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We first prove characterizations of 𝑝-uniform convexity and 𝑞-uniform smoothness. We next give a formulation on absolute
normalized norms on C2. Using these, we present some examples of Banach spaces. One of them is a uniformly convex Banach
space which is not p-uniformly convex.

1. Introduction

Throughout this paper, we denote by N, R, and C the sets
of positive integers, real numbers, and complex numbers,
respectively.

Let 𝑋 be a nontrivial Banach space, which means a real
Banach space with dim𝑋 ≥ 2 or a complex Banach space
with dim𝑋 ≥ 1. Themodulus of convexity of 𝑋 is defined as

𝛿 (𝜀) = inf (1 −

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
) (1)

for 𝜀 ∈ [0, 2], where the infimum can be taken over all 𝑥, 𝑦 ∈

𝑋 with ‖𝑥‖ ≤ 1, ‖𝑦‖ ≤ 1, and ‖𝑥 − 𝑦‖ ≥ 𝜀. The modulus of
smoothness of 𝑋 is defined as

𝜌 (𝜏) = sup(

󵄩󵄩󵄩󵄩𝑥 + 𝜏𝑦
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥 − 𝜏𝑦
󵄩󵄩󵄩󵄩

2
− 1) (2)

for 𝜏 ∈ (0,∞), where the supremum can be taken over all
𝑥, 𝑦 ∈ 𝑋with ‖𝑥‖ ≤ 1 and ‖𝑦‖ ≤ 1. It is obvious that 𝜌(𝜏) ≤ 𝜏.
We know that if𝑋 is aHilbert space, then 𝛿(𝜀) = 1−√1 − 𝜀

2
/4

and 𝜌(𝜏) = √1 + 𝜏
2
− 1.

We recall that 𝑋 is said to be uniformly convex if 𝛿(𝜀) >

0 for all 𝜀 > 0. Also, 𝑋 is said to be uniformly smooth if
lim
𝜏→+0

𝜌(𝜏)/𝜏 = 0.
For 𝑝 ∈ [2,∞), 𝑋 is called 𝑝-uniformly convex if there

exists 𝐶 > 0 satisfying

𝛿 (𝜀) ≥ 𝐶𝜀
𝑝 (3)

for all 𝜀 ∈ [0, 2]. On the other hand, for 𝑞 ∈ (1, 2], 𝑋 is called
𝑞-uniformly smooth if there exists 𝐾 > 0 satisfying

𝜌 (𝜏) ≤ 𝐾𝜏
𝑞 (4)

for all 𝜏 ∈ (0,∞). It is obvious that 𝑝-uniformly con-
vex Banach spaces are uniformly convex, and 𝑞-uniformly
smooth Banach spaces are uniformly smooth. We also know
that, for 𝑝 ∈ (1,∞), 𝐿𝑝 spaces are max{2, 𝑝}-uniformly con-
vex and min{2, 𝑝}-uniformly smooth. See [1–6] and others.

A norm ‖ ⋅ ‖ on C2 is said to be absolute if
󵄩󵄩󵄩󵄩(𝑥1, 𝑥2)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩(

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩 (5)

for all (𝑥
1
, 𝑥
2
) ∈ C2 and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1.

The ℓ
𝑝
-norms ‖ ⋅ ‖

𝑝
are such examples:

󵄩󵄩󵄩󵄩(𝑥1, 𝑥2)
󵄩󵄩󵄩󵄩𝑝

= {
(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

𝑝

)
1/𝑝

, if 1 ≤ 𝑝 < ∞,

max {
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨} , if 𝑝 = ∞.

(6)

Let 𝐴𝑁
2
be the family of all absolute normalized norms

on C2. We letΨ
2
be the set of all convex functions 𝜓 on [0, 1]

satisfying

max {1 − 𝑡, 𝑡} ≤ 𝜓 (𝑡) ≤ 1 (7)

for 𝑡 ∈ [0, 1]. Bonsall and Duncan in [7] showed the fol-
lowing characterization of absolute normalized norms onC2.
Namely, the set 𝐴𝑁

2
of all absolute normalized norms on
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C2 is in one-to-one correspondence with Ψ
2
. The correspon-

dence is given by

𝜓 (𝑡) = ‖(1 − 𝑡, 𝑡)‖ for 𝑡 ∈ [0, 1] . (8)

Indeed, for any 𝜓 ∈ Ψ
2
, the norm ‖ ⋅ ‖

𝜓
on C2 defined as

󵄩󵄩󵄩󵄩(𝑥1, 𝑥2)
󵄩󵄩󵄩󵄩𝜓

=

{{{{{{

{{{{{{

{

(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨)

×𝜓(

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨

) , if (𝑥
1
, 𝑥
2
) ̸= (0, 0) ,

0, if (𝑥
1
, 𝑥
2
) = (0, 0)

(9)

belongs to 𝐴𝑁
2
and satisfies (8). Saito et al. in [8] extended

this result to C𝑛.
In this paper, we first prove characterizations of 𝑝-

uniform convexity and 𝑞-uniform smoothness. We next give
another formulation on absolute normalized norms on C2.
Using these, we present some examples, one of which is a
uniformly convex Banach space which is not 𝑝-uniformly
convex.

2. Characterizations

In this section, we prove characterizations of 𝑝-uniform con-
vexity and 𝑞-uniform smoothness.

Proposition 1. Let 𝑋 be a Banach space and let 𝑝 ∈ [2,∞).
Then the following are equivalent:

(i) 𝑋 is 𝑝-uniformly convex,

(ii) lim inf
𝜀→+0

𝛿(𝜀)/𝜀
𝑝
> 0 .

Proof. We first assume that lim inf
𝜀→+0

𝛿(𝜀)/𝜀
𝑝
= 0. Then for

every 𝐶 > 0, there exists a small 𝜀 > 0 such that 𝛿(𝜀)/𝜀𝑝 <

𝐶. That is, 𝑋 is not 𝑝-uniformly convex. Conversely, we next
assume that 𝑋 is not 𝑝-uniformly convex. That is, for every
𝐶 > 0, there exists 𝜀 ∈ (0, 2] such that 𝛿(𝜀) < 𝐶𝜀

𝑝. Putting
𝐶 = 1/𝑛, we can define a sequence {𝜀

𝑛
} in (0, 2] such that

𝛿(𝜀
𝑛
)/𝜀
𝑝

𝑛
< 1/𝑛. In the case of lim inf

𝑛
𝜀
𝑛
= 0, without loss of

generality, we may assume lim
𝑛
𝜀
𝑛
= 0. We have

0 ≤ lim inf
𝜀→+0

𝛿 (𝜀)

𝜀
𝑝

≤ lim inf
𝑛→∞

𝛿 (𝜀
𝑛
)

𝜀
𝑝

𝑛

≤ lim
𝑛→∞

1

𝑛
= 0 (10)

and hence lim inf
𝜀→+0

𝛿(𝜀)/𝜀
𝑝

= 0. In the other case, there
exists 𝜀

0
> 0 such that 𝜀

0
< 𝜀
𝑛
for all 𝑛 ∈ N. Then since 𝛿 is

nondecreasing, we have

0 ≤
𝛿 (𝜀
0
)

2
𝑝

≤
𝛿 (𝜀
𝑛
)

𝜀
𝑝

𝑛

<
1

𝑛
(11)

for 𝑛 ∈ N and hence 𝛿(𝜀
0
) = 0. Therefore, 𝛿(𝜀) = 0 for 𝜀 ∈

[0, 𝜀
0
]. This implies lim inf

𝜀→+0
𝛿(𝜀)/𝜀

𝑝
= 0.

Proposition 2. Let 𝑋 be a Banach space and let 𝑞 ∈ (1, 2].
Then the following are equivalent:

(i) 𝑋 is 𝑞-uniformly smooth,
(ii) lim sup

𝜏→+0
𝜌(𝜏)/𝜏

𝑞
< ∞.

Proof. We first assume that lim sup
𝜏→+0

𝜌(𝜏)/𝜏
𝑞

= ∞. Then
for every𝐾 > 0, there exists a small 𝜏 > 0 such that 𝜌(𝜏)/𝜏𝑞 >
𝐾. That is,𝑋 is not 𝑞-uniformly smooth. Conversely, we next
assume that 𝑋 is not 𝑞-uniformly smooth. That is, for every
𝐾 > 0, there exists 𝜏 > 0 such that 𝜌(𝜏) > 𝐾𝜏

𝑞. Putting𝐾 = 𝑛,
we can define a sequence {𝜏

𝑛
} in (0,∞) such that 𝜌(𝜏

𝑛
)/𝜏
𝑞

𝑛
>

𝑛. Then we have

𝑛 <
𝜌 (𝜏
𝑛
)

𝜏
𝑞

𝑛

≤
𝜏
𝑛

𝜏
𝑞

𝑛

=
1

𝜏
𝑞−1

𝑛

. (12)

Hence, lim
𝑛
𝜏
𝑛
= 0 because 𝑞 − 1 > 0. Therefore, we obtain

lim sup
𝜏→+0

𝜌 (𝜏)

𝜏
𝑞

≥ lim sup
𝑛→∞

𝜌 (𝜏
𝑛
)

𝜏
𝑞

𝑛

≥ lim
𝑛→∞

𝑛 = ∞. (13)

This completes the proof.

We know that Hilbert spaces are 2-uniformly convex and
2-uniformly smooth Banach spaces. We can easily check this
thing by Propositions 1 and 2.

3. Convex Functions

In this section, we discuss properties of convex functions
belonging to Ψ

2
. We first note that functions 𝜓 belonging to

Ψ
2
are continuous and satisfy𝜓(0) = 𝜓(1) = 1 and𝜓(𝑡) ≥ 1/2

for all 𝑡 ∈ [0, 1].
Let 𝜓 ∈ Ψ

2
. Then we define 𝜓

󸀠

−
, 𝜓󸀠
+
, and 𝜕𝜓 as follows:

𝜓
󸀠

−
(𝑠) = lim
𝑡→ 𝑠−0

𝜓 (𝑡) − 𝜓 (𝑠)

𝑡 − 𝑠
(14)

for 𝑠 ∈ (0, 1],

𝜓
󸀠

+
(𝑠) = lim
𝑡→ 𝑠+0

𝜓 (𝑡) − 𝜓 (𝑠)

𝑡 − 𝑠
(15)

for 𝑠 ∈ [0, 1), and

𝜕𝜓 (𝑠) = {𝑎 ∈ R : 𝜓 (𝑡) ≥ 𝜓 (𝑠) + 𝑎 (𝑡 − 𝑠) ∀𝑡 ∈ [0, 1]} (16)

for 𝑠 ∈ [0, 1]. See [9] and others.
We know the following.

Lemma 3 (see [9, 10]). Let 𝜓 ∈ Ψ
2
. Then the following hold:

(i) For 𝑠, 𝑡, 𝑢 ∈ [0, 1] with 0 ≤ 𝑠 < 𝑡 < 𝑢 ≤ 1,

𝜓 (𝑡) − 𝜓 (𝑠)

𝑡 − 𝑠
≤

𝜓 (𝑢) − 𝜓 (𝑠)

𝑢 − 𝑠
≤

𝜓 (𝑢) − 𝜓 (𝑡)

𝑢 − 𝑡
(17)

holds.
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(ii) For 𝑠, 𝑡, 𝑢 ∈ [0, 1] with 0 ≤ 𝑠 < 𝑡 < 𝑢 ≤ 1,

𝜓
󸀠

+
(𝑠) ≤

𝜓 (𝑡) − 𝜓 (𝑠)

𝑡 − 𝑠
≤ 𝜓
󸀠

−
(𝑡) ≤ 𝜓

󸀠

+
(𝑡) ≤

𝜓 (𝑢) − 𝜓 (𝑡)

𝑢 − 𝑡

≤ 𝜓
󸀠

−
(𝑢)

(18)

holds.
(iii) For 𝑡 ∈ [0, 1],

𝜕𝜓 (𝑡) =

{{{{

{{{{

{

(−∞,𝜓
󸀠

+
(0)] , 𝑖𝑓 𝑡 = 0,

[𝜓
󸀠

−
(𝑡) , 𝜓

󸀠

+
(𝑡)] , 𝑖𝑓 0 < 𝑡 < 1,

[𝜓
󸀠

−
(1) , +∞) , 𝑖𝑓 𝑡 = 1

(19)

holds.
(iv) ⋃{𝜕𝜓(𝑡) : 𝑡 ∈ [0, 1]} = R holds.
(v) −1 ≤ 𝜓

󸀠

+
(0) and 𝜓

󸀠

−
(1) ≤ 1 hold.

Remark 4. (i)–(iii) are stated in [9]. (iv) follows from Theo-
rem 24.1 in [9]. (v) is proved in [10].

Using Lemma 3, we can easily prove the following.

Lemma 5. Let 𝜓 ∈ Ψ
2
. Then the following hold:

(i) 𝜓
󸀠

+
(𝑡) ≤ (1 − 𝜓(𝑡))/(1 − 𝑡) for every 𝑡 ∈ [0, 1),

(ii) 𝜓
󸀠

−
(𝑡) ≥ (𝜓(𝑡) − 1)/𝑡 for every 𝑡 ∈ (0, 1].

Lemma 6. Let 𝜓 ∈ Ψ
2
and 𝑠, 𝑡, 𝑢 ∈ [0, 1] with 𝑠 < 𝑡 < 𝑢. Then

−1 ≤
𝜓 (𝑡) − 𝜓 (𝑠)

𝑡 − 𝑠
≤

1 − 𝜓 (𝑡)

1 − 𝑡
,

𝜓 (𝑡) − 1

𝑡
≤

𝜓 (𝑢) − 𝜓 (𝑡)

𝑢 − 𝑡
≤ 1

(20)

hold.

The following lemma is used in Section 5.

Lemma 7. Let 𝜓 ∈ Ψ
2
and 𝑠, 𝑢 ∈ [0, 1] with 𝑠 < 𝑢. Then

𝑢 − 𝑠 ≤ 𝜓 (𝑢) (1 − 2𝑠) + 𝜓 (𝑠) (2𝑢 − 1) ≤ 2 (𝑢 − 𝑠) (21)

holds.

Proof. In the case of 𝑠 ≤ 1/2 ≤ 𝑢, we have

𝑢 − 𝑠 =
1

2
(1 − 2𝑠) +

1

2
(2𝑢 − 1)

≤ 𝜓 (𝑢) (1 − 2𝑠) + 𝜓 (𝑠) (2𝑢 − 1)

≤ (1 − 2𝑠) + (2𝑢 − 1)

= 2 (𝑢 − 𝑠) .

(22)

Using Lemma 6, we will prove this lemma in the other cases.
In the case of 𝑠 > 1/2, since 2𝜓(𝑠) − ((𝜓(𝑠) − 1)/𝑠)(2𝑠 − 1) ≤ 2,
we have

𝑢 − 𝑠 ≤ (2𝜓 (𝑢) + 1 − 2𝑢) (𝑢 − 𝑠)

= 2𝜓 (𝑢) (𝑢 − 𝑠) − (𝑢 − 𝑠) (2𝑢 − 1)

≤ 2𝜓 (𝑢) (𝑢 − 𝑠) − (𝜓 (𝑢) − 𝜓 (𝑠)) (2𝑢 − 1)

= 𝜓 (𝑢) (1 − 2𝑠) + 𝜓 (𝑠) (2𝑢 − 1)

= 2𝜓 (𝑠) (𝑢 − 𝑠) − (𝜓 (𝑢) − 𝜓 (𝑠)) (2𝑠 − 1)

≤ 2𝜓 (𝑠) (𝑢 − 𝑠) −
𝜓 (𝑠) − 1

𝑠
(𝑢 − 𝑠) (2𝑠 − 1)

= (2𝜓 (𝑠) −
𝜓 (𝑠) − 1

𝑠
(2𝑠 − 1)) (𝑢 − 𝑠)

≤ 2 (𝑢 − 𝑠) .

(23)

In the case of 𝑢 < 1/2, since 2𝜓(𝑢)− ((1−𝜓(𝑢))/(1−𝑢))(2𝑢−

1) ≤ 2, we have

𝑢 − 𝑠 ≤ (2𝜓 (𝑠) + 2𝑠 − 1) (𝑢 − 𝑠)

= 2𝜓 (𝑠) (𝑢 − 𝑠) + (𝑢 − 𝑠) (2𝑠 − 1)

≤ 2𝜓 (𝑠) (𝑢 − 𝑠) − (𝜓 (𝑢) − 𝜓 (𝑠)) (2𝑠 − 1)

= 𝜓 (𝑢) (1 − 2𝑠) + 𝜓 (𝑠) (2𝑢 − 1)

= 2𝜓 (𝑢) (𝑢 − 𝑠) − (𝜓 (𝑢) − 𝜓 (𝑠)) (2𝑢 − 1)

≤ 2𝜓 (𝑢) (𝑢 − 𝑠) −
1 − 𝜓 (𝑢)

1 − 𝑢
(𝑢 − 𝑠) (2𝑢 − 1)

= (2𝜓 (𝑢) −
1 − 𝜓 (𝑢)

1 − 𝑢
(2𝑢 − 1)) (𝑢 − 𝑠)

≤ 2 (𝑢 − 𝑠) .

(24)

This completes the proof.

We also know the following.

Lemma 8 (Bonsall and Duncan [7] page 37). Let 𝜓 ∈ Ψ
2
.

Then the following hold:
(i) the function 𝑡 󳨃→ 𝜓(𝑡)/𝑡 is nonincreasing;
(ii) the function 𝑡 󳨃→ 𝜓(𝑡)/(1 − 𝑡) is nondecreasing.

The following lemma follows from Lemma 8.

Lemma 9. Let 𝜓 ∈ Ψ
2
and 𝑠, 𝑢 ∈ [0, 1] with 𝑠 < 𝑢. Then

𝑠

𝜓 (𝑠)
≤

𝑢

𝜓 (𝑢)
,

1 − 𝑠

𝜓 (𝑠)
≥

1 − 𝑢

𝜓 (𝑢)
(25)

hold.

4. Absolute Normalized Norms on C2

We denote by Γ
2
the set of nondecreasing functions 𝛾 from

[0, 1] into [−1, 1] satisfying ∫
1

0
𝛾(𝑠) 𝑑𝑠 = 0. The following
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proposition says there are many absolute normalized norms
on C2, and we can make many such norms easily.

Proposition 10. Define a mapping 𝐷 from Ψ
2
into Γ
2
by

(𝐷𝜓) (𝑡) = {
𝜓
󸀠

+
(𝑡) , 𝑖𝑓 𝑡 ∈ [0, 1) ,

𝜓
󸀠

−
(𝑡) , 𝑖𝑓 𝑡 = 1

(26)

for 𝜓 ∈ Ψ
2
and 𝑡 ∈ [0, 1], and define a mapping 𝑆 from Γ

2
into

Ψ
2
by

(𝑆𝛾) (𝑡) = 1 + ∫

𝑡

0

𝛾 (𝑠) 𝑑𝑠 (27)

for 𝛾 ∈ Γ
2
and 𝑡 ∈ [0, 1]. Then 𝐷 ∘ 𝑆𝛾 = 𝛾 a.e. and 𝑆 ∘ 𝐷𝜓 = 𝜓

for all 𝛾 ∈ Γ
2
and 𝜓 ∈ Ψ

2
.

Proof. Fix 𝜓 ∈ Ψ
2
and put 𝛾 = 𝐷𝜓. We will show 𝛾 ∈ Γ

2
. By

Lemma 3, 𝛾 is nondecreasing, −1 ≤ 𝜓
󸀠

+
(0) = 𝛾(0) and 𝛾(1) =

𝜓
󸀠

−
(1) ≤ 1. Hence 𝛾(𝑡) ∈ [−1, 1] for all 𝑡 ∈ [0, 1]. By the

definition of 𝐷, we have

1 = 𝜓 (1) = 𝜓 (0) + ∫

1

0

𝛾 (𝑠) 𝑑𝑠 = 1 + ∫

1

0

𝛾 (𝑠) 𝑑𝑠. (28)

This implies ∫
1

0
𝛾(𝑠)𝑑𝑠 = 0. Therefore, we have shown 𝛾 ∈ Γ

2
.

Next, we fix 𝛾 ∈ Γ
2
and put𝜓 = 𝑆𝛾.Wewill will 𝑆𝛾 ∈ Ψ

2
. Since

𝛾 is nondecreasing, we have that𝜓 is convex. It is obvious that
𝜓(0) = 𝜓(1) = 1. From the convexity of 𝜓, 𝜓(𝑡) ≤ 1 for all
𝑡 ∈ [0, 1]. Since −1 ≤ 𝛾(𝑡) for 𝑡 ∈ [0, 1], we have

𝜓 (𝑡) = 1 + ∫

𝑡

0

𝛾 (𝑠) 𝑑𝑠 ≥ 1 + ∫

𝑡

0

(−1) 𝑑𝑠 = 1 − 𝑡 (29)

for 𝑡 ∈ [0, 1]. Since 𝛾(𝑡) ≤ 1 for 𝑡 ∈ [0, 1], we also have

𝜓 (𝑡) = 1 + ∫

𝑡

0

𝛾 (𝑠) 𝑑𝑠

= 1 + ∫

1

0

𝛾 (𝑠) 𝑑𝑠 − ∫

1

𝑡

𝛾 (𝑠) 𝑑𝑠

= 1 − ∫

1

𝑡

𝛾 (𝑠) 𝑑𝑠 ≥ 1 − ∫

1

𝑡

1 𝑑𝑠 = 𝑡

(30)

for 𝑡 ∈ [0, 1]. Therefore𝜓 ∈ Ψ
2
.The remains are obvious.

We next discuss the convexity and smoothness. In [11],
Takahashi et al. proved that (C2, ‖ ⋅ ‖

𝜓
) is strictly convex if and

only if𝜓 is strictly convex. See also [8]. Using this fact, we can
obtain the following.

Proposition 11. Let 𝜓 ∈ Ψ
2
. Then (C2, ‖ ⋅ ‖

𝜓
) is strictly convex

if and only if 𝐷𝜓 is injective.

Proof. We assume that (C2, ‖ ⋅ ‖
𝜓
) is strictly convex. Then 𝜓

is strictly convex. That is, for 𝑠, 𝑡, 𝑢 ∈ [0, 1] with 0 ≤ 𝑠 < 𝑡 <

𝑢 ≤ 1, we have

𝜓
󸀠

+
(𝑠) < 𝜓

󸀠

−
(𝑡) ≤ 𝜓

󸀠

+
(𝑡) < 𝜓

󸀠

−
(𝑢) . (31)

Hence 𝐷𝜓 is injective. We can easily prove the converse
implication.

In [10], Mitani et al. proved that (C2, ‖ ⋅ ‖
𝜓
) is smooth if

and only if 𝜓 is differentiable at any 𝑡 ∈ (0, 1) and 𝜓
󸀠

+
(0) = −1

and 𝜓
󸀠

−
(1) = 1. Using this fact, we can prove the following.

Proposition 12. Let 𝜓 ∈ Ψ
2
. Then (C2, ‖ ⋅ ‖

𝜓
) is smooth if and

only if 𝐷𝜓 is surjective.

Proof. We assume that (C2, ‖ ⋅ ‖
𝜓
) is smooth. Then 𝜓 is dif-

ferentiable at any 𝑡 ∈ (0, 1) and 𝜓
󸀠

+
(0) = −1 and 𝜓

󸀠

−
(1) = 1.

So (𝐷𝜓)(0) = −1 and (𝐷𝜓)(1) = 1 are obvious. We note that
𝜕𝜓(0) = (−∞, −1] and 𝜕𝜓(1) = [1, +∞). For 𝑎 ∈ (−1, 1),
there exists 𝑡 ∈ [0, 1]with 𝑎 ∈ 𝜕𝜓(𝑡). From the above note, we
have 𝑡 ∈ (0, 1). From the differentiability, we obtain

𝑎 ∈ 𝜕𝜓 (𝑡) = [𝜓
󸀠

−
(𝑡) , 𝜓

󸀠

+
(𝑡)]

= {𝜓
󸀠
(𝑡)} = {𝜓

󸀠

+
(𝑡)} = {(𝐷𝜓) (𝑡)} .

(32)

That is, (𝐷𝜓)(𝑡) = 𝑎. Therefore we have shown 𝐷𝜓 is sur-
jective. Conversely, we next assume that𝐷𝜓 is surjective. We
suppose that 𝜓 is not differentiable at some 𝑡 ∈ (0, 1). Then
we have 𝜓

󸀠

−
(𝑡) < 𝜓

󸀠

+
(𝑡). By Lemma 3, we have

(𝐷𝜓) ([0, 1]) ⊂ [−1, 1] \ (𝜓
󸀠

−
(𝑡) , 𝜓

󸀠

+
(𝑡)) ⫋ [−1, 1] . (33)

This contradicts the surjectivity of 𝐷𝜓. Hence, 𝜓 is differen-
tiable at any 𝑡 ∈ (0, 1).We next suppose that−1 < 𝜓

󸀠

+
(0).Then

by Lemma 3 again, we have

(𝐷𝜓) ([0, 1]) ⊂ [−1, 1] \ [−1, 𝜓
󸀠

+
(0)) ⫋ [−1, 1] . (34)

This is a contradiction. Hence, 𝜓󸀠
+
(0) = −1. We can similarly

prove 𝜓
󸀠

−
(1) = 1. Therefore, (C2, ‖ ⋅ ‖

𝜓
) is smooth.

5. Examples

In this section, we present examples of absolute normalized
norms on C2 satisfying that (C2, ‖ ⋅ ‖

𝜓
) is uniformly convex

and is not 𝑝-uniformly convex. We also present examples of
such norms satisfying that (C2, ‖ ⋅ ‖

𝜓
) is uniformly smooth

and is not 𝑞-uniformly smooth.We note that, in finite dimen-
sional Banach spaces, strict convexity and uniform convexity
are equivalent. Smoothness and uniform smoothness are also
equivalent.

Theorem 13. Let 𝛾 ∈ Γ
2
and 𝑝 ∈ [2,∞). Assume that there

exist sequences {𝑠
𝑛
} and {𝑢

𝑛
} in [0, 1] such that 𝑠

𝑛
< 𝑢
𝑛
for

𝑛 ∈ N,

lim
𝑛→∞

(𝑢
𝑛
− 𝑠
𝑛
) = 0, lim

𝑛→∞

𝛾 (𝑢
𝑛
) − 𝛾 (𝑠

𝑛
)

(𝑢
𝑛
− 𝑠
𝑛
)
𝑝−1

= 0. (35)

Then (C2, ‖ ⋅ ‖
𝑆𝛾
) is not 𝑝-uniformly convex.

Proof. Put𝜓 = 𝑆𝛾. Without loss of generality, wemay assume

𝛾 (𝑢
𝑛
) − 𝛾 (𝑠

𝑛
)

(𝑢
𝑛
− 𝑠
𝑛
)
𝑝−1

≤
1

𝑛
(36)
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for 𝑛 ∈ N, and {𝑠
𝑛
} and {𝑢

𝑛
} converge to some number 𝑡

0
∈

[0, 1]. We put

𝑡
𝑛
=

(𝑠
𝑛
/𝜓 (𝑠
𝑛
)) + (𝑢

𝑛
/𝜓 (𝑢
𝑛
))

(1/𝜓 (𝑠
𝑛
)) + (1/𝜓 (𝑢

𝑛
))

(37)

for 𝑛 ∈ N. It is clear that 𝑠
𝑛

< 𝑡
𝑛

< 𝑢
𝑛
for 𝑛 ∈ N. Define

sequences {𝑥
𝑛
} and {𝑦

𝑛
} in C2 by

𝑥
𝑛
=

1

𝜓 (𝑠
𝑛
)

(1 − 𝑠
𝑛
, 𝑠
𝑛
) , 𝑦

𝑛
=

1

𝜓 (𝑢
𝑛
)
(1 − 𝑢

𝑛
, 𝑢
𝑛
)

(38)

for 𝑛 ∈ N. It is obvious ‖𝑥
𝑛
‖ = ‖𝑦

𝑛
‖ = 1. Then we have

𝑥
𝑛
+ 𝑦
𝑛
= (

1 − 𝑠
𝑛

𝜓 (𝑠
𝑛
)
+

1 − 𝑢
𝑛

𝜓 (𝑢
𝑛
)
,

𝑠
𝑛

𝜓 (𝑠
𝑛
)
+

𝑢
𝑛

𝜓 (𝑢
𝑛
)
)

= (
1

𝜓 (𝑠
𝑛
)
+

1

𝜓 (𝑢
𝑛
)
) (1 − 𝑡

𝑛
, 𝑡
𝑛
) .

(39)

Thus,

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦
𝑛

󵄩󵄩󵄩󵄩 = (
1

𝜓 (𝑠
𝑛
)
+

1

𝜓 (𝑢
𝑛
)
)𝜓 (𝑡

𝑛
) . (40)

We put

V
𝑛
=

(𝑢
𝑛
/𝜓 (𝑢
𝑛
)) − (𝑠

𝑛
/𝜓 (𝑠
𝑛
))

((1 − 2𝑠
𝑛
) /𝜓 (𝑠

𝑛
)) + ((2𝑢

𝑛
− 1) /𝜓 (𝑢

𝑛
))

. (41)

By Lemma 9,

0 ≤
𝑢
𝑛

𝜓 (𝑢
𝑛
)
−

𝑠
𝑛

𝜓 (𝑠
𝑛
)

≤
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
. (42)

From this inequality and (46), V
𝑛
∈ [0, 1] holds. Using V

𝑛
, we

also have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1 − 𝑠
𝑛

𝜓 (𝑠
𝑛
)
−

1 − 𝑢
𝑛

𝜓 (𝑢
𝑛
)
,

𝑠
𝑛

𝜓 (𝑠
𝑛
)
−

𝑢
𝑛

𝜓 (𝑢
𝑛
)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1 − 𝑠
𝑛

𝜓 (𝑠
𝑛
)
−

1 − 𝑢
𝑛

𝜓 (𝑢
𝑛
)
,

𝑢
𝑛

𝜓 (𝑢
𝑛
)
−

𝑠
𝑛

𝜓 (𝑠
𝑛
)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= (
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
)

󵄩󵄩󵄩󵄩(1 − V
𝑛
, V
𝑛
)
󵄩󵄩󵄩󵄩

= (
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
)𝜓 (V

𝑛
) .

(43)

Therefore, we obtain

𝛿((
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
)𝜓 (V

𝑛
))

≤ 1 −
1

2
(

1

𝜓 (𝑠
𝑛
)
+

1

𝜓 (𝑢
𝑛
)
)𝜓 (𝑡

𝑛
) .

(44)

We will show lim inf
𝜀→+0

𝛿(𝜀)/𝜀
𝑝

= 0. Before showing it, we
need some inequalities:

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
) − (𝜓 (𝑢

𝑛
) + 𝜓 (𝑠

𝑛
)) 𝜓 (𝑡

𝑛
)

= 𝜓 (𝑠
𝑛
) (𝜓 (𝑢

𝑛
) − 𝜓 (𝑡

𝑛
)) − 𝜓 (𝑢

𝑛
) (𝜓 (𝑡

𝑛
) − 𝜓 (𝑠

𝑛
))

= 𝜓 (𝑠
𝑛
) ∫

𝑢
𝑛

𝑡
𝑛

𝛾 (𝑠) 𝑑𝑠 − 𝜓 (𝑢
𝑛
) ∫

𝑡
𝑛

𝑠
𝑛

𝛾 (𝑠) 𝑑𝑠

≤ 𝜓 (𝑠
𝑛
) 𝛾 (𝑢
𝑛
) (𝑢
𝑛
− 𝑡
𝑛
) − 𝜓 (𝑢

𝑛
) 𝛾 (𝑠
𝑛
) (𝑡
𝑛
− 𝑠
𝑛
)

= 𝜓 (𝑠
𝑛
) 𝛾 (𝑢
𝑛
) (𝑢
𝑛
−

(𝑠
𝑛
/𝜓 (𝑠
𝑛
)) + (𝑢

𝑛
/𝜓 (𝑢
𝑛
))

(1/𝜓 (𝑠
𝑛
)) + (1/𝜓 (𝑢

𝑛
))

)

− 𝜓 (𝑢
𝑛
) 𝛾 (𝑠
𝑛
) (

(𝑠
𝑛
/𝜓 (𝑠
𝑛
)) + (𝑢

𝑛
/𝜓 (𝑢
𝑛
))

(1/𝜓 (𝑠
𝑛
)) + (1/𝜓 (𝑢

𝑛
))

− 𝑠
𝑛
)

=
1

(1/𝜓 (𝑠
𝑛
)) + (1/𝜓 (𝑢

𝑛
))

(𝛾 (𝑢
𝑛
) − 𝛾 (𝑠

𝑛
)) (𝑢
𝑛
− 𝑠
𝑛
)

≤ (𝛾 (𝑢
𝑛
) − 𝛾 (𝑠

𝑛
)) (𝑢
𝑛
− 𝑠
𝑛
)

≤
1

𝑛
(𝑢
𝑛
− 𝑠
𝑛
)
𝑝

,

(45)

(
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
)𝜓 (V

𝑛
)

= (𝜓 (𝑢
𝑛
) (1 − 2𝑠

𝑛
) + 𝜓 (𝑠

𝑛
) (2𝑢
𝑛
− 1))

×
𝜓 (V
𝑛
)

𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

≥ (𝑢
𝑛
− 𝑠
𝑛
)

𝜓 (V
𝑛
)

𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

≥
1

2
(𝑢
𝑛
− 𝑠
𝑛
) > 0

(46)

by Lemma 7. From (45) and (46), we have

𝛿 ((((1 − 2𝑠
𝑛
) /𝜓 (𝑠

𝑛
)) + ((2𝑢

𝑛
− 1) /𝜓 (𝑢

𝑛
))) 𝜓 (V

𝑛
))

((((1 − 2𝑠
𝑛
) /𝜓 (𝑠

𝑛
)) + ((2𝑢

𝑛
− 1) /𝜓 (𝑢

𝑛
))) 𝜓 (V

𝑛
))
𝑝

≤
1 − (1/2) ((1/𝜓 (𝑠

𝑛
)) + (1/𝜓 (𝑢

𝑛
))) 𝜓 (𝑡

𝑛
)

((((1 − 2𝑠
𝑛
) /𝜓(𝑠

𝑛
)) + ((2𝑢

𝑛
− 1) /𝜓 (𝑢

𝑛
))) 𝜓 (V

𝑛
))
𝑝

=
1

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

×
2 𝜓 (𝑠

𝑛
) 𝜓 (𝑢

𝑛
) − (𝜓 (𝑢

𝑛
) + 𝜓 (𝑠

𝑛
)) 𝜓 (𝑡

𝑛
)

((((1 − 2𝑠
𝑛
) /𝜓 (𝑠

𝑛
)) + ((2𝑢

𝑛
− 1) /𝜓 (𝑢

𝑛
))) 𝜓 (V

𝑛
))
𝑝

≤
1

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)
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×
(𝑢
𝑛
− 𝑠
𝑛
)
𝑝

𝑛((((1 − 2𝑠
𝑛
) /𝜓 (𝑠

𝑛
))+((2𝑢

𝑛
− 1)/𝜓 (𝑢

𝑛
))) 𝜓 (V

𝑛
))
𝑝

≤
1

2𝑛𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

2
𝑝

≤
2

𝑛
2
𝑝
,

lim sup
𝑛→∞

(
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
)𝜓 (V

𝑛
)

≤ lim
𝑛→∞

(
1 − 2𝑠

𝑛

𝜓 (𝑠
𝑛
)

+
2𝑢
𝑛
− 1

𝜓 (𝑢
𝑛
)
)

=
1 − 2𝑡

0

𝜓 (𝑡
0
)

+
2𝑡
0
− 1

𝜓 (𝑡
0
)

= 0.

(47)

These imply lim inf
𝜀→+0

𝛿(𝜀)/𝜀
𝑝

= 0. So by Proposition 1, we
obtain the desired result.

Corollary 14. Let 𝛾 ∈ Γ
2
. Assume that 𝛾 is injective, 𝛾 is

infinitely differentiable on the neighborhood of some 𝑡
0
∈ (0, 1),

and

𝛾
󸀠
(𝑡
0
) = 𝛾
󸀠󸀠
(𝑡
0
) = 𝛾
󸀠󸀠󸀠

(𝑡
0
) = ⋅ ⋅ ⋅ = 0. (48)

Then (C2, ‖ ⋅ ‖
𝑆𝛾
) is uniformly convex and is not 𝑝-uniformly

convex for all 𝑝 ∈ [2,∞).

Proof. Put 𝜓 = 𝑆𝛾. By Proposition 11, since 𝛾 is injective,
(C2, ‖ ⋅ ‖

𝜓
) is strictly convex and hence it is uniformly convex.

By the L’Hospital theorem, for 𝑛 ∈ N with 𝑛 ≥ 2, we have

0 = lim
𝑢→ 𝑡
0
+0

𝛾
(𝑛−1)

(𝑢)

(𝑛 − 1)!

= lim
𝑢→ 𝑡
0
+0

𝛾
(𝑛−2)

(𝑢)

(𝑛 − 1)!/1! (𝑢 − 𝑡
0
)

= lim
𝑢→ 𝑡
0
+0

𝛾
(𝑛−3)

(𝑢)

(𝑛 − 1)!/2!(𝑢 − 𝑡
0
)
2

...

= lim
𝑢→ 𝑡
0
+0

𝛾
󸀠
(𝑢)

(𝑛 − 1) (𝑢 − 𝑡
0
)
𝑛−2

= lim
𝑢→ 𝑡
0
+0

𝛾 (𝑢) − 𝛾 (𝑡
0
)

(𝑢 − 𝑡
0
)
𝑛−1

.

(49)

So, by Theorem 13, we have that (C2, ‖ ⋅ ‖
𝜓
) is not 𝑛-

uniformly convex for every 𝑛 ∈ N with 𝑛 ≥ 2. Therefore, we
obtain the desired result.

𝛾 on L1-norm 𝛾 on L∞-norm 𝛾 on L2-norm

𝛾 in Example 15 f−1 in Example 18 𝜂 in Example 19

Figure 1

It is well known that a function 𝑓 from R into R defined
by

𝑓 (𝑡) = {
0, if 𝑡 ≤ 0,

exp (−𝑡
−2

) , if 𝑡 > 0
(50)

for 𝑡 ∈ R is strictly increasing on [0,∞), infinitely differen-
tiable and 𝑓

(𝑛)
(0) = 0 for all 𝑛 ∈ N.

Example 15. Define 𝛾 ∈ Γ
2
by

𝛾 (𝑡) =

{{{{{{{{{{

{{{{{{{{{{

{

− exp(4 − (𝑡 −
1

2
)

−2

) , if 𝑡 <
1

2
,

0, if 𝑡 =
1

2
,

+ exp(4 − (𝑡 −
1

2
)

−2

) , if 𝑡 >
1

2

(51)

for 𝑡 ∈ [0, 1]. Then (C2, ‖ ⋅ ‖
𝑆𝛾
) is uniformly convex and not

𝑝-uniformly convex for all 𝑝 ∈ [2,∞). See Figure 1.
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Theorem 16. Let 𝛾 ∈ Γ
2
and 𝑞 ∈ (1, 2]. Assume that there exist

a constant 𝜆 ∈ (0, 1/2) and sequences {𝑠
𝑛
} and {𝑢

𝑛
} in [0, 1]

such that 𝑠
𝑛
< 𝑢
𝑛
for 𝑛 ∈ N,

lim
𝑛→∞

(𝑢
𝑛
− 𝑠
𝑛
) = 0,

lim
𝑛→∞

𝛾 (𝜆𝑠
𝑛
+ (1 − 𝜆) 𝑢

𝑛
) − 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
)

(𝑢
𝑛
− 𝑠
𝑛
)
𝑞−1

= ∞.

(52)

Then (C2, ‖ ⋅ ‖
𝑆𝛾
) is not 𝑞-uniformly smooth.

Proof. Put𝜓 = 𝑆𝛾. Without loss of generality, wemay assume

𝛾 (𝜆𝑠
𝑛
+ (1 − 𝜆) 𝑢

𝑛
) − 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
)

(𝑢
𝑛
− 𝑠
𝑛
)
𝑞−1

≥ 𝑛 (53)

for 𝑛 ∈ N, and {𝑠
𝑛
} and {𝑢

𝑛
} converge to some number 𝑡

0
∈

[0, 1]. We define a sequence {𝑡
𝑛
} by (37). Since

lim
𝑛→∞

𝜓 (𝑠
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

=
1

2
, lim

𝑛→∞

𝜓 (𝑢
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

=
1

2
,

(54)

we may also assume that

𝜓 (𝑠
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

∈ [𝜆, 1 − 𝜆] ,

𝜓 (𝑢
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

∈ [𝜆, 1 − 𝜆]

(55)

for 𝑛 ∈ N. We note that

(1 − 𝜆) 𝑠
𝑛
+ 𝜆𝑢
𝑛
≤ 𝑡
𝑛
≤ 𝜆𝑠
𝑛
+ (1 − 𝜆) 𝑢

𝑛 (56)

because

𝑡
𝑛
=

𝜓 (𝑢
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)
𝑠
𝑛
+

𝜓 (𝑠
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)
𝑢
𝑛

(57)

for 𝑛 ∈ N. Define sequences {𝑥
𝑛
} and {𝑦

𝑛
} in C2 by

𝑥
𝑛
=

1

𝜓 (𝑡
𝑛
)
(1 − 𝑡
𝑛
, 𝑡
𝑛
) ,

𝑦
𝑛
=

(𝜓 (𝑠
𝑛
) (1 − 𝑢

𝑛
)−𝜓 (𝑢

𝑛
) (1−𝑠

𝑛
) , 𝜓 (𝑠

𝑛
) 𝑢
𝑛
−𝜓 (𝑢

𝑛
) 𝑠
𝑛
)

(𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)) 𝜓 (𝑡

𝑛
)

(58)

for 𝑛 ∈ N. It is obvious that ‖𝑥
𝑛
‖ = 1. We put V

𝑛
∈ [0, 1] by

(41). We have

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩(𝜓 (𝑠
𝑛
) (1 − 𝑢

𝑛
) − 𝜓 (𝑢

𝑛
) (1 − 𝑠

𝑛
) , 𝜓 (𝑠

𝑛
) 𝑢
𝑛
− 𝜓 (𝑢

𝑛
) 𝑠
𝑛
)
󵄩󵄩󵄩󵄩

(𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)) 𝜓 (𝑡

𝑛
)

=

󵄩󵄩󵄩󵄩(𝜓 (𝑠
𝑛
) (𝑢
𝑛
− 1) + 𝜓 (𝑢

𝑛
) (1 − 𝑠

𝑛
) , 𝜓 (𝑠

𝑛
) 𝑢
𝑛
− 𝜓 (𝑢

𝑛
) 𝑠
𝑛
)
󵄩󵄩󵄩󵄩

(𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)) 𝜓 (𝑡

𝑛
)

=
𝜓 (𝑠
𝑛
) (2𝑢
𝑛
− 1) + 𝜓 (𝑢

𝑛
) (1 − 2𝑠

𝑛
)

(𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)) 𝜓 (𝑡

𝑛
)

󵄩󵄩󵄩󵄩(1 − V
𝑛
, V
𝑛
)
󵄩󵄩󵄩󵄩

=
𝜓 (𝑠
𝑛
) (2𝑢
𝑛
− 1) + 𝜓 (𝑢

𝑛
) (1 − 2𝑠

𝑛
)

(𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)) 𝜓 (𝑡

𝑛
)

𝜓 (V
𝑛
)

≤ 2 (𝜓 (𝑠
𝑛
) (2𝑢
𝑛
− 1) + 𝜓 (𝑢

𝑛
) (1 − 2𝑠

𝑛
))

≤ 4 (𝑢
𝑛
− 𝑠
𝑛
)

(59)

by Lemma 7. We note that lim
𝑛
‖𝑦
𝑛
‖ = 0. We will calculate

‖𝑥
𝑛
+ 𝑦
𝑛
‖ and ‖𝑥

𝑛
− 𝑦
𝑛
‖. We have

𝑥
𝑛
+ 𝑦
𝑛
=

1

𝜓 (𝑡
𝑛
)
(1 − 𝑡

𝑛
+

𝜓 (𝑠
𝑛
) (1 − 𝑢

𝑛
) − 𝜓 (𝑢

𝑛
) (1 − 𝑠

𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

,

𝑡
𝑛
+

𝜓 (𝑠
𝑛
) 𝑢
𝑛
− 𝜓 (𝑢

𝑛
) 𝑠
𝑛

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

)

=
1

𝜓 (𝑡
𝑛
)
(1 +

𝜓 (𝑠
𝑛
) − 𝜓 (𝑢

𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)
) (1 − 𝑢

𝑛
, 𝑢
𝑛
)

=
1

𝜓 (𝑡
𝑛
)

2𝜓 (𝑠
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)
(1 − 𝑢

𝑛
, 𝑢
𝑛
)

(60)

because

𝑡
𝑛
+ ((𝜓 (𝑠

𝑛
) 𝑢
𝑛
− 𝜓 (𝑢

𝑛
) 𝑠
𝑛
) / (𝜓 (𝑠

𝑛
) + 𝜓 (𝑢

𝑛
)))

1 + ((𝜓 (𝑠
𝑛
) − 𝜓 (𝑢

𝑛
)) / (𝜓 (𝑠

𝑛
) + 𝜓 (𝑢

𝑛
)))

= 𝑢
𝑛
. (61)

Hence,

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦
𝑛

󵄩󵄩󵄩󵄩 =
1

𝜓 (𝑡
𝑛
)

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

(62)

for 𝑛 ∈ N. Similarly, we obtain

𝑥
𝑛
− 𝑦
𝑛
=

1

𝜓 (𝑡
𝑛
)

2𝜓 (𝑢
𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)
(1 − 𝑠

𝑛
, 𝑠
𝑛
) (63)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 =
1

𝜓 (𝑡
𝑛
)

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)

(64)
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for 𝑛 ∈ N. Therefore, we obtain

𝜌 (
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩) ≥

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2
− 1

=
1

𝜓 (𝑡
𝑛
)

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
)

𝜓 (𝑠
𝑛
) + 𝜓 (𝑢

𝑛
)
− 1.

(65)

From

2𝜓 (𝑠
𝑛
) 𝜓 (𝑢

𝑛
) − (𝜓 (𝑢

𝑛
) + 𝜓 (𝑠

𝑛
)) 𝜓 (𝑡

𝑛
)

= 𝜓 (𝑠
𝑛
) (𝜓 (𝑢

𝑛
) − 𝜓 (𝑡

𝑛
)) − 𝜓 (𝑢

𝑛
) (𝜓 (𝑡

𝑛
) − 𝜓 (𝑠

𝑛
))

= 𝜓 (𝑠
𝑛
) (∫

𝜆𝑠
𝑛
+(1−𝜆)𝑢

𝑛

𝑡
𝑛

𝛾 (𝑠) 𝑑𝑠 + ∫

𝑢
𝑛

𝜆𝑠
𝑛
+(1−𝜆)𝑢

𝑛

𝛾 (𝑠) 𝑑𝑠)

− 𝜓 (𝑢
𝑛
) (∫

(1−𝜆)𝑠
𝑛
+𝜆𝑢
𝑛

𝑠
𝑛

𝛾 (𝑠) 𝑑𝑠

+ ∫

𝑡
𝑛

(1−𝜆)𝑠
𝑛
+𝜆𝑢
𝑛

𝛾 (𝑠) 𝑑𝑠)

≥ 𝜓 (𝑠
𝑛
) 𝛾 (𝑡
𝑛
) (𝜆𝑠
𝑛
+ (1 − 𝜆) 𝑢

𝑛
− 𝑡
𝑛
)

+ 𝜓 (𝑠
𝑛
) 𝛾 (𝜆𝑠

𝑛
+ (1 − 𝜆) 𝑢

𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

− 𝜓 (𝑢
𝑛
) 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

− 𝜓 (𝑢
𝑛
) 𝛾 (𝑡
𝑛
) (𝑡
𝑛
− (1 − 𝜆) 𝑠

𝑛
− 𝜆𝑢
𝑛
)

= 𝜓 (𝑠
𝑛
) 𝛾 (𝑡
𝑛
)

× (𝜆𝑠
𝑛
+ (1 − 𝜆) 𝑢

𝑛
−

(𝑠
𝑛
/𝜓 (𝑠
𝑛
)) + (𝑢

𝑛
/𝜓 (𝑢
𝑛
))

(1/𝜓 (𝑠
𝑛
)) + (1/𝜓 (𝑢

𝑛
))

)

+ 𝜓 (𝑠
𝑛
) 𝛾 (𝜆𝑠

𝑛
+ (1 − 𝜆) 𝑢

𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

− 𝜓 (𝑢
𝑛
) 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

− 𝜓 (𝑢
𝑛
) 𝛾 (𝑡
𝑛
)

× (
(𝑠
𝑛
/𝜓 (𝑠
𝑛
)) + (𝑢

𝑛
/𝜓 (𝑢
𝑛
))

(1/𝜓 (𝑠
𝑛
)) + (1/𝜓 (𝑢

𝑛
))

− (1 − 𝜆) 𝑠
𝑛
− 𝜆𝑢
𝑛
)

= −𝜓 (𝑠
𝑛
) 𝛾 (𝑡
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

+ 𝜓 (𝑠
𝑛
) 𝛾 (𝜆𝑠

𝑛
+ (1 − 𝜆) 𝑢

𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

− 𝜓 (𝑢
𝑛
) 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

+ 𝜓 (𝑢
𝑛
) 𝛾 (𝑡
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

= 𝜓 (𝑠
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
) (𝛾 (𝜆𝑠

𝑛
+ (1 − 𝜆) 𝑢

𝑛
) − 𝛾 (𝑡

𝑛
))

+ 𝜓 (𝑢
𝑛
) 𝜆 (𝑢
𝑛
− 𝑠
𝑛
) (𝛾 (𝑡

𝑛
) − 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
))

≥
1

2
𝜆 (𝑢
𝑛
− 𝑠
𝑛
) (𝛾 (𝜆𝑠

𝑛
+ (1 − 𝜆) 𝑢

𝑛
) − 𝛾 (𝑡

𝑛
))

+
1

2
𝜆 (𝑢
𝑛
− 𝑠
𝑛
) (𝛾 (𝑡

𝑛
) − 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
))

=
1

2
𝜆 (𝑢
𝑛
− 𝑠
𝑛
)

× (𝛾 (𝜆𝑠
𝑛
+ (1 − 𝜆) 𝑢

𝑛
) − 𝛾 ((1 − 𝜆) 𝑠

𝑛
+ 𝜆𝑢
𝑛
))

≥
1

2
𝜆𝑛(𝑢
𝑛
− 𝑠
𝑛
)
𝑞

(66)

and (59), we have

𝜌 (
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

𝑞
≥

1

(4 (𝑢
𝑛
− 𝑠
𝑛
))
𝑞

(1/2) 𝜆𝑛(𝑢
𝑛
− 𝑠
𝑛
)
𝑞

𝜓 (𝑡
𝑛
) (𝜓 (𝑠

𝑛
) + 𝜓 (𝑢

𝑛
))

≥
1

4
𝑞

(1/2) 𝜆𝑛

𝜓 (𝑡
𝑛
) (𝜓 (𝑠

𝑛
) + 𝜓 (𝑢

𝑛
))

≥
1

4
𝑞+1

𝜆𝑛.

(67)

Hence we obtain lim sup
𝜏→+0

𝜌(𝜏)/𝜏
𝑞

= ∞. So by
Proposition 2, we obtain the desired result.

Corollary 17. Let 𝑓 be a bijective and strictly increasing func-
tion from [−1, 1] into [0, 1] with ∫

1

−1
𝑓(𝑎)𝑑𝑎 = 1. Assume that

𝑓 is infinitely differentiable on the neighborhood of some 𝑎
0
∈

(−1, 1), and

𝑓
󸀠
(𝑎
0
) = 𝑓
󸀠󸀠
(𝑎
0
) = 𝑓
󸀠󸀠󸀠

(𝑎
0
) = ⋅ ⋅ ⋅ = 0. (68)

Then 𝑓
−1

∈ Γ
2
and (C2, ‖ ⋅ ‖

𝑆𝑓
−1) is uniformly smooth and is

not 𝑞-uniformly smooth for all 𝑞 ∈ (1, 2].

Proof. It is not difficult to check 𝑓
−1

∈ Γ
2
. Put 𝛾 = 𝑓

−1 and
𝜓 = 𝑆𝛾. By Proposition 12, since 𝛾 is surjective, (C2, ‖ ⋅ ‖

𝜓
)

is smooth and hence it is uniformly smooth. Fix ] ∈ N. As
in the proof of Corollary 14, we can prove lim

𝑏→𝑎
0
+0

(𝑓(𝑏) −

𝑓(𝑎
0
))/(𝑏 − 𝑎

0
)
]
= 0. Since 𝑓 is strictly increasing, we have

lim
𝑏→𝑎
0
+0

(𝑏 − 𝑎
0
)
]

𝑓 (𝑏) − 𝑓 (𝑎
0
)

= ∞. (69)

Putting 𝑢 = 𝑓(𝑏) and 𝑡
0
= 𝑓(𝑎

0
), we have

lim
𝑢→ 𝑡
0
+0

𝛾 (𝑢) − 𝛾 (𝑡
0
)

(𝑢 − 𝑡
0
)
1/] = lim

𝑏→𝑎
0
+0

𝑏 − 𝑎
0

(𝑓 (𝑏) − 𝑓 (𝑎
0
))
1/]

= lim
𝑏→𝑎
0
+0

(
(𝑏 − 𝑎

0
)
]

𝑓(𝑏) − 𝑓(𝑎
0
)
)

1/]

= ∞.

(70)

We choose a strictly increasing sequence {𝑠
𝑛
} and a strictly

decreasing sequence {𝑢
𝑛
} in [0, 1] satisfying 𝑡

0
= (2/3)𝑠

𝑛
+

(1/3)𝑢
𝑛
for 𝑛 ∈ N and lim

𝑛
𝑠
𝑛
= lim
𝑛
𝑢
𝑛
= 𝑡
0
.Then it is obvious

that 𝑡
0

< (1/3)𝑠
𝑛
+ (2/3)𝑢

𝑛
for 𝑛 ∈ N and lim

𝑛
((1/3)𝑠

𝑛
+

(2/3)𝑢
𝑛
) = 𝑡
0
. We have

lim
𝑛→∞

𝛾 ((1/3) 𝑠
𝑛
+ (2/3) 𝑢

𝑛
) − 𝛾 ((2/3) 𝑠

𝑛
+ (1/3) 𝑢

𝑛
)

(𝑢
𝑛
− 𝑠
𝑛
)
1/]

=
1

3
1/] lim
𝑛→∞

𝛾 ((1/3) 𝑠
𝑛
+ (2/3) 𝑢

𝑛
) − 𝛾 (𝑡

0
)

((1/3) 𝑠
𝑛
+ (2/3) 𝑢

𝑛
− 𝑡
0
)
1/] = ∞.

(71)
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Thus, byTheorem 16, we have that (C2, ‖ ⋅ ‖
𝜓
) is not (1+1/])-

uniformly smooth. Since ] is arbitrary, (C2, ‖ ⋅ ‖
𝜓
) is not 𝑞-

uniformly smooth for every 𝑞 ∈ (1, 2].

Example 18. Define a function 𝑓 from [−1, 1] onto [0, 1] by

𝑓 (𝑎) =

{{{{{{{{{

{{{{{{{{{

{

− exp (1 − 𝑎
−2

)

2
+

1

2
, if 𝑎 < 0,

1

2
, if 𝑎 = 0,

+ exp (1 − 𝑎
−2

)

2
+

1

2
if 𝑎 > 0

(72)

for 𝑎 ∈ [−1, 1]. Then (C2, ‖ ⋅ ‖
𝑆𝑓
−1) is uniformly smooth and

not 𝑞-uniformly smooth for all 𝑞 ∈ (1, 2]. See Figure 1.

Example 19. Let 𝛾 be as in Example 15 and let 𝑓 be as in
Example 18. Define a function 𝜂 from [0, 1] into [−1, 1] by

𝜂 (𝑡) =

{{{{{{{{{

{{{{{{{{{

{

𝑓
−1

(4𝑡)

4
−

3

4
, if 𝑡 ≤

1

4
,

𝛾 (2𝑡 − 1/2)

2
, if 1

4
≤ 𝑡 ≤

3

4
,

𝑓
−1

(4𝑡 − 3)

4
+

3

4
, if 𝑡 ≥

3

4

(73)

for 𝑡 ∈ [0, 1]. Then (C2, ‖ ⋅ ‖
𝑆𝜂
) is uniformly convex, uni-

formly smooth, not 𝑝-uniformly convex for all 𝑝 ∈ [2,∞),
and not 𝑞-uniformly smooth for all 𝑞 ∈ (1, 2]. See Figure 1.
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