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We let the modified equation be defined by Δ𝜖. Multiplying
the modified equation Δ𝜖 by Δ𝑡/(2Δ𝑥2) we obtain

Δ𝑡Δ𝜖
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2
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𝜕
4
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. (18)

To determine the effects of the modified equation (18) on
the single solitary wave solution of the RLW equation (1) we
substitute the single solitary wave solution (8) with (18) and
plot Δ𝑡Δ𝜖/(2Δ𝑥2) at different times in Figure 1.

We improve the stability and accuracy of the numerical
scheme (15) by approximating the derivative 𝜕𝑢/𝜕𝑥 implicitly
to obtain an implicit scheme to solve the RLW equation (14)
given by
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The corresponding modified equation is given by

Δ𝑡Δ𝜖

2Δ𝑥2
=
𝜕
2
𝑢

𝜕𝑡2
+
𝜕
2
𝑢

𝜕𝑡𝜕𝑥
−

𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2
. (20)

Once again we determine the effects of themodified equation
(20) on the single solitary wave solution of the RLW equation
(1) by substituting the single solitary wave solution (8) with
(20) and plotting the resulting function in Figure 1.

From the results indicated in Figure 1 we note that the
impact of the modified equation on the single solitary wave
solution of the RLW equation (1) is smaller for the modified
equation (20) derived from the finite difference scheme (19)
where the derivative 𝜕𝑢/𝜕𝑥 is approximated implicitly than
for (18) derived from the finite difference scheme (15) where
the derivative 𝜕𝑢/𝜕𝑥 is approximated explicitly. From this
result we can conclude that the finite difference scheme (19)
will yield better results than (15) when used to determine
solutions to the RLW equation (1). We note that the curves in
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Δ
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Figure 1: Plot comparing the modified equations obtained for
explicit (18) (− − −) and implicit (20) (solid line) approximations
to the derivative 𝜕𝑢/𝜕𝑥 after substituting the single solitary wave
solution to the RLW equation (8) with (18) and (20) taking V = 0.1
and 𝑥

0
= 0.

Figure 1 propagate with the wave velocity of the single solitary
wave solution (8) maintaining a constant wave amplitude.

We firstly consider the nonstandard approximation [41]

(𝑢
𝑗

𝑖
)
2

󳨀→ 2(𝑢
𝑗

𝑖
)
2

− 𝑢
𝑗+1

𝑖
𝑢
𝑗

𝑖
. (21)

The implicit scheme (19) reduces to
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[(2(𝑢

𝑗

𝑖+1
)
2

− 𝑢
𝑗+1

𝑖+1
𝑢
𝑗

𝑖+1
)

− (2(𝑢
𝑗

𝑖−1
)
2

− 𝑢
𝑗+1

𝑖−1
𝑢
𝑗

𝑖−1
)] = 0,

(22)

where the corresponding modified equation is given by

Δ𝑡Δ𝜖

2Δ𝑥2
=
𝜕
2
𝑢

𝜕𝑡2
−
𝜕𝑢

𝜕𝑡

𝜕𝑢

𝜕𝑥
+ (1 − 𝑢)

𝜕
2
𝑢

𝜕𝑡𝜕𝑥
−

𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2
. (23)

We next consider the nonstandard approximation [36]

(𝑢
𝑗

𝑖−1
)
2

󳨀→ 𝑢
𝑗

𝑖−1
𝑢
𝑗+1

𝑖−1
, (𝑢

𝑗

𝑖+1
)
2

󳨀→ 𝑢
𝑗

𝑖+1
𝑢
𝑗+1

𝑖+1
, (24)

where

𝑢
𝑗

𝑖−1
=
1

2
(𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
) , 𝑢

𝑗

𝑖+1
=
1

2
(𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
) . (25)

The implicit scheme (19) reduces to

−
1

Δ𝑡
(𝑢
𝑗+1

𝑖+1
− 𝑢
𝑗

𝑖+1
) + (

Δ𝑥
2
+ 2

Δ𝑡
) (𝑢
𝑗+1

𝑖
− 𝑢
𝑗

𝑖
)

−
1

Δ𝑡
(𝑢
𝑗+1

𝑖−1
− 𝑢
𝑗

𝑖−1
) +

Δ𝑥

4
(𝑢
𝑗+1

𝑖+1
+ 𝑢
𝑗

𝑖+1
− 𝑢
𝑗+1

𝑖−1
− 𝑢
𝑗

𝑖−1
)

+
Δ𝑥

8
[(𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
) 𝑢
𝑗+1

𝑖+1
− (𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
) 𝑢
𝑗+1

𝑖−1
] = 0,

(26)

where the corresponding modified equation is given by

Δ𝑡Δ𝜖

2Δ𝑥2
=
𝜕
2
𝑢

𝜕𝑡2
+
1

2

𝜕𝑢

𝜕𝑡

𝜕𝑢

𝜕𝑥
+ (1 + 𝑢)

𝜕
2
𝑢

𝜕𝑡𝜕𝑥
−

𝜕
4
𝑢

𝜕𝑡2𝜕𝑥2
. (27)

We substitute the single solitary wave solution (8) with (23)
and (27) and plot the resulting functions in Figure 2 to
determine the effects of the modified equations (23) and (27)
on the single solitary wave solution of the RLW equation (1).

From the results indicated in Figure 2 we note that the
impact of the modified equation (27) on the single solitary
wave solution of the RLW equation (1) is smaller than that
of the modified equation (23). We can therefore conclude
that the nonstandard approximation (24) is a better approx-
imation to use for the nonlinear term in the RLW equation
than (21). We can also conclude that the finite difference
scheme (26) will produce better results than (22) when used
to determine numerical solutions to the RLW equation. In
both cases the functions obtained after substituting the single
solitary wave solution of the RLW equation (1) with the
modified equations (23) and (27) propagate with the wave
velocity of the single solitary wave solution.

We next consider the approximation [41]

(𝑢
𝑗

𝑖
)
2

󳨀→ 𝑢
𝑗+1

𝑖
𝑢
𝑗

𝑖
. (28)

Substituting (28) with (19) we obtain the nonstandard numer-
ical scheme

−
1

Δ𝑡
(𝑢
𝑗+1

𝑖+1
− 𝑢
𝑗

𝑖+1
) + (

Δ𝑥
2
+ 2

Δ𝑡
) (𝑢
𝑗+1

𝑖
− 𝑢
𝑗

𝑖
)

−
1

Δ𝑡
(𝑢
𝑗+1

𝑖−1
− 𝑢
𝑗

𝑖−1
) +

Δ𝑥

4
(𝑢
𝑗+1

𝑖+1
+ 𝑢
𝑗

𝑖+1
− 𝑢
𝑗+1

𝑖−1
− 𝑢
𝑗

𝑖−1
)

+
Δ𝑥

4
[𝑢
𝑗+1

𝑖+1
𝑢
𝑗

𝑖+1
− 𝑢
𝑗+1

𝑖−1
𝑢
𝑗

𝑖−1
] = 0.

(29)

The modified equation corresponding to (29) is given by

Δ𝑡Δ𝜖

Δ𝑥2
=
𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑡
−

𝜕
3
𝑢

𝜕𝑡𝜕𝑥2
+
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑥
) = 0. (30)
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Figure 2: Plot comparing the behaviour of the modified equations
obtained for the nonstandard approximation (21) (− − −) and the
nonstandard approximation (24) (solid line) to the nonlinear term in
the RLW equation after substituting the single solitary wave solution
to theRLWequation (8)with (23) and (27) taking V = 0.1 and𝑥

0
= 0.

We consider the next order in Taylor series expansions (16) to
obtain the modified equation

Δ𝑡
2
Δ𝜖

6Δ𝑥4
=
𝜕
3
𝑢

𝜕𝑡3
+
3

2

𝜕
2
𝑢

𝜕𝑡2

𝜕𝑢

𝜕𝑥
+
3

2

𝜕
3
𝑢

𝜕𝑡2𝜕𝑥
(1 + 𝑢) −

𝜕
5
𝑢

𝜕𝑡3𝜕𝑥2
.

(31)

We finally consider the approximation [39]

(𝑢
𝑗

𝑖
)
2

󳨀→
1

3
(𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
) 𝑢
𝑗+1

𝑖
. (32)

The implicit scheme (19) reduces to

−
1

Δ𝑡
(𝑢
𝑗+1

𝑖+1
− 𝑢
𝑗

𝑖+1
) + (

Δ𝑥
2
+ 2

Δ𝑡
) (𝑢
𝑗+1

𝑖
− 𝑢
𝑗

𝑖
)

−
1

Δ𝑡
(𝑢
𝑗+1

𝑖−1
− 𝑢
𝑗

𝑖−1
) +

Δ𝑥

4
(𝑢
𝑗+1

𝑖+1
+ 𝑢
𝑗

𝑖+1
− 𝑢
𝑗+1

𝑖−1
− 𝑢
𝑗

𝑖−1
)

+
Δ𝑥

12
[(𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
+ 𝑢
𝑗

𝑖+2
) 𝑢
𝑗+1

𝑖+1

− (𝑢
𝑗

𝑖−2
+ 𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
) 𝑢
𝑗+1

𝑖−1
] = 0.

(33)

The corresponding modified equation is given by (30) and
hence (31), respectively.We substitute the single solitary wave
solution (8) with (31) and plot the resulting function in
Figure 3.

From the results plotted in Figure 3 we observe that the
second-order modified equation has the same order error as
the first-order modified equations plotted in Figure 2. The
solutions plotted in Figure 3 propagate with the wave velocity
of the solitary wave solution.

Since the first-order modified equation (30) is identi-
cally satisfied we can conclude that the nonstandard finite
difference schemes (29) and (33) are second-order accurate.
Hence we can conclude that the nonstandard approximations
(28) and (32) are the “best” approximations to use for the
RLW equation. In addition, we obtain the CFL condition
Δ𝑡/Δ𝑥

2
≪ 1 for the stability of the implicit finite difference

scheme (19) and Δ𝑡
2
/Δ𝑥
4
≪ 1 for the stability of the

nonstandard finite difference schemes (29) and (33). In the
next section we simulate the nonstandard finite difference
schemes (29) and (33) to determine which scheme conserves
(5)–(7) the “best.”

3. Simulation of Numerical Schemes

For the first part of this sectionwe take as the initial condition
from the single solitary wave solution (8)

𝑢 (𝑥, 0) = u0 = 3V sech2 (𝑘
0
𝑥) , (34)

where u0 = [𝑢
0

0
, 𝑢
0

1
, . . . , 𝑢

0

𝑛
] and 𝑘

0
= (1/2)√V/(1 + V). We

choose V = 0.1 and 𝑥
0
= 0 and divide the interval 𝑥 =

[−50, 70] into 𝑛+1 equidistant points takingΔ𝑡 = 0.0001 and
𝑛 = 5000. We simulate the proposed nonstandard numerical
schemes using MATHEMATICA on a 2.66GHz quad core
Windows machine with 8.00GBRAM.

We firstly consider the implicit scheme (19) that we write
as

(−
1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗+1

𝑖+1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗+1

𝑖
+ (−

1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗+1

𝑖−1

= (−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑖+1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑖

+ (−
1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑖−1
−
Δ𝑥

4
[(𝑢
𝑗

𝑖+1
)
2

− (𝑢
𝑗

𝑖−1
)
2

] .

(35)

We then write the numerical scheme (35) as the linear system

Au𝑗+1 = d, (36)

where

A =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

𝑎
1
𝑏
1
𝑐
1
0 ⋅ ⋅ ⋅

...
...

...
...

0 𝑎
2
𝑏
2
𝑐
2
⋅ ⋅ ⋅

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

... ⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑏
𝑛−2

𝑐
𝑛−2

0

...
...

...
... ⋅ ⋅ ⋅ 0 𝑎

𝑛−1
𝑏
𝑛−1

𝑐
𝑛−1

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (37)
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d =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

2
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

1
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

0
−
Δ𝑥

4
[(𝑢
𝑗

2
)
2

− (𝑢
𝑗

0
)
2

]

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

3
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

2
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

1
−
Δ𝑥

4
[(𝑢
𝑗

3
)
2

− (𝑢
𝑗

1
)
2

]

...

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑛−1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑛−2
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑛−3
−
Δ𝑥

4
[(𝑢
𝑗

𝑛−1
)
2

− (𝑢
𝑗

𝑛−3
)
2

]

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑛
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑛−1
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑛−2
−
Δ𝑥

4
[(𝑢
𝑗

𝑛
)
2

− (𝑢
𝑗

𝑛−2
)
2

]

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (38)

For the scheme (35)

𝑎
𝑖
= −

1

Δ𝑡
−
Δ𝑥

4
, 𝑏

𝑖
=
Δ𝑥
2
+ 2

Δ𝑡
, 𝑐

𝑖
= −

1

Δ𝑡
+
Δ𝑥

4
.

(39)

The boundary conditions (3) determine the first and last rows
ofA and d. We use aThomas algorithm [4] to solve the linear
system of equations (36). We compare the single solitary
wave solution (8) to the numerical solution obtained from
the linear system (36) corresponding to the implicit scheme
(35) using the 𝐿

2
and 𝐿

∞
norms as defined in (10). We also

evaluate the conserved quantities (5)–(7) using a trapezoidal
quadrature rule. We tabulate our results in Table 3. We find
that the implicit scheme (35) does not preserve 𝐼

2
or 𝐼
3
. At

𝑡 = 20 the 𝐿
2
and 𝐿

∞
norms are significantly better than

the 𝐿
2
and 𝐿

∞
norms obtained by Avilez-Valente and Seabra-

Santos [6] and Daǧ et al. [7] indicated in Tables 1 and 2,
respectively.

We next consider the nonstandard numerical scheme
(29). The nonstandard numerical scheme (29) can be written
as

[−
1

Δ𝑡
+
Δ𝑥

4
(1 + 𝑢

𝑗

𝑖+1
)] 𝑢
𝑗+1

𝑖+1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗+1

𝑖

+ [−
1

Δ𝑡
−
Δ𝑥

4
(1 + 𝑢

𝑗

𝑖−1
)] 𝑢
𝑗+1

𝑖−1

= (−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑖+1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑖

+ (−
1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑖−1
.

(40)

We write the numerical scheme (40) as the system (36) where
A is given by (37) and where

d =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

2
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

1
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

0

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

3
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

2
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

1

...

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑛−1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑛−2
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑛−3

(−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑛
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑛−1
+ (−

1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑛−2

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (41)

such that

𝑎
𝑖
= −

1

Δ𝑡
−
Δ𝑥

4
(1 + 𝑢

𝑗

𝑖−1
) , 𝑏

𝑖
=
Δ𝑥
2
+ 2

Δ𝑡
,

𝑐
𝑖
= −

1

Δ𝑡
+
Δ𝑥

4
(1 + 𝑢

𝑗

𝑖+1
) .

(42)

We tabulate our results in Table 4. We find that the non-
standard numerical scheme (40) shows no deviation in the
evaluation of the conserved quantities (5)–(7). Also, the 𝐿

2

and 𝐿
∞
norms are once again significantly better than the 𝐿

2

and 𝐿
∞
norms obtained by Avilez-Valente and Seabra-Santos

[6] and Daǧ et al. [7] indicated in Tables 1 and 2, respectively.



8 Abstract and Applied Analysis

Table 3: Table comparing values obtained from the implicit scheme (35) to the single solitary wave solution (8) for 𝑥
0
= 0 and 𝑣 = 0.1, for

𝑥 ∈ [−50, 70], and taking 𝑛 = 5000 and Δ𝑡 = 0.0001.

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞
× 10
3

0 3.97995 0.810462 2.57901 0.00000 0.00000
4 3.97995 0.810463 2.57901 0.0044822 0.00190039
8 3.97995 0.810464 2.57901 0.00884828 0.00377625
12 3.97995 0.810466 2.57902 0.0130448 0.00550027
16 3.97995 0.810467 2.57902 0.0170392 0.00705772
20 3.97995 0.810468 2.57903 0.0208237 0.00846861

Table 4: Table comparing values obtained from the nonstandard numerical scheme (40) to the single solitary wave solution (8) for 𝑥
0
= 0

and 𝑣 = 0.1, for 𝑥 ∈ [−50, 70], and taking 𝑛 = 5000 and Δ𝑡 = 0.0001.

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞
× 10
3

0 3.97995 0.810462 2.57901 0.00000 0.00000
4 3.97995 0.810462 2.57901 0.00424465 0.00167944
8 3.97995 0.810462 2.57901 0.00839433 0.00337615
12 3.97995 0.810462 2.57901 0.012402 0.00495651
16 3.97995 0.810462 2.57901 0.0162382 0.00639525
20 3.97995 0.810462 2.57901 0.0198962 0.00770612

We finally consider the nonstandard numerical scheme
(33). The nonstandard numerical scheme (33) can be written
as

[−
1

Δ𝑡
+
Δ𝑥

4
+
Δ𝑥

12
(𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
+ 𝑢
𝑗

𝑖+2
)] 𝑢
𝑗+1

𝑖+1

+ (
Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗+1

𝑖

+ [−
1

Δ𝑡
−
Δ𝑥

4
−
Δ𝑥

12
(𝑢
𝑗

𝑖−2
+ 𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
)] 𝑢
𝑗+1

𝑖−1

= (−
1

Δ𝑡
−
Δ𝑥

4
) 𝑢
𝑗

𝑖+1
+ (

Δ𝑥
2
+ 2

Δ𝑡
) 𝑢
𝑗

𝑖

+ (−
1

Δ𝑡
+
Δ𝑥

4
) 𝑢
𝑗

𝑖−1
.

(43)

We write (43) as the linear system (36) where A and d are
given by (37) and (41) such that

𝑎
1
= −

1

Δ𝑡
−
Δ𝑥

4
−
Δ𝑥

12
(2𝑢
𝑗

1
+ 𝑢
𝑗

0
) ,

𝑎
𝑖
= −

1

Δ𝑡
−
Δ𝑥

4
−
Δ𝑥

12
(𝑢
𝑗

𝑖−2
+ 𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
) , 𝑖 = 2, . . . , 𝑛 − 1,

𝑐
𝑛−1

= −
1

Δ𝑡
+
Δ𝑥

4
+
Δ𝑥

12
(2𝑢
𝑗

𝑛−1
+ 𝑢
𝑗

𝑛
) ,

𝑐
𝑖
= −

1

Δ𝑡
+
Δ𝑥

4
+
Δ𝑥

12
(𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
+ 𝑢
𝑗

𝑖+2
) , 𝑖 = 1, . . . , 𝑛 − 2,

𝑏
𝑖
=
Δ𝑥
2
+ 2

Δ𝑡
, 𝑖 = 1, . . . , 𝑛 − 1.

(44)
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Figure 3: Plot showing the behaviour of the second-order modified
equation (31) after substituting the single solitary wave solution to
the RLW equation (8) with (31) taking V = 0.1 and 𝑥

0
= 0.

The unknown values of 𝑢 in 𝑎
1
and 𝑐
𝑛−1

are determined from
Neumann boundary conditions obtained from the central
difference approximation (11)

𝑢
𝑗

𝑖+1
− 𝑢
𝑗

𝑖−1

2Δ𝑥
= 0. (45)

Evaluating (45) at 𝑖 = 0 and 𝑖 = 𝑛 we get that 𝑢𝑗
−1

= 𝑢
𝑗

1

and 𝑢𝑗
𝑛+1

= 𝑢
𝑗

𝑛−1
. We tabulate the results obtained from

the numerical scheme (43) in Table 5. We find that the
nonstandard numerical scheme (43) conserves 𝐼

1
, 𝐼
2
, and 𝐼

3

obtained from (5)–(7). Once again the 𝐿
2
and 𝐿

∞
norms

at 𝑡 = 20 are significantly better than the 𝐿
2
and 𝐿

∞

norms obtained by Avilez-Valente and Seabra-Santos [6] and
Daǧ et al. [7] indicated in Tables 1 and 2, respectively.

In Figure 4 we plot the time evolution of the 𝐿
2
and

𝐿
∞

norms for the implicit scheme (35) and the nonstandard
numerical schemes (40) and (43). We note from Figure 4
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Table 5: Table comparing values obtained from the nonstandard numerical scheme (43) to the single solitary wave solution (8) for 𝑥
0
= 0

and 𝑣 = 0.1, for 𝑥 ∈ [−50, 70], and taking 𝑛 = 5000 and Δ𝑡 = 0.0001.

Time 𝐼
1

𝐼
2

𝐼
3

𝐿
2
× 10
3

𝐿
∞
× 10
3

0 3.97995 0.810462 2.57901 0.00000 0.00000
4 3.97995 0.810462 2.57901 0.00514014 0.00207598
8 3.97995 0.810462 2.57901 0.0101538 0.00416179
12 3.97995 0.810462 2.57901 0.0149734 0.0060774
16 3.97995 0.810462 2.57901 0.019566 0.00780266
20 3.97995 0.810462 2.57901 0.023929 0.00936437
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0.000
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0.015

0.020

t

0 5 10 15 20
0.000

0.002

0.004

0.006

0.008

t

L
2

L
∞

Figure 4: Plot showing the time evolution of the 𝐿
2
and 𝐿

∞
norms for the implicit scheme (35) (solid line), the nonstandard numerical

schemes (40) (− − −) and (43) (⋅ ⋅ ⋅ ).

that the implicit scheme (35) performs better than the
nonstandard numerical scheme (43) in terms of the growth
in the error. The nonstandard numerical (40) is the best
performer in terms of the growth in the error. From the work
of Araújo and Durán [31] we can conclude that because the
growth in the errors is linear and the nonstandard numerical
schemes preserve the invariants (5)–(7) the schemes (40) and
(43) are conservative.

In this section we have also shown that the implicit
scheme (35), with no nonstandard approximation to the
nonlinear term, produces results that do not preserve the
invariants (5)–(7), even though at 𝑡 = 20 the 𝐿

2
and 𝐿

∞

norms are significantly better than the results obtained by
Avilez-Valente and Seabra-Santos [6] and Daǧ et al. [7]. The
two nonstandard numerical schemes (40) and (43) preserve
the invariants (5)–(7) and produce𝐿

2
and𝐿

∞
norms at 𝑡 = 20

that are significantly better than the results of Avilez-Valente
and Seabra-Santos [6] and Daǧ et al. [7].

From the results simulated above and captured in Tables
3, 4, and 5 we note that for the initial single solitary wave
(34) the implicit scheme (35) and the nonstandard numerical
schemes (40) and (43) preserve the conserved quantities (5)–
(7).

In order to test how effectively the implicit scheme (35)
and the nonstandard numerical schemes (40) and (43) solve
the RLWE equation, we consider the difference 𝑢(𝑥, 𝑡 + Δ𝑡) −
𝑢(𝑥, 𝑡) between two solutions. We define

Φ
0,1,2

= 𝑢 (x, 𝑡
𝑗
+ Δ𝑡) − 𝑢 (x, 𝑡

𝑗
) = u𝑗+1 − u𝑗, (46)

where the subscripts 0, 1, 2 correspond to the implicit scheme
(35) and the nonstandard numerical schemes (40) and (43),
respectively. From (36) we have thatAu𝑗+1 = d. Equation (36)
gives u𝑗+1 = A−1d leading us to write (46) as

Φ
0,1,2

= 𝐴Φ
0,1,2

= d − Au𝑗. (47)

The 𝑖th row of the vectorΦ
0,1,2

is given by

[Φ
0,1,2

]
𝑗

𝑖
= d𝑗
𝑖
− (𝑎
𝑖
𝑢
𝑗

𝑖−1
+ 𝑏
𝑖
𝑢
𝑗

𝑖
+ 𝑐
𝑖
𝑢
𝑗

𝑖+1
) . (48)

For the implicit scheme (35) where (38) holds for d and
(39) holds for 𝑎

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
we find that

[Φ
0
]
𝑗

𝑖
=
Δ𝑥

2
[𝑢
𝑗

𝑖−1
(1 +

1

2
𝑢
𝑗

𝑖−1
) − 𝑢
𝑗

𝑖+1
(1 +

1

2
𝑢
𝑗

𝑖+1
)] , (49)

[Φ
0
]
𝑗

0
= 0, [Φ

0
]
𝑗

𝑛
= 0. (50)

For the nonstandard numerical scheme (40) the vector d
is given by (41) and 𝑎

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are given by (42). Substitution

with (47) yields

[Φ
1
]
𝑗

𝑖
=
Δ𝑥

2
[𝑢
𝑗

𝑖−1
(1 +

1

2
𝑢
𝑗

𝑖−1
) − 𝑢
𝑗

𝑖+1
(1 +

1

2
𝑢
𝑗

𝑖+1
)] , (51)

[Φ
1
]
𝑗

0
= 0, [Φ

1
]
𝑗

𝑛
= 0. (52)

This is the same as the expression (49).
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Figure 5: Figures showing the quantities log(maxΦ
𝑗

0) and log(maxΦ
𝑗

2) for each 𝑡𝑗, where 𝑡𝑗 ∈ [0, 20], 𝑥0 = 0, and V = 0.1 for 𝑥 ∈ [−50, 70]
for the step lengths Δ𝑥 = 0.5, Δ𝑥 = 0.1, and Δ𝑥 = 0.05.

For the nonstandard numerical scheme (43) the vector d
is given by (41) and 𝑎

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are given by (44). Substitution

with (47) yields

[Φ
2
]
𝑗

𝑖
=
Δ𝑥

2
[𝑢
𝑗

𝑖−1
+
1

6
(𝑢
𝑗

𝑖−2
+ 𝑢
𝑗

𝑖−1
+ 𝑢
𝑗

𝑖
) 𝑢
𝑗

𝑖−1

−𝑢
𝑗

𝑖+1
−
1

6
(𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
+ 𝑢
𝑗

𝑖+2
) 𝑢
𝑗

𝑖+1
] ,

(53)

[Φ
2
]
𝑗

1
=
Δ𝑥

2
[𝑢
𝑗

0
+
1

6
(𝑢
𝑗

0
+ 2𝑢
𝑗

1
) 𝑢
𝑗

0

−𝑢
𝑗

2
−
1

6
(𝑢
𝑗

1
+ 𝑢
𝑗

2
+ 𝑢
𝑗

3
) 𝑢
𝑗

2
] ,

(54)

[Φ
2
]
𝑗

𝑛−1
=
Δ𝑥

2
[𝑢
𝑗

𝑛−2
+
1

6
(𝑢
𝑗

𝑛−3
+ 𝑢
𝑗

𝑛−2
+ 𝑢
𝑗

𝑛−1
) 𝑢
𝑗

𝑛−2

−𝑢
𝑗

𝑛
−
1

6
(2𝑢
𝑗

𝑛−1
+ 𝑢
𝑗

𝑛
) 𝑢
𝑗

𝑛
] ,

(55)

[Φ
2
]
𝑗

0
= 0, [Φ

2
]
𝑗

𝑛
= 0. (56)

Conditions (50), (52), and (56) occur as a result of the
Dirichlet boundary conditions.

To test how accurately the numerical schemes solve the
RLWE we substitute in the solution to the RLWE equation
given by (8) that we write as

𝑢 (𝑥
𝑖
, 𝑡
𝑗
) = 𝑢
𝑗

𝑖
= 3V sech2 (𝑘

0
𝑥
𝑖
+ 𝑘
1
𝑡
𝑗
+ 𝑥
0
) , (57)

where

𝑘
0
=
1

2
√

V
1 + V

, 𝑘
1
= −

1

2
√V (1 + V), (58)

with the respective differences (49) and (53)–(55). We plot
log(maxΦ𝑗0) and log(maxΦ𝑗2) for each 𝑡𝑗 for different step
lengths Δ𝑥 in Figure 5. We take 𝑥

0
= 0 and V = 0.1 for 𝑥 ∈

[−50, 70]. In Figure 6 we plot the difference log(maxΦ𝑗0) −
log(maxΦ𝑗2).

It is clear from the expressions for [Φ
0,1,2

]
𝑗

𝑖
that the

amplitude of the oscillations in the trigonometric functions
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Figure 6: Figures showing the quantities log(maxΦ
𝑗

0)−log(maxΦ
𝑗

2)
for each 𝑡

𝑗
, where 𝑡

𝑗
∈ [0, 20], 𝑥

0
= 0, and V = 0.1 for 𝑥 ∈ [−50, 70]

for the step lengths Δ𝑥 = 0.5, Δ𝑥 = 0.1, and Δ𝑥 = 0.05.

obtained by substituting (57) with (49)–(55), respectively, is
proportional to the step length Δ𝑥. This is seen in the results
plotted in Figure 5 but also more clearly in the results plotted
in Figure 6. We note that as Δ𝑥 → 0 the maximum values of
the differences plotted in both Figures 5 and 6 tend to zero.

We can therefore conclude that for the implicit numerical
scheme (35) and the nonstandard numerical schemes (40)
and (43) the difference given by (46) is oscillatory where
the maximum height of the oscillation is proportional to
the spatial step length. We can also conclude that the
difference (46) tends to zero as Δ𝑥 → 0. We can therefore
conclude that the first integral (5) that can be written as
(46) on differentiating (5) with respect to time is satisfied
by the implicit numerical scheme (35) and the nonstandard
numerical schemes (40) and (43).

3.1. Undular Bore. We next apply the implicit scheme (35)
and the nonstandard finite difference schemes (40) and (43)
to model the evolution of an undular bore where the initial
profile is given by

𝑢 (𝑥, 0) =
1

2
𝑢
0
(1 − tanh (

𝑥 − 𝑥
0

𝛼
)) . (59)
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Figure 7: Evolution of initial undular bore (59), where 𝑢
0
= 0.1, 𝑥

0
= 0, and 𝛼 = 5 for Δ𝑡 = 0.001and 𝑛 = 2500 on the interval 𝑥 ∈ [−50, 500]

using the nonstandard finite difference scheme (40).

When simulating the development of an undular bore, we set
the first row of the vector d in (38) and (41) to 𝑑

0
= 𝑢(𝑥

0
, 0) =

𝑢
0
. We simulate the evolution of the undular bore using the

implicit scheme (35) and the nonstandard finite difference
schemes (40) and (43). We tabulate the maximum value of
𝑢 at the times indicated in Tables 6 and 7 for 𝛼 = 5 and 𝛼 = 2.
From the results indicated in Tables 6 and 7 we note that the
maximum values of 𝑢 for all three schemes compare well for
𝛼 = 5 and 𝛼 = 2. We plot a simulation of the evolution of the
undular bore using the nonstandard finite difference scheme
(40) in Figures 7 and 8 as this scheme produced the best

results as tabulated in Table 4. We choose 𝑢
0
= 0.1, 𝑥

0
= 0,

and 𝛼 = 5 for the curves in Figure 7 and 𝛼 = 2 for the curves
in Figure 8.

We note that the nonstandard numerical scheme (40)
has captured the development of the undular bore without
the formation of numerical instabilities. Our results are
comparable with those obtained in Figures 9 and 11 of the
paper by Avilez-Valente and Seabra-Santos [6]. We note that
the front of the bore and maximum amplitude of the bore in
Figures 7 and 8 are the same as those in Figures 9 and 11 of
Avilez-Valente and Seabra-Santos [6], respectively.
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Figure 8: Evolution of initial undular bore (59), where 𝑢
0
= 0.1, 𝑥

0
= 0, and 𝛼 = 2 for Δ𝑡 = 0.001and 𝑛 = 2500 on the interval 𝑥 ∈ [−50, 500]

using the nonstandard finite difference scheme (40).

Table 6: Table showing max 𝑢(𝑥, 𝑡) for each of the schemes, where
𝛼 = 5.

Time (35) (40) (43)
50 0.117140 0.117136 0.117139
100 0.127146 0.127139 0.127140
150 0.134316 0.134306 0.134306
200 0.140250 0.140236 0.140233
250 0.145455 0.145438 0.145436

Table 7: Table showing max 𝑢(𝑥, 𝑡) for each of the schemes where
𝛼 = 2.

Time (35) (40) (43)
50 0.131598 0.131592 0.131591
100 0.137537 0.137527 0.137526
150 0.142442 0.142429 0.142427
200 0.146848 0.146831 0.146827
250 0.150901 0.150881 0.150879
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4. Concluding Remarks

In this paper we have shown the following:

(i) that the modified equation can be used as a criterion
for selecting the “best” nonstandard finite difference
scheme for solving the RLW equation (1);

(ii) that the nonstandard numerical scheme we have
chosen does indeed perform well by preserving the
three conserved quantities (5)–(7) and capturing the
single solitary wave solution (8) accurately;

(iii) that the nonstandard finite difference scheme cap-
tures the development of an undular bore for both
steep and shallow initial profiles.

The implicit nature of the nonstandard numerical
schemes (40) and (43) derived in this paper means that at
each time step the system matrix 𝐴 in (36) is recalculated
and the system resolved. The numerical results obtained in
this paper have been compared to the results obtained by
Avilez-Valente and Seabra-Santos [6] who implemented a
Petrov-Galerkin scheme and Daǧ et al. [7] who implemented
a splitted quadratic B-spline collocation scheme. In the
Petrov-Galerkin scheme implemented by Avilez-Valente and
Seabra-Santos [6] finite elements are used in both the space
and time dimensions. The time-integration is performed
by use of a predictor-corrector method. Avilez-Valente and
Seabra-Santos [6] summarize the computational efficiency
of their method by indicating that their FEM method leads
to a tridiagonal system of 𝑛 + 1 equations, where 𝑛 is the
number of spatial finite elements.The systemmatrix remains
unchanged during the computation but three inner iterations
are required at each time step as part of the predictor-
corrector method. Avilez-Valente and Seabra-Santos [6] also
comment on the fact that the splitted quadratic B-spline
collocation scheme implemented by Daǧ et al. [7] leads
to a pentadiagonal system of 2𝑛 + 4 equations. At each
time step there are multiple inner iterations that need to be
evaluated depending on the time-integration scheme that has
been chosen. Unlike the Petrov-Galerkin method the system
matrix must be reassembled after each time step. This makes
the splitted quadratic B-spline collocation scheme imple-
mented by Daǧ et al. [7] computationally more expensive
than the Petrov-Galerkin scheme implemented by Avilez-
Valente and Seabra-Santos [6]. The nonstandard numerical
schemes derived in this paper are easy to implement, highly
accurate, and computationally a lot cheaper than either the
Petrov-Galerkin numerical scheme or the splitted quadratic
B-spline collocation scheme.
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[31] A. Araújo and A. Durán, “Error propagation in the numerical
integration of solitary waves. The regularized long wave equa-
tion,” Applied Numerical Mathematics, vol. 36, no. 2-3, pp. 197–
217, 2001.

[32] J. Cai, “A new multisymplectic scheme for the RLWequation,”
Journal of Mathematical Physics, vol. 50, no. 1, p. 16, 2009.

[33] J. Stoer and R. Bulirsch, Introduction To Numerical Analysis,
Springer, New York, NY, USA, 1979.

[34] R. E. Mickens, “Nonstandard finite difference schemes for
differential equations,” Journal of Difference Equations and
Applications, vol. 8, no. 9, pp. 823–847, 2002.

[35] R. E. Mickens, “Discretizations of nonlinear differential equa-
tions using explicit nonstandardmethods,” Journal of Computa-
tional and Applied Mathematics, vol. 110, no. 1, pp. 181–185, 1999.

[36] R. Anguelov and J. M.-S. Lubuma, “Nonstandard finite dif-
ference method by nonlocal approximation,” Mathematics and
Computers in Simulation, vol. 61, no. 3-6, pp. 465–475, 2003.

[37] R. Anguelov and J. M.-S. Lubuma, “Contributions to the
mathematics of the nonstandard finite difference method and
applications,” Numerical Methods for Partial Differential Equa-
tions, vol. 17, no. 5, pp. 518–543, 2001.

[38] R. E. Mickens, “Exact solutions to a finite-difference model
of a nonlinear reaction-advection equation: implications for
numerical analysis,” Journal of Difference Equations and Appli-
cations, vol. 9, no. 11, pp. 995–1006, 2003.

[39] R. E. Mickens, “Nonstandard finite difference schemes for
reaction-diffusion equations,” Numerical Methods for Partial
Differential Equations, vol. 15, no. 2, pp. 201–214, 1999.

[40] P. M. Jordan, “A nonstandard finite difference scheme for
nonlinear heat transfer in a thin finite rod,” Journal of Difference
Equations and Applications, vol. 9, no. 11, pp. 1015–1021, 2003.

[41] R. E. Mickens, “A nonstandard finite difference scheme for a
fisher PDE having nonlinear diffusion,” Computers and Math-
ematics with Applications, vol. 45, no. 1–3, pp. 429–436, 2003.

[42] R. E. Mickens and P. M. Jordan, “A positivity-preserving
nonstandard finite difference scheme for the damped wave
equation,”Numerical Methods for Partial Differential Equations,
vol. 20, no. 5, pp. 639–649, 2004.

[43] R. F.Warming and B. J. Hyett, “Themodified equation approach
to the stability and accuracy analysis of finite-difference meth-
ods,” Journal of Computational Physics, vol. 14, no. 2, pp. 159–179,
1974.

[44] F. R. Villatoro and J. I. Ramos, “On the method of modified
equations. I: asymptotic analysis of the Euler forward difference
method,” Applied Mathematics and Computation, vol. 103, no.
2-3, pp. 111–139, 1999.

[45] F. R. Villatoro and J. I. Ramos, “On the method of modified
equations. II: numerical techniques based on the equivalent
equation for the Euler forward difference method,” Applied
Mathematics and Computation, vol. 103, no. 2-3, pp. 141–177,
1999.

[46] F. R. Villatoro and J. I. Ramos, “On the method of modified
equations. III. Numerical techniques based on the second
equivalent equation for the Euler forward difference method,”
Applied Mathematics and Computation, vol. 103, no. 2-3, pp.
179–212, 1999.

[47] F. R. Villatoro and J. I. Ramos, “On the method of modified
equations. IV. Numerical techniques based on the modified
equation for the Euler forward difference method,” Applied
Mathematics and Computation, vol. 103, no. 2-3, pp. 213–240,
1999.

[48] M. Junk and Z. Yang, “Asymptotic analysis of finite difference
methods,” Applied Mathematics and Computation, vol. 158, no.
1, pp. 267–301, 2004.

[49] F. Rus and F. R. Villatoro, “Numerical methods based on
modified equations for nonlinear evolution equations with
compactons,” Applied Mathematics and Computation, vol. 204,
no. 1, pp. 416–422, 2008.


