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We consider an optimal control problem subject to the terminal state equality constraint and continuous inequality constraints
on the control and the state. By using the control parametrization method used in conjunction with a time scaling transform, the
constrained optimal control problem is approximated by an optimal parameter selection problem with the terminal state equality
constraint and continuous inequality constraints on the control and the state. On this basis, a simple exact penalty functionmethod
is used to transform the constrained optimal parameter selection problem into a sequence of approximate unconstrained optimal
control problems. It is shown that, if the penalty parameter is sufficiently large, the locally optimal solutions of these approximate
unconstrained optimal control problems converge to the solution of the original optimal control problem. Finally, numerical
simulations on two examples demonstrate the effectiveness of the proposed method.

1. Introduction

Constrained optimal control problems often arise in a wide
range of practical applications, including the swing mini-
mization of transferring container [1], the flight maximiza-
tionwith a heating constraint [2], the fuelminimization of the
soft landing of moon [3], and the fuel minimization of space-
craft rendezvous with collision avoidance constraint [4]. In
these different applications, two types of constraints are often
considered.The first one is terminal state equality constraint,
which depends only on the final state of the system, whereas
the other one is continuous inequality constraints on the
control and the state, which restrict control and state at every
point in the time horizon. Of these two types, continuous
inequality constraints are by far the most difficult, as they
include an infinite number of inequality constraints.

Most constrained optimal control problems are much too
complex to obtain analytical solutions.Thus, they can only be
solved by some numerical methods, such as the discretiza-
tion method [5–7], the nonsmooth Newton method [8–10],
and the control parametrization method [11]. Among these
numerical methods, the control parametrization method
is an efficient one for dealing with constrained optimal
problems. Its main idea is that only the control variables

are approximated as piecewise constant functions or linear
functions while the system states remain unchanged. In [11],
this kind of method used in conjunction with a time scaling
transform is used to solve optimal control problems subject to
continuous state inequality constraints, where the continuous
state inequality constraints are handled by the constraint
transcription method developed in [12]. It is extended in
[13] to a more general case where both the state and control
appear explicitly in the continuous inequality constraints.
After the application of the control parameterization used in
conjunction with the time scaling transform, a constrained
optimal parameter selection problem is obtained. Now by
using the constraint transcription method, the constrained
optimal parameter selection problem can be approximated as
a sequence of unconstrained optimal control problems,where
two adjustable parameters are involved in these approximate
problems—one controls the accuracy and the other one
controls the feasibility. It is shown that, for any positive
accuracy parameter, if the feasible parameter is sufficiently
small, the obtained solution will satisfy the continuous
inequality constraints. As the accuracy parameter approaches
to zero, the global optimal solution of the approximate
optimal control problem will converge to the global optimal
solution of the original problem. However, since there are
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two parameters that need be adjusted, the convergence speed
of the method may be slow. In addition, the approximate
optimal control problem is usually nonconvex, and only a
local optimal solution can be obtained, and it is not known
if this local optimal solution will converge to a local optimal
solution of the original problem.

In this paper, we develop a new computational approach
based on the control parametrization method [13] and the
exact penalty function method [14] for solving an optimal
control problem subject to terminal state equality constraint
and continuous inequality constraints on the state and the
control. After the control parametrization, together with
the time scaling transform, the constrained optimal control
problem is approximated by an optimal parameter selection
problem with the terminal state equality constraint and
continuous inequality constraints on the control and state. A
simple exact penalty function method is used to construct
the constraint violation function from the terminal state
equality constraint and continuous inequality constraints
on the control and state, which is added to the object
function to form a new one. Thus, the constrained optimal
parameter selection problem is transformed into a sequence
of unconstrained optimal control problems, where only one
penalty parameter is involved in the approximation. It is
shown that, if the penalty parameter value is sufficiently large,
any local minimizer of the unconstrained optimal control
problem is a local minimizer of the constrained optimal
control problem. Two numerical examples are provided to
illustrate the effectiveness of the proposed method.

The rest of the paper is organized as follows. In Section 2,
based on the nonlinear dynamic model, a constrained opti-
mal control problem is formulated. In Section 3, by using
the control parametrization method used in conjunction
with a time scaling transform, the constrained optimal
control problem is approximated by a constrained optimal
parameter selection problem. In Section 4, a simple penalty
function method is applied to transform the constrained
optimal parameter selection problem into a sequence of
unconstrained optimal control problems. In Section 5, it is
shown that if the penalty parameter is sufficiently large,
the solutions of these approximate unconstrained optimal
control problems locally converge to the solution of the
original problem. A numerical algorithm is developed to
obtain the solution of the original problem through solving
a sequence of unconstrained optimal control problems. In
Section 6, A pair of numerical simulations are provided
to demonstrate the effectiveness of the proposed method.
Finally, in Section 7, some concluding remarks are stated.

2. Problem Formulation

Consider the following nonlinear dynamical system:

d𝑥 (𝑡)

d𝑡
= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] (1a)

with the initial condition

𝑥 (0) = 𝑥
0 (1b)

and the terminal condition

𝑥 (𝑇) = 𝑥
𝑓
, (1c)

respectively, where 𝑇 is the terminal time, 𝑢(𝑡) ∈ R𝑟 and
𝑥(𝑡) ∈ R𝑛 are, respectively, control and state vectors at time
𝑡, 𝑥
0

∈ R𝑛 is the given initial state, and 𝑥
𝑓

∈ R𝑛 is the
given terminal state. 𝑓(𝑥, 𝑢, 𝑡) : [0, 𝑇] × R𝑛 × R𝑟 → R𝑛 is
a continuously differentiable function with respect to all its
arguments, and there exists a constant 𝐾 ∈ R+ such that





𝑓 (𝑡, 𝑥, 𝑢)





≤ 𝐾 (1 + ‖𝑥‖) ,

(𝑡, 𝑥, 𝑢) ∈ [0, 𝑇] ×R
𝑛
×R
𝑟
,

(2)

where R+ = {𝜔 ∈ R : 𝜔 ≥ 0} and ‖ ⋅ ‖ is the Euclidean norm.
Define

𝑈 = {V = [V
1
, . . . , V

𝑟
]
𝑇
∈ R
𝑟
: 𝛼
𝑖
≤ V
𝑖
≤ 𝛽
𝑖
, 𝑖 = 1, . . . , 𝑟} ,

(3)

where 𝛼
𝑖
, 𝑖 = 1, . . . , 𝑟 and 𝛽

𝑖
, 𝑖 = 1, . . . , 𝑟 are given real

numbers. A piecewise-continuous function 𝑢 : [0, 𝑇] → R

satisfying 𝑢(𝑡) ∈ 𝑈 for almost all 𝑡 ∈ [0, 𝑇] is called an
admissible control. Let U be the class of all such admissible
controls, and for each control 𝑢 ∈ U, the system (1a)-(1b) has
a unique solution 𝑥(⋅ | 𝑢).

Consider the following continuous inequality constraints
on the control and the state:

𝑔
𝑖
(𝑡, 𝑥 (𝑡 | 𝑢) , 𝑢 (𝑡)) ≤ 0, 𝑖 = 1, . . . , 𝑁, (4)

where 𝑔
𝑖
(𝑡, 𝑥, 𝑢), 𝑖 = 1, . . . , 𝑁 is continuously differentiable

with respect to all its arguments.
Now, the optimal control problem considered in this

paper is stated formally as follows.

Problem (𝑃). Given the dynamical system (1a)-(1b), find a
control 𝑢 ∈ U such that the object function

𝐽 (𝑢) = Φ
0
(𝑥 (𝑇)) + ∫

𝑇

0

L
0
(𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) d𝑡 (5)

is minimized subject to the terminal state equality constraint
(1c) and the continuous inequality constraints on the state and
control (4), where Φ

0
(𝑥) is continuously differentiable with

respect to𝑥 andL
0
(𝑡, 𝑥, 𝑢) is continuously differentiablewith

respect to all its arguments.

3. Problem Approximation

Let the interval [0, 𝑇] be partitioned into 𝑝 subintervals
[𝜏
𝑖−1

, 𝜏
𝑖
), 𝑖 = 1, 2, . . . , 𝑝, with a sequence 𝜏 = {𝜏

0
, 𝜏
1
, . . . , 𝜏

𝑝
}

of time points 𝜏
𝑖
, 𝑖 = 1, 2, . . . , 𝑝 − 1, satisfying 𝜏

𝑖−1
< 𝜏
𝑖
, 𝑖 =

1, . . . , 𝑝, where 𝜏
0
= 0, 𝜏

𝑝
= 𝑇. 𝜒

[𝜏𝑖−1,𝜏𝑖]
(𝑡) is denoted as the

indictor function in [𝜏
𝑖−1

, 𝜏
𝑖
) defined by

𝜒
[𝜏𝑖−1,𝜏𝑖)

(𝑡) = {

1, 𝑡 ∈ [𝜏
𝑖−1

, 𝜏
𝑖
)

0, 𝑡 ∉ [𝜏
𝑖−1

, 𝜏
𝑖
) .

(6)
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The admissible control 𝑢(𝑡) is approximated by a piecewise-
constant function given below:

𝑢
𝑝
(𝑡 | 𝜎) =

𝑝

∑

𝑖=1

𝜎
𝑖
𝜒
[𝜏𝑖−1,𝜏𝑖)

(𝑡) , (7)

where 𝜎
𝑖

= [𝜎
𝑖

1
, 𝜎
𝑖

2
, . . . , 𝜎

𝑖

𝑟
]
𝑇

∈ 𝑈, 𝑖 = 1, 2, . . . , 𝑝, are
control parameters, and let ∑ denote the set of all such 𝜎 =

[(𝜎
1
)
𝑇
, (𝜎
2
)
𝑇
, . . . , (𝜎

𝑝
)
𝑇
]
𝑇
∈ R𝑝𝑟.

In order to further improve the accuracy of the approx-
imate optimal control problem, the switching points are
also taken as decision variables. We will employ the time
scaling transform originally proposed in [11] to map these
switching points, 𝜏

𝑘
, 𝑘 = 1, . . . , 𝑝, into preassigned fixed

points, 𝑘/𝑝, 𝑘 = 1, . . . , 𝑝−1, in a new time horizon [0, 1].This
is easily achieved through the following differential equation:

d𝑡 (𝑠)
d𝑠

= V (𝑠) , 𝑠 ∈ [0, 1] (8a)

with initial condition

𝑡 (0) = 0, (8b)

where

V (𝑠) =
𝑝

∑

𝑖=1

𝛿
𝑖
𝜒I𝑖

(𝑠) . (9)

Here, 𝛿
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑝, are the control parameters; let

Ξ be the the set containing all such 𝛿 = [𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑝
]
𝑇, and

I
𝑖
is defined by

I
𝑖
=

{
{
{
{

{
{
{
{

{

[

𝑖 − 1

𝑝

,

𝑖

𝑝

) , 𝑖 = 1, 2, . . . , 𝑝 − 1

[

𝑖 − 1

𝑝

, 1] , 𝑖 = 𝑝.

(10)

Taking integration of (8a) and (8b)with initial condition (8b),
it is easy to deduce that, for 𝑠 ∈ I

𝑖
,

𝑡 (𝑠) =

𝛿
𝑖

𝑝

(𝑝𝑠 + 1 − 𝑖) +

𝑖−1

∑

𝑗=1

𝛿
𝑗

𝑝

. (11)

Clearly, for 𝑖 = 1, 2, . . . , 𝑝 − 1,

𝜏
𝑖
=

𝑖

∑

𝑗=1

𝛿
𝑗

𝑝

, (12)

𝑡 (1) =

𝑝

∑

𝑗=1

𝛿
𝑗

𝑝

= 𝑇. (13)

In the new time horizon [0, 1], the approximate control given
by (7) becomes

�̂�
𝑝
(𝑠 | 𝜎) =

𝑝

∑

𝑖=1

𝜎
𝑖
𝜒I𝑖

(𝑠) , (14)

where 1/𝑝, 2/𝑝, . . . , (𝑝 − 1)/𝑝 are the fixed switching points.

Let

𝑥 (𝑠) = [𝑥
𝑇
(𝑡 (𝑠)) , 𝑡 (𝑠)]

𝑇

. (15)

According to (14), the dynamic systems (1a), (1b), (1c), and
(8a) can be rewritten as

d𝑥 (𝑠)

d𝑠
=

̂
𝑓 (𝑠, 𝑥 (𝑠) , 𝜎, 𝛿) (16a)

with the initial condition

𝑥 (0) = [𝑥
𝑇

0
, 0]

𝑇 (16b)

and the terminal condition

𝑥 (1) = [𝑥
𝑇

𝑓
, 𝑇]

𝑇

, (16c)

where

̂
𝑓 (𝑠, 𝑥 (𝑠) , 𝜎, 𝛿) = V (𝑠) [𝑓 (𝑡 (𝑠) , 𝑥 (𝑡 (𝑠)) , �̂�

𝑝
(𝑠 | 𝜎))

1
] .

(17)

Let 𝑥(⋅ | 𝜎, 𝛿) denote the solution of (16a)-(16b) correspond-
ing to (𝜎, 𝛿) ∈ Σ × Ξ. The inequality constraints on the state
and control (4) and the objective function (5) become

𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿) ≤ 0,

∀𝑠 ∈ [0, 1] , 𝑖 = 1, . . . , 𝑁,

(18)

𝐽 (𝜎, 𝛿) = Φ̂
0
(𝑥 (1 | 𝜎, 𝛿)) + ∫

1

0

̂L
0
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿) d𝑠,

(19)

respectively, where

Φ̂
0
(𝑥 (1 | 𝜎, 𝛿)) = Φ

0
(𝑥 (1)) ,

̂L
0 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿) = V (𝑠)L0 (𝑡 (𝑠) , 𝑥 (𝑠) , �̂�

𝑝
(𝑠 | 𝜎)) ,

𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿) = 𝑔

𝑖
(𝑡 (𝑠) , 𝑥 (𝑠) , �̂�

𝑝
(𝑠 | 𝜎)) ,

𝑖 = 1, . . . , 𝑁.

(20)

After the control parametrization and a time scaling
transformation, the approximate parameter selection prob-
lem corresponding to Problem (𝑃) may be stated formally as
follows.

Problem (�̂�).Given system (16a)-(16b), find a control param-
eter (𝜎, 𝛿) ∈ Σ × Ξ such that the objective function (19) is
minimized subject to (16c) and (18).

Problem (�̂�) is an optimal parameter selection problem
in which a finite number of decision variables (the con-
trol parameters) need to be optimized subject to a set of
constraints. It is very difficult to solve this optimal param-
eter selection problem because each continuous inequality
constraint in (18) actually constitutes an infinite number of
constraints one for each point in [0, 1]. In the next section,
we will use an exact penalty method to deal with this
approximate problem (�̂�).
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4. A Simple Exact Penalty Function Method

Define the following constraint violation function on Σ × Ξ:

Δ (𝜎, 𝛿) = ‖𝑥 (1 | 𝜎, 𝛿) − 𝑥 (1)‖
2

+

𝑁

∑

𝑖=1

∫

1

0

[max {0, 𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}]

2d𝑠.

(21)

It is clear that Δ(𝜎, 𝛿) = 0 if and only if (16c) and (18) are
both satisfied. Let 𝜀 > 0 be a given constant. By applying the
exact function method introduced in [2] to (19) and (21), we
construct a simple exact penalty function as follows:

𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

=

{
{

{
{

{

𝐽 (𝜎, 𝛿) , if 𝜀 = 0, Δ (𝜎, 𝛿) = 0,

𝐽 (𝜎, 𝛿) + 𝜀
−𝛼
Δ (𝜎, 𝛿) + 𝜂𝜀

𝛽
, if 𝜀 ∈ (0, 𝜀] ,

+∞, if 𝜀 = 0, Δ (𝜎, 𝛿) ̸= 0,

(22)

where 𝜀 > 0, 𝛽 > 𝛼 > 0, 𝛽 ≥ 1, and 𝜂 > 0 is a penalty
parameter.

From the definition of 𝐽
𝜂
(𝜎, 𝛿, 𝜀), it follows that it involves

three different cases, only the second case 𝜀 ∈ (0, 𝜀] is useful
in practical computation. In the second case, it contains the
sum of three terms: the first term penalizes system cost, the
second term penalizes constraint violations, and the third
term penalizes large values of 𝜀. As the penalty parameter
𝜂 is increasing, minimizing 𝐽

𝜂
(𝜎, 𝛿, 𝜀) forces 𝜀𝛽 to be small,

which in turn causes 𝜀
−𝛼 to become large. Consequently,

constraint violation functions Δ(𝜎, 𝛿) will approach to zero.
In this way, the satisfaction of the equality constraints (16c)
and the continuous inequality constraints (18) will eventually
be achieved. Thus, problem (�̂�) is equivalent to the following
problem, which is denoted as problem (�̂�

𝜂
); we can solve it for

an increasing sequence of penalty parameters.

Problem (�̂�
𝜂
). Given system (16a)-(16b), find parameter

(𝜎, 𝛿, 𝜀) ∈ Σ × Ξ × (0, 𝜀] such that the new objective function

𝐽
𝜂
(𝜎, 𝛿, 𝜀) = 𝐽 (𝜎, 𝛿) + 𝜀

−𝛼
Δ (𝜎, 𝛿) + 𝜂𝜀

𝛽 (23)

is minimized.
Problem (�̂�

𝜂
) is much easier to solve than problem (�̂�).

Numerical algorithms for solving such a problem need to use
the gradient of the new objective function (23) to find the
optimal solution. In the following, we will rewrite (23) in the
canonical form as in [15] to obtain its gradient formulas.

Let

Φ̂ (𝑥
𝑝
(1 | 𝜎, 𝛿) , 𝜀)

= Φ̂
0
(𝑥 (1 | 𝜎, 𝛿)) + 𝜀

−𝛼
‖𝑥 (1 | 𝜎, 𝛿) − 𝑥 (1)‖

2
+ 𝜂𝜀
𝛽
,

̂L (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀)

=
̂L
0
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

+ 𝜀
−𝛼

𝑁

∑

𝑖=1

∫

1

0

[max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}]

2d𝑠.

(24)

From (22), it follows that

𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

= Φ̂ (𝑥 (1 | 𝜎, 𝛿) , 𝜀) + ∫

1

0

̂L (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀) d𝑠.

(25)

Now, the objective function of problem (�̂�
𝜂
) is in canonical

form. Based on the proof of Theorem 5.2.1 in [15], the
gradient formulas of the objective functions (22) are given in
the following theorem.

Theorem 1. The gradients of the objective function 𝐽
𝜂
(𝜎, 𝛿, 𝜀)

with respect to 𝜎, 𝛿, and 𝜀 are

𝜕𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝜎

= ∫

1

0

𝜕�̂� (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀,
̂
𝜆 (𝑠 | 𝜎, 𝛿, 𝜀))

𝜕𝜎

d𝑠,

(26)

𝜕𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝛿

= ∫

1

0

𝜕�̂� (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀,
̂
𝜆 (𝑠 | 𝜎, 𝛿, 𝜀))

𝜕𝛿

d𝑠,

(27)

𝜕𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝜀

= −𝛼𝜀
−1−𝛼

Δ (𝜎, 𝛿) + 𝜂𝛽𝜀
𝛽−1

,
(28)

respectively, where �̂�(𝑠, 𝑥(𝑠 | 𝜎, 𝛿), 𝜎, 𝛿, 𝜀,
̂
𝜆(𝑠 | 𝜎, 𝛿, 𝜀)) is the

Hamiltonian function for the objective function (25) given by

�̂� (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀,
̂
𝜆 (𝑠 | 𝜎, 𝛿, 𝜀))

=
̂L (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀)

+
̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 𝜀)

̂
𝑓 (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

(29)

and ̂𝜆(⋅ | 𝜎, 𝛿, 𝜀) is the solution of the following system of costate
differential equations:

d̂𝜆T (𝑠)
d𝑠

=

𝜕�̂� (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀,
̂
𝜆 (𝑠))

𝜕𝑥

(30a)

with the boundary condition

̂
𝜆
𝑇
(1) =

𝜕Φ̂ (𝑥 (1 | 𝜎, 𝛿) , 𝜀)

𝜕𝑥

. (30b)

In particular, when 𝜀 = 0, we have 𝐽
𝜂
(𝜎, 𝛿, 𝜀) = 𝐽(𝜎, 𝛿). Thus,

a corresponding gradient formula of the objective function
𝐽(𝜎, 𝛿) can also be obtained.
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In the following, we will turn our attention to the new
objective function given by (22).Wewill see that, under some
mild conditions, 𝐽

𝜂
(𝜎, 𝛿, 𝜀) is continuously differentiable with

respect to all its arguments.

Theorem 2. Suppose that (𝜎, 𝛿, 𝜀) is a local minimizer of
problem (�̂�

𝜂
) and that 𝐽

𝜂
(𝜎, 𝛿, 𝜀) is finite. If

(𝜎, 𝛿, 𝜀) → (𝜎
∗
, 𝛿
∗
, 0) , (31)

then,

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝐽
𝜂 (
𝜎, 𝛿, 𝜀) = 𝐽 (𝜎

∗
, 𝛿
∗
) ,

(32a)

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜕𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝜀

= 0. (32b)

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝜎

=

𝜕𝐽 (𝜎
∗
, 𝛿
∗
)

𝜕𝜎

, (32c)

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜕𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝛿

=

𝜕𝐽 (𝜎
∗
, 𝛿
∗
)

𝜕𝛿

. (32d)

Proof. First, we will show that (32a) holds.
Following arguments similar to those given for the proof

of Lemma 6.4.3 in [15], we obtain

lim
(𝜎,𝛿)→ (𝜎

∗
,𝛿
∗
)

𝑥 (𝑠 | 𝜎, 𝛿) = 𝑥 (𝑠 | 𝜎
∗
, 𝛿
∗
) , ∀𝑠 ∈ [0, 1] .

(33)

From (19), (33), and the proof of Lemma 6.4.4 in [15], it
follows that

lim
(𝜎,𝛿)→ (𝜎

∗
,𝛿
∗
)

𝐽 (𝜎, 𝛿) = 𝐽 (𝜎
∗
, 𝛿
∗
) . (34)

Since (𝜎, 𝛿, 𝜀) is a local minimizer of problem (�̂�
𝜂
), it is

deduced that

𝜕𝐽
𝜂
(𝜎, 𝛿, 𝜀)

𝜕𝜀

= 0.
(35)

That is,

Δ (𝜎, 𝛿) =

𝜂𝛽

𝛼

𝜀
𝛼+𝛽

. (36)

Thus, we have

lim
𝜀→0

𝜀
−𝛼
Δ (𝜎, 𝛿) = lim

𝜀→0

𝜂𝛽

𝛼

𝜀
𝛽
= 0. (37)

This, together with (22) and (34), yields (32a).
Next, from the proof process given for (32a), it is easy to

conclude that (32b) holds.
Furthermore, we will move on to show that (32c) holds.
From (30a) of Theorem 1, we obtain

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 𝜀) −

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 0)

=
̂
𝜆
𝑇
(1 | 𝜎, 𝛿, 𝜀) −

̂
𝜆
𝑇
(1 | 𝜎, 𝛿, 0)

+ 2𝜀
−𝛼

𝑁

∑

𝑖=1

∫

𝑠

1

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×

𝜕𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥

d𝜏

+ ∫

𝑠

1

(
̂
𝜆
𝑇
(𝜏 | 𝜎, 𝛿, 𝜀) −

̂
𝜆
𝑇
(𝜏 | 𝜎, 𝛿, 0))

×

𝜕
̂
𝑓 (𝜏, 𝑥 (𝜏 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥

d𝜏,

𝑠 ∈ [0, 1] .

(38)

In view of (30b) and (37), it follows that

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

(
̂
𝜆
𝑇
(1 | 𝜎, 𝛿, 𝜀) −

̂
𝜆
𝑇
(1 | 𝜎, 𝛿, 0))

= lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝑎 𝜕‖𝑥 (1 | 𝜎, 𝛿) − 𝑥 (1)‖

2

𝜕𝑥

= 0.

(39)

By Schwarz inequality, we have

𝑁

∑

𝑖=1

(∫

1

0

max {0, 𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)} d𝑠)

2

≤

𝑁

∑

𝑖=1

∫

1

0

[max {0, 𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}]

2d𝑠.

(40)

This, together with (32b) and (37), yields

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼

𝑁

∑

𝑖=1

∫

1

0

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)} d𝑠 = 0.

(41)

Since 𝑔(𝑠, 𝑥(𝑠), 𝜎, 𝛿) is continuously differentiable with
respect to all its arguments, there exists a constant 𝐺

𝑥
such

that









𝜕𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥










≤ 𝐺
𝑥
, 𝑖 = 1, . . . , 𝑁. (42)

By using (41) and (42), we obtain

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼












𝑁

∑

𝑖=1

∫

𝑠

1

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×

𝜕𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥

d𝜏











≤ 𝜀
−𝛼

𝑁

∑

𝑖=1










∫

𝑠

1

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×

𝜕𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥

d𝜏
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≤ lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼

∫

1

0

max {0, 𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×










𝜕𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥










d𝑠

≤ 𝐺
𝑥

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼

𝑁

∑

𝑖=1

∫

1

0

max {0, 𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) ,

𝜎, 𝛿)} d𝑠

= 0.

(43)

Thus,

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼

𝑁

∑

𝑖=1

∫

𝑠

1

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×

𝜕𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥

d𝜏 = 0.

(44)

Similar to obtaining (42), there exist constants𝐹
𝑥
and𝐹
𝜎
such

that











𝜕
̂
𝑓 (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝑥












≤ 𝐹
𝑥

(45a)












𝜕
̂
𝑓 (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎












≤ 𝐹
𝜎
. (45b)

Thus, by applying Gronwall-Bellman’s lemma (see Theorem
2.8.6 in [15]) to (38), it follows from (39), (44), (45a), and
the Lebesgue dominated convergence theorem (seeTheorem
2.6.4 in [15]) that

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 𝜀) = lim

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 0) ,

𝑠 ∈ [0, 1] .

(46)

By arguments similar to those used to obtain (44), it is easy
to show that

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼

𝑁

∑

𝑖=1

∫

𝑠

1

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×

𝜕𝑔
𝑖 (
𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝜏 = 0.

(47)

From (37) and (45b), we obtain

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜕𝐽
𝜂 (
𝜎, 𝛿, 𝜀)

𝜕𝜎

= lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

∫

1

0

𝜕�̂� (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀,
̂
𝜆 (𝑠 | 𝜎, 𝛿, 𝜀))

𝜕𝜎

d𝑠

= lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

(∫

1

0

𝜕
̂L (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿, 𝜀)

𝜕𝜎

d𝑠

+ ∫

1

0

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 𝜀)

×

𝜕
̂
𝑓 (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝑠)

= lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

∫

1

0

𝜕
̂L
0
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝑠

+ ∫

1

0

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 𝜀)

𝜕
̂
𝑓 (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝑠

+ lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜀
−𝛼

𝑁

∑

𝑖=1

∫

1

0

max {0, 𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)}

×

𝜕𝑔
𝑖
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝜏

= lim
(𝜎,𝛿)→ (𝜎

∗
,𝛿
∗
)

∫

1

0

𝜕
̂L
0
(𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝑠

+ ∫

1

0

̂
𝜆
𝑇
(𝑠 | 𝜎, 𝛿, 0)

𝜕
̂
𝑓 (𝑠, 𝑥 (𝑠 | 𝜎, 𝛿) , 𝜎, 𝛿)

𝜕𝜎

d𝑠

= lim
(𝜎,𝛿)→ (𝜎

∗
,𝛿
∗
)

𝜕𝐽 (𝜎, 𝛿)

𝜕𝜎

=

𝜕𝐽 (𝜎
∗
, 𝛿
∗
)

𝜕𝜎

.

(48)

Finally, by argument similar to those given for (32c), we can
show that

lim
𝜀→0

(𝜎,𝛿)→ (𝜎
∗
,𝛿
∗
)

𝜕𝐽
𝜂
(𝜎, 𝛿, 𝜀)

𝜕𝛿

=

𝜕𝐽 (𝜎
∗
, 𝛿
∗
)

𝜕𝛿

. (49)

This means that (32d) holds. Thus, the proof is com-
pleted.

5. Convergence Analysis

In this section, we will show that if (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local
minimizer of problem (�̂�

𝜂
(𝑘)) and the parameter 𝜂(𝑘) is suf-

ficiently large as 𝑘 → ∞, then 𝜀
(𝑘)

→ 𝜀
∗

= 0 and
(𝜎
(𝑘)
, 𝛿
(𝑘)
) → (𝜎

∗
, 𝛿
∗
) with (𝜎∗, 𝛿∗) being a local minimizer

of problem (�̂�).

Lemma 3. Suppose that (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer of
problem (�̂�

𝜂
(𝑘)), that 𝐽

𝜂
(𝑘)(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
) is finite, and that 0 <

𝜀
(𝑘)

< 1. If there exist 𝜎∗, 𝛿∗ and a sufficiently large number 𝜂∗
such that

lim
𝑘→+∞

(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜂
(𝑘)
) = (𝜎

∗
, 𝛿
∗
, 𝜂
∗
) , (50)

then lim
𝑘→+∞

𝜀
(𝑘)

= 0.
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Proof. On the contrary, we assume that the conclusion is
false. Then, there exists a subsequence of {𝜀(𝑘)}, which is still
denoted by the original sequence, such that lim

𝑘→∞
𝜀
(𝑘)

=

𝜀
∗

̸= 0. On one hand, by using the fact that ̂
𝑓(𝑠, 𝑥(𝑠), 𝜎, 𝛿) is

continuously differentiable with respect to all its arguments,
it follows from the definition of U and Lemma 6.4.2 in [15]
that

‖𝑥 (𝑠 | 𝜎, 𝛿)‖ ≤ 𝑌 (51)

for 𝑠 ∈ [0, 1] and (𝜎, 𝛿) ∈ Σ × Ξ, where 𝑌 is a given constant.
From (21) and (51), there exists a constant 𝑀 > 0 such that
Δ(𝜎, 𝛿) ≤ 𝑀 for all (𝜎, 𝛿) ∈ Σ×Ξ. In particular, for (𝜎∗, 𝛿∗) ∈
Σ × Ξ, it is clear that

Δ (𝜎
∗
, 𝛿
∗
) ≤ 𝑀. (52)

On the other hand, since (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer
of problem (�̂�

𝜂
(𝑘)), it follows that

𝜕𝐽
𝜂
(𝑘) (𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
)

𝜕𝜀

= 0.
(53)

This implies that

Δ (𝜎
(𝑘)
, 𝛿
(𝑘)
) =

𝛽𝜂
(𝑘)
(𝜀
(𝑘)
)

𝛼+𝛽

𝛼

.
(54)

Choose

𝜂
∗
=

𝛼 (𝑀 + 1)

𝛽(𝜀
∗
)
𝛼+𝛽

. (55)

Then,

lim
𝑘→+∞

Δ (𝜎
(𝑘)
, 𝛿
(𝑘)
) = Δ (𝜎

∗
, 𝛿
∗
) = 𝑀 + 1. (56)

This is a contradiction to (52). The proof is completed.

Lemma 4. Suppose that (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer of
problem (�̂�

𝜂
(𝑘)), that 𝐽

𝜂
(𝑘)(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
) is finite, and that 𝜀(𝑘) >

0. Then, 𝑥(1 | 𝜎
(𝑘)
, 𝛿
(𝑘)
) ̸= 𝑥(1).

Proof. On the contrary, we assume that the conclusion is false.
Then, 𝑥(1 | 𝜎

(𝑘)
, 𝛿
(𝑘)
) = 𝑥(1). By (28) and the assumption that

𝜀
(𝑘)

> 0, we obtain

𝜕𝐽
𝜂
(𝑘) (𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
)

𝜕𝜀

= 𝜂
𝑘
𝛽(𝜀
(𝑘)
)

𝛽−1

> 0.
(57)

On one hand, (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer of problem
(�̂�
𝜂
(𝑘)) and 𝜀

(𝑘)
> 0. Thus,

𝜕𝐽
𝜂
(𝑘) (𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
)

𝜕𝜀

= 0.
(58)

This is a contradiction to (57). Hence, 𝑥(1 | 𝜎
(𝑘)
, 𝛿
(𝑘)
) ̸= 𝑥(1).

The proof is completed.

Theorem 5. Suppose that (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer
of problem (�̂�

𝜂
(𝑘)) such that 𝜀(𝑘) > 0 and 𝐽

𝜂
(𝑘)(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
) is

finite. If there exits a sufficiently large number 𝜂∗ such that

lim
𝑘→+∞

(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜂
(𝑘)
) = (𝜎

∗
, 𝛿
∗
, 𝜂
∗
) , (59)

then 𝑥(1 | 𝜎
∗
, 𝛿
∗
) ̸= 𝑥(1) and lim

𝑘→+∞
𝐽
𝜂
(𝑘)(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
) =

𝐽(𝜎
∗
, 𝛿
∗
).

Proof. By Lemma 4, we have 𝑥(1 | 𝜎
(𝑘)
, 𝛿
(𝑘)
) ̸= 𝑥(1). In the

following, we will show that 𝑥(1 | 𝜎
∗
, 𝛿
∗
) = 𝑥(1). Since

(𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a localminimizer of problem (�̂�
𝜂𝑘
) and 𝜀(𝑘) >

0, it follows that

𝜕𝐽
𝜂
(𝑘) (𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
)

𝜕𝜀

= 0.
(60)

That is,

−𝛼(𝜀
(𝑘)
)

−1−𝛼

Δ (𝜎
(𝑘)
, 𝛿
(𝑘)
) + 𝜂𝛽(𝜀

(𝑘)
)

𝛽−1

= 0. (61)

It is clear that

Δ (𝜎
(𝑘)
, 𝛿
(𝑘)
) =

𝜂
(𝑘)
𝛽

𝛼

(𝜀
(𝑘)
)

𝛼+𝛽

. (62)

By using (59), (62), and Lemma 3, we obtain Δ(𝜎
∗
, 𝛿
∗
) = 0.

Therefore, 𝑥(1 | 𝜎
∗
, 𝛿
∗
) ̸= 𝑥(1).

Applying (62) and Lemma 3 to (22), it follows that

lim
𝑘→+∞

𝐽
𝜂
(𝑘) (𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
)

= lim
𝑘→+∞

[𝐽 (𝜎
(𝑘)
, 𝛿
(𝑘)
) + (1 +

𝛽

𝛼

) 𝜂
(𝑘)
(𝜀
(𝑘)
)

𝛽

]

= 𝐽 (𝜎
∗
, 𝛿
∗
) .

(63)

The proof is completed.

Theorem 6. Suppose that (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer
of problem (�̂�

𝜂
(𝑘)) such that 0 < 𝜀

(𝑘)
< 1 and 𝐽

𝜂
(𝑘)(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
)

is finite. If there exist 𝜎∗, 𝛿∗ and a sufficiently large number 𝜂∗
such that

lim
𝑘→+∞

(𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜂
(𝑘)
) = (𝜎

∗
, 𝛿
∗
, 𝜂
∗
) , (64)

then 𝑥(1 | 𝜎
∗
, 𝛿
∗
) = 𝑥(1) and (𝜎

∗
, 𝛿
∗
) is a local minimizer of

problem (�̂�).

Proof. Since (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) is a local minimizer of problem
(�̂�
𝜂
(𝑘)), it follows from Lemma 3 that lim

𝑘→+∞
𝜀
(𝑘)

= 0. This
means that (𝜎∗, 𝛿∗, 0) is also a local minimizer of problem
(�̂�
𝜂
∗).This, together withTheorem 5, implies that (𝜎∗, 𝛿∗) is a

local minimizer of problem (�̂�). The proof is completed.

Once the optimal parameter (𝜎∗, 𝛿∗) of problem (�̂�) is
determined, the corresponding optimal control 𝑢∗ can be
obtained readily from (7) and (12).
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Theorem 7. Let 𝑢𝑝,∗ be an optimal control of the approximate
problem (𝑃). Then,

lim
𝑝→+∞

𝐽 (𝑢
𝑝,∗

) = 𝐽 (𝑢
∗
) , (65)

where 𝑢∗ is an optimal control of the problem (𝑃).

Proof. The proof is similar to that given for Theorem 8.6.2 in
[15].

Based on the results of the convergence analysis, we are
in a position to present the following numerical algorithm for
solving problem (𝑃).

Algorithm 8. The steps are as follows.

Step 1. Set 𝜂(1) = 10, 𝜂∗ = 10
8, 𝜀∗ = 10

−9, choose an initial
point (𝜎(0), 𝛿(0), 𝜀(0)), and the iteration index 𝑘 = 0.The values
of 𝛼 and 𝛽 are chosen depending on the specific structure of
the concerned problem (𝑃), where 𝛽 > 1 and 𝛽 > 𝛼.

Step 2. Solve problem (𝑃
𝜂
(𝑘)), and let (𝜎(𝑘), 𝛿(𝑘), 𝜀(𝑘)) be the

minimizer obtained.

Step 3. If 𝜀(𝑘) > 𝜀
∗, 𝜂(𝑘) < 𝜂

∗, set 𝜂(𝑘+1) = 10𝜂
(𝑘), 𝑘 := 𝑘 + 1,

and go to Step 2 with (𝜎
(𝑘)
, 𝛿
(𝑘)
, 𝜀
(𝑘)
) as the new initial point

in the new optimization process. Otherwise, set 𝜀(𝑘) := 𝜀
∗ and

𝜂
(𝑘)

:= 𝜂
∗. (𝜎∗, 𝛿∗, 𝜀∗) is a solution of problem (𝑃

𝜂
∗).

Remark 9. In Step 3, if 𝜀(𝑘) > 𝜀
∗, it follows from Lemmas

3 and 4, and Theorem 5 that (𝜎(𝑘), 𝛿(𝑘)) cannot be a feasible
point. This means that the penalty parameter 𝜂

(𝑘) is not
chosen large enough. Thus, we need to increase 𝜂(𝑘). If 𝜂(𝑘) >
10
8, but still 𝜀(𝑘) > 𝜀

∗, then we should choose a different
initial condition or adjust the values of 𝛼 and 𝛽 such that
the conditions of Theorem 2 are satisfied. Then, set 𝜂(𝑘+1) =
10𝜂
(𝑘), 𝜀(𝑘+1) = 0.1𝜀

(𝑘), 𝑘 := 𝑘 + 1. Go to Step 2.

Remark 10. Although we have proven that a local minimizer
of the exact penalty function optimization problem (𝑃

𝜂
(𝑘))will

converge to a local minimizer of the original problem (𝑃), we
need, in actual computation, to set a lower bound 𝜀

∗
= 10
−9

for 𝜀(𝑘), so as to avoid the situation of being divided by 𝜀(𝑘) = 0,
leading to infinity.

6. Simulation Results

Example 1. In this example, we consider a realistic and
complex problem of transferring containers from a ship to
a cargo truck at the port of Kobe in [1]. The container
crane is driven by a hoist motor and a trolley drive motor.
In order to ensure safety, our objective is to minimize the
swing during and at the end of the transfer. After appropriate
normalization, this problem is summarized as follows: find
controls 𝑢

1
(𝑡) and 𝑢

2
(𝑡) such that the object function

𝐽 (𝑢) = 4.5 ∫

1

0

(𝑥
2

3
(𝑡) + 𝑥

2

6
(𝑡)) d𝑡 (66)

is minimized subject to dynamical equations as follows:
�̇�
1
(𝑡) = 9𝑥

4
(𝑡) ,

�̇�
2 (
𝑡) = 9𝑥

5 (
𝑡) ,

�̇�
3
(𝑡) = 9𝑥

6
(𝑡) ,

�̇�
4 (
𝑡) = 9 (𝑢

1 (
𝑡) + 17.2656𝑥

3 (
𝑡)) ,

�̇�
5
(𝑡) = 9𝑢

2
(𝑡) ,

�̇�
6
(𝑡) = −

9

𝑥
2
(𝑡)

(𝑢
1
(𝑡) + 27.0756𝑥

3
(𝑡) + 2𝑥

5
(𝑡) 𝑥
6
(𝑡)) ,

(67)
where the initial and terminal conditions are

𝑥 (0) = [0, 22, 0, 0, −1, 0]
𝑇
,

𝑥 (1) = [10, 14, 0, 2.5, 0, 0]
𝑇
,

(68)

and the control and state inequality constraints are




𝑢
1
(𝑡)





≤ 2.83374,

− 0.80865 ≤ 𝑢
2
(𝑡) ≤ 0.71265,

𝑡 ∈ [0, 1] ,

(69)





𝑥
4
(𝑡)





≤ 2.5,





𝑥
5
(𝑡)





≤ 1.0, 𝑡 ∈ [0, 1] , (70)

respectively. Furthermore, the state inequality constraints can
be formulated as follows:

𝑔
1
(𝑡) = −𝑥

4
(𝑡) + 2.5 ≥ 0,

𝑔
2 (
𝑡) = 𝑥

4 (
𝑡) + 2.5 ≥ 0,

𝑔
3
(𝑡) = −𝑥

5
(𝑡) + 1.0 ≥ 0,

𝑔
4
(𝑡) = 𝑥

5
(𝑡) + 1.0 ≥ 0.

(71)

By utilizing the control parametrization method used
conjunction with a time scaling transform and the exact
penalty function method, the constrained optimal control
problem is transformed into the following unconstrained
optimal control problem (�̂�

𝜂
), given the following system:

̇
�̂�
1
(𝑠) = 9𝑥

4
(𝑠) �̂�
𝑝

3
(𝑠 | 𝛿)

̇
�̂�
2
(𝑠) = 9𝑥

5
(𝑠) �̂�
𝑝

3
(𝑠 | 𝛿)

̇
�̂�
3
(𝑠) = 9𝑥

6
(𝑠) �̂�
𝑝

3
(𝑠 | 𝛿)

̇
�̂�
4
(𝑠) = 9 (�̂�

𝑝

1
(𝑠 | 𝜎) + 17.2656𝑥

3
(𝑠)) �̂�
𝑝

3
(𝑠 | 𝛿)

̇
�̂�
5
(𝑠) = 9�̂�

𝑝

2
(𝑠 | 𝜎) �̂�

𝑝

3
(𝑠 | 𝛿)

̇
�̂�
6
(𝑠)

= −

9

𝑥
2
(𝑠)

(�̂�
𝑝

1
(𝑠 | 𝜎) + 27.0756𝑥

3 (
𝑠) + 2𝑥

5 (
𝑠) 𝑥6 (

𝑠))

× �̂�
𝑝

3
(𝑠 | 𝛿) ,

̇
�̂�
7
(𝑠) = �̂�

𝑝

3
(𝑠 | 𝜎)

(72)
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with the initial condition 𝑥(0) = [0, 22, 0, 0, −1, 0, 0]
𝑇. Find

control and system parameters (𝜎, 𝛿, 𝜀) such that the new
object function

𝐽
𝜂
(𝑢) = 4.5 ∫

1

0

(𝑥
2

3
(𝑠 | 𝜎, 𝛿) + 𝑥

2

6
(𝑠 | 𝜎, 𝛿)) �̂�

𝑝

3
(𝑠 | 𝜎) d𝑠

+ 𝜀
−𝛼
Δ (𝜎, 𝛿) + 𝜂𝜀

𝛽

(73)

is minimized, where

Δ (𝜎, 𝛿) = (𝑥
1
(1 | 𝜎, 𝛿) − 10)

2
+ (𝑥
2
(1 | 𝜎, 𝛿) − 14)

2

+ 𝑥
3(
1 | 𝜎, 𝛿)

2
+ (𝑥
4 (
1 | 𝜎, 𝛿) − 2.5)

2

+ 𝑥
5
(1 | 𝜎, 𝛿)

2
+ 𝑥
6
(1 | 𝜎, 𝛿)

2

+ (𝑥
7 (
1 | 𝜎, 𝛿) − 1)

2

+ ∫

1

0

[max {0, 𝑥
4
(𝑠 | 𝜎, 𝛿) − 2.5}]

2d𝑠

+ ∫

1

0

[max {0, −𝑥
4
(𝑠 | 𝜎, 𝛿) − 2.5}]

2d𝑠

+ ∫

1

0

[max {0, 𝑥
5 (
𝑠 | 𝜎, 𝛿) − 1}]

2d𝑠

+ ∫

1

0

[max {0, −𝑥
5 (
𝑠 | 𝜎, 𝛿) − 1}]

2d𝑠.

(74)

Thus, set 𝑝 = 20, 𝛼 = 1.5, and 𝛽 = 3. Applying Algorithm 8 to
problem (�̂�

𝜂
), the obtained results are shown below.The opti-

mal objective function is 𝐽 = 5.2386×10
−3, where 𝜂 = 2.0×10

5

and 𝜀 = 1.00032. The optimal controls, the optimal states,
and the constraint functions are shown in Figures 2, 3, 4, and
5, respectively. From Figure 1, we observe that the obtained
optimal controls are satisfied for the constraint (69). Under
the optimal controls, the terminal state equality constraint
(68) and the state inequality constraint (71) are both satisfied,
which are seen from Figures 2 to 4, respectively. Comparing
with the results of Example 6.7.3 in [15], our minimum
objective function value is slightly larger than one in [15] (it
is 4.684 × 10

−3 in [15]). However, in [15], the state inequality
constraints (71) are not completely satisfied for all 𝑡 ∈ [0, 1].

Example 2. The following problem is taken from [16]. Find
a control 𝑢 : [0, 4.5] → R that minimizes the objective
function

𝐽 = ∫

4.5

0

(𝑢
2
(𝑡) + 𝑥

2

1
(𝑡)) d𝑡, (75)

subject to dynamic equations

�̇�
1 (
𝑡) = 𝑥

2 (
𝑡) ,

�̇�
2 (
𝑡) = −𝑥

1 (
𝑡) + 𝑥

2 (
𝑡) (1.4 − 0.14𝑥

2

2
(𝑡)) + 4𝑢 (𝑡)

(76)
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Figure 1: Optimal controls.
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Figure 2: Optimal states under optimal controls.

with initial condition
𝑥
1
(0) = −5,

𝑥
2
(0) = −5

(77)

and the continuous inequality constraint on the control and
state

𝑔
1
(𝑡) = −𝑢 (𝑡) −

1

6

𝑥
1
(𝑡) ≥ 0, 𝑡 ∈ [0, 4.5] . (78)

In this problem, we set 𝑝 = 10, 𝛼 = 1.5, and 𝛽 =

2.2. Similar to solve Example 1, the obtained result is shown
below.The optimal objective function value is 45.7717. where
𝜎 = 1.0 × 10

4 and 𝜀 = 4.8532 × 10
−5. The optimal control,

the optimal states, and the constraint function are shown in
Figures 5, 6, 7, and 8, respectively. From Figure 8, we observe
that the control and state constraints are satisfied for all 𝑡 ∈

[0, 4.5].

7. Conclusions

In this paper, we have presented optimal control problems
subject to the terminal state equality constraint and con-
tinuous inequality constraints on the control and the state.
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Figure 4: Constraint functions under optimal controls.
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Figure 8: Constraint function under the optimal control.

Our aim is to design an optimal control that minimizes total
system cost and ensures satisfaction of all constraints. After
the control parametrization, together with the time scaling
transformation, the constrained optimal control problem is
transformed into a constrained approximate optimal param-
eter selection problem. A simple exact penalty function
method is then used to design a computational method to
solve the constrained optimal parameter selection problem.
Its main idea is to augment the constraint violation function
constructed from the terminal state equality constraint and
continuous inequality constraints to the objective function,
forming a new one. This gives rise to a sequence of uncon-
strained optimal control problems, which are easily solved by

a numerical algorithm. From numerical simulation results,
we observe that our proposed method can find a high quality
approximate optimal control such that the objective function
is minimized, while the terminal state constraint and the
constraints on the control and state are both satisfied.
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