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Dislocated symmetric spaces are introduced, and implications and nonimplications among various kinds of convergence axioms
are derived.

1. Introduction

A metric space is a special kind of topological space. In
a metric space, topological properties are characterized by
means of sequences. Sequences are not sufficient in topo-
logical spaces for such purposes. It is natural to try to find
classes intermediate between those of topological spaces and
those of metric spaces in which members sequences play a
predominant part in deciding their topological properties. A
galaxy of mathematicians consisting of such luminaries as
Frechet [1], Chittenden [2], Frink [3], Wilson [4], Niemytzki
[5], and Aranđelović and Kečkić [6] have made important
contributions in this area. The basic definition needed by
most of these studies is that of a symmetric space. If 𝑋 is a
nonempty set, a function :𝑋×𝑋 → 𝑅

+ is called a dislocated
symmetric on 𝑋 if 𝑑(𝑥, 𝑦) = 0 implies that 𝑥 = 𝑦 and
𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋. A dislocated symmetric
(simply 𝑑-symmetric) on 𝑋 is called symmetric on 𝑋 if
𝑑(𝑥, 𝑥) = 0 for all 𝑥 in 𝑋. The names dislocated symmetric
space and symmetric space have expected meanings. Obvi-
ously, a symmetric space that satisfies the triangle inequality
is a metric space. Since the aim of our study is to find how
sequential properties and topological properties influence
each other, we collect various properties of sequences that
have been shown in the literature to have a bearing on the
problemunder study. Inwhat follows “𝑑” denotes a dislocated
distance on a nonempty set 𝑋. 𝑥

𝑛
, 𝑦
𝑛
, 𝑥, 𝑦, and so forth are

elements of 𝑋 and 𝐶
𝑖
for 1 ≤ 𝑖 ≤ 5 and 𝑊

𝑖
for 1 ≤ 𝑖 ≤ 3

indicate properties of sequences in (𝑋, 𝑑). Consider

𝐶
1
: lim𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 = lim𝑑(𝑥

𝑛
, 𝑥) ⇒ lim𝑑(𝑦

𝑛
,

𝑥) = 0,
𝐶
2
: lim𝑑(𝑥

𝑛
, 𝑥) = 0 = lim𝑑(𝑦

𝑛
, 𝑥) ⇒ lim 𝑑(𝑥

𝑛
,

𝑦
𝑛
) = 0,

𝐶
3
: lim𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 = lim𝑑(𝑦

𝑛
, 𝑧
𝑛
) ⇒ lim𝑑(𝑥

𝑛
,

𝑧
𝑛
) = 0.

A space in which 𝐶
1
is satisfied is called coherent by

Pitcher and Chittenden [7]. Niemytzki [5] proved that a
coherent symmetric space (𝑋, 𝑑) is metrizable, and in fact
there is a metric 𝜌 on 𝑋 such that (𝑋, 𝑑) and (𝑋, 𝜌) have
identical topologies and also that lim 𝑑(𝑥

𝑛
, 𝑥) = 0 if and only

if lim 𝜌(𝑥
𝑛
, 𝑥) = 0.

Cho et al. [8] have introduced

𝐶
4
: lim 𝑑(𝑥

𝑛
, 𝑥) = 0 ⇒ lim 𝑑(𝑥

𝑛
, 𝑦) = 𝑑(𝑥, 𝑦) for all

𝑦 in𝑋,
𝐶
5
: lim 𝑑(𝑥

𝑛
, 𝑥) = lim 𝑑(𝑥

𝑛
, 𝑦) = 0 ⇒ 𝑥 = 𝑦.

The following properties were introduced by Wilson [4]:

𝑊
1
: for each pair of distinct points 𝑎, 𝑏 in 𝑋 there

corresponds a positive number 𝑟 = 𝑟(𝑎, 𝑏) such that
𝑟 < inf

𝑐∈𝑋
𝑑(𝑎, 𝑐) + 𝑑(𝑏, 𝑐),
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𝑊
2
: for each 𝑎 ∈ 𝑋, for each 𝑘 > 0, there corresponds

a positive number 𝑟 = 𝑟(𝑎, 𝑘) such that if 𝑏 is a point
of𝑋 such that 𝑑(𝑎, 𝑏) ≥ 𝑘 and 𝑐 is any point of𝑋 then
𝑑(𝑎, 𝑐) + 𝑑(𝑐, 𝑏) ≥ 𝑟,
𝑊
3
: for each positive number 𝑘 there is a positive

number 𝑟 = 𝑟(𝑘) such that 𝑑(𝑎, 𝑐) + 𝑑(𝑐, 𝑏) ≥ 𝑟 for
all 𝑐 in𝑋 and all 𝑎, 𝑏 in𝑋 with 𝑑(𝑎, 𝑏) ≥ 𝑘.

2. Implications among the Axioms

Proposition 1. In a 𝑑-symmetric space (𝑋, 𝑑), 𝐶
3
⇒ 𝐶
1
⇒

𝐶
5
, 𝐶
3
⇒ 𝐶
2
, and 𝐶

4
⇒ 𝐶
5
.

Proof. Assume that 𝐶
3
holds in (𝑋, 𝑑) and let lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) =

0 and lim 𝑑(𝑥
𝑛
, 𝑥) = 0. Put 𝑧

𝑛
= 𝑥 ∀𝑛 so that

lim 𝑑(𝑥
𝑛
, 𝑧
𝑛
) = lim 𝑑(𝑥

𝑛
, 𝑥) = 0

= lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim 𝑑(𝑦

𝑛
, 𝑥
𝑛
) .

(1)

By 𝐶
3
, lim 𝑑(𝑦

𝑛
, 𝑧
𝑛
) = 0; that is, lim 𝑑(𝑦

𝑛
, 𝑥) = 0.

Hence

𝐶
3
⇒ 𝐶
1
. (2)

Assume that 𝐶
1
holds in (𝑋, 𝑑) and let lim 𝑑(𝑥

𝑛
, 𝑥) = 0 and

lim 𝑑(𝑥
𝑛
, 𝑦) = 0. Put 𝑦

𝑛
= 𝑦 ∀𝑛; then

lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim 𝑑(𝑥

𝑛
, 𝑥) = 0. (3)

By 𝐶
1
, lim 𝑑(𝑦

𝑛
, 𝑥) = 0; that is, lim𝑑(𝑦, 𝑥) = 0.

Consider lim 𝑑(𝑥, 𝑦) = 0; this implies that 𝑥 = 𝑦. Hence
𝐶
5
holds. Thus

𝐶
1
󳨐⇒ 𝐶

5
. (4)

Assume that 𝐶
3

holds and let lim 𝑑(𝑥
𝑛
, 𝑥) = 0 and

lim 𝑑(𝑦
𝑛
, 𝑥) = 0.

Put 𝑧
𝑛
= 𝑥 ∀𝑛; then lim 𝑑(𝑥

𝑛
, 𝑧
𝑛
) = lim𝑑(𝑧

𝑛
, 𝑦
𝑛
) = 0.

By 𝐶
3
, lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0. Hence

𝐶
3
󳨐⇒ 𝐶

2
. (5)

Assume that 𝐶
4
holds and let lim 𝑑(𝑥

𝑛
, 𝑥) = 0 and

lim 𝑑(𝑥
𝑛
, 𝑦) = 0.

By 𝐶
4
, lim 𝑑(𝑥

𝑛
, 𝑦) = 𝑑(𝑥, 𝑦). Hence 𝑑(𝑥, 𝑦) = 0. Hence

𝑥 = 𝑦.

The following proposition explains the relationship
between Wilson’s axioms [4]𝑊

1
,𝑊
2
, and𝑊

3
and the 𝐶

𝑖
’s.

Proposition 2. Let (𝑋, 𝑑) be a 𝑑-symmetric space; then

(𝑖)𝑊
1
⇔ 𝐶
5
, (𝑖𝑖)𝑊

2
⇔ 𝐶
1
, and (𝑖𝑖𝑖)𝑊

3
⇔ 𝐶
3
.

Proof. (i) Assume 𝑊
1
. Suppose lim 𝑑(𝑎, 𝑥

𝑛
) = lim 𝑑(𝑏, 𝑥

𝑛
) =

0 but 𝑎 ̸= 𝑏.
Then

lim {𝑑 (𝑎, 𝑥
𝑛
) + 𝑑 (𝑏, 𝑥

𝑛
)} = 0 but 𝑎 ̸= 𝑏. (6)

By

𝑊
1
∃ 𝑟 > 0 ∋ ∀𝑥, 𝑑 (𝑎, 𝑥) + 𝑑 (𝑏, 𝑥) ≥ 𝑟, (7)

equations (6) and (7) are contradictory. Hence 𝑎 = 𝑏. Thus
𝑊
1
⇒ 𝐶
5
.

Suppose that 𝑊
1
fails. Then there exist 𝑎 ̸= 𝑏 in 𝑋 such

that for every 𝑛 there corresponds 𝑥
𝑛
in𝑋 such that 𝑑(𝑎, 𝑥

𝑛
)+

𝑑(𝑏, 𝑥
𝑛
) < 1/𝑛:

󳨐⇒ lim𝑑(𝑎, 𝑥
𝑛
) = lim 𝑑(𝑏, 𝑥

𝑛
) = 0 but 𝑎 ̸= 𝑏. (8)

Thus if𝑊
1
fails then 𝐶

5
fails. That is, 𝐶

5
⇒ 𝑊
1
. Hence𝑊

1
⇔

𝐶
5
.
(ii) Assume 𝑊

2
. Then for each 𝑎 ∈ 𝑋 and each 𝑘 > 0

there corresponds 𝑟 > 0 such that, for all 𝑏 ∈ 𝑋with 𝑑(𝑎, 𝑏) ≥

𝑘 and ∀𝑥 ∈ 𝑋, 𝑑(𝑎, 𝑥) + 𝑑(𝑏, 𝑥) ≥ 𝑟.
Suppose that𝐶

1
fails.There exist 𝑎 ∈ 𝑋, {𝑏

𝑛
}, and {𝑐

𝑛
} in𝑋

such that lim 𝑑(𝑎, 𝑏
𝑛
) = lim𝑑(𝑏

𝑛
, 𝑐
𝑛
) = 0 but lim 𝑑(𝑎, 𝑐

𝑛
) ̸= 0.

Since lim 𝑑(𝑎, 𝑐
𝑛
) ̸=0 there exists 𝑘>0 and a subsequence

(𝑐
𝑛𝑘
) such that

𝑑(𝑎, 𝑐
𝑛𝑘
) > 𝑘 ∀𝑛

𝑘
. (9)

Since

𝑑(𝑎, 𝑐
𝑛𝑘
) > 𝑘, 𝑑(𝑎, 𝑏

𝑛𝑘
) + 𝑑(𝑏

𝑛𝑘
, 𝑐
𝑛𝑘
) ≥ 𝑟, (10)

this implies that lim{𝑑(𝑎, 𝑏
𝑛
) + 𝑑(𝑏

𝑛
, 𝑐
𝑛
)} ̸= 0, a contradiction.

Conversely assume that 𝑊
2
fails. Then there exist 𝑎 ∈ 𝑋

and 𝑘 > 0 such that ∀𝑛 > 0 ∃ 𝑏
𝑛
∈ 𝑋 and 𝑐

𝑛
∈ 𝑋 such that

𝑑(𝑎, 𝑏
𝑛
) ≥ 𝑘 but 𝑑 (𝑎, 𝑐

𝑛
) + 𝑑 (𝑏

𝑛
, 𝑐
𝑛
) <

1

𝑛
. (11)

This implies that lim 𝑑(𝑎, 𝑐
𝑛
) = lim 𝑑(𝑏

𝑛
, 𝑐
𝑛
) = 0 but

lim 𝑑(𝑎, 𝑏
𝑛
) ̸= 0.

Hence 𝐶
1
fails.

(iii) Assume 𝑊
3
. Suppose that 𝐶

3
fails. Then there exist

sequences {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝑐

𝑛
} in 𝑋 such that lim𝑑(𝑎

𝑛
, 𝑏
𝑛
) =

lim 𝑑(𝑏
𝑛
, 𝑐
𝑛
) = 0 but lim 𝑑(𝑎

𝑛
, 𝑐
𝑛
) ̸= 0.

Since𝑊
3
holds, ∀𝑘 > 0 there corresponds 𝑟 > 0 such that

for all 𝑎, 𝑏 with

𝑑 (𝑎, 𝑏) ≥ 𝑘, 𝑑 (𝑎, 𝑐) + 𝑑 (𝑏, 𝑐) ≥ 𝑟 ∀𝑐. (12)

Since lim𝑑(𝑎
𝑛
, 𝑐
𝑛
) ̸= 0 there exists a positive number

∈ and a subsequence of positive integers {𝑛
𝑘
} such that

𝑑(𝑎
𝑛𝑘
, 𝑐
𝑛𝑘
) > ∈. Choose 𝑟

1
corresponding to ∈ so that

𝑑 (𝑎
𝑛𝑘
, 𝑏
𝑛𝑘
) + 𝑑 (𝑏

𝑛𝑘
, 𝑐
𝑛𝑘
) ≥ 𝑟
1
. (13)

Thus

lim {𝑑 (𝑎
𝑛𝑘
, 𝑏
𝑛𝑘
) + 𝑑 (𝑏

𝑛𝑘
, 𝑐
𝑛 𝑘
)} ̸= 0. (14)

This contradicts the assumption that lim𝑑(𝑎
𝑛
, 𝑏
𝑛
) =

lim 𝑑(𝑏
𝑛
, 𝑐
𝑛
)=0.

Hence

𝑊
3
󳨐⇒ 𝐶

3
. (15)

Assume that𝑊
3
fails.
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Then there exists 𝑘 > 0 such that, ∀ positive integer 𝑛,
there exist 𝑎

𝑛
, 𝑏
𝑛
, and 𝑐

𝑛
with

𝑑(𝑎
𝑛
, 𝑏
𝑛
) ≥ 𝑘 but 𝑑(𝑎

𝑛
, 𝑐
𝑛
) + 𝑑(𝑏

𝑛
, 𝑐
𝑛
) <

1

𝑛
. (16)

Hence

lim 𝑑(𝑎
𝑛
, 𝑏
𝑛
) ̸= 0 but lim 𝑑(𝑎

𝑛
, 𝑐
𝑛
) = lim 𝑑(𝑐

𝑛
, 𝑏
𝑛
) = 0.

(17)

Hence 𝐶
3
fails.

Hence

𝐶
3
󳨐⇒ 𝑊

3
. (18)

This completes the proof of the proposition.

We introduce the following.

Axiom 𝐶. Every convergent sequence satisfies Cauchy cri-
terion. That is, if (𝑥

𝑛
) is a sequence in 𝑋, 𝑥 ∈ 𝑋 and

lim 𝑑(𝑥
𝑛
, 𝑥) = 0; then given ∈ > 0 ∃ 𝑁(∈) ∈ N such that

𝑑(𝑥
𝑛
, 𝑥
𝑚
) < ∈ whenever𝑚, 𝑛 ≥ 𝑁(∈) we have the following.

Proposition 3. In a𝑑-symmetric space (𝑋, 𝑑),𝐶
1
⇒ 𝐶 ⇒ 𝐶

2
.

Proof. For 𝐶
1
⇒ 𝐶, suppose that a sequence (𝑥

𝑛
) in (𝑋, 𝑑) is

convergent to 𝑥 but does not satisfy Cauchy criterion. Then
∃𝑟 > 0 such that for every positive integer 𝑘 there correspond
integers𝑚

𝑘
, 𝑛
𝑘
such that

𝑚
𝑘+1

> 𝑛
𝑘+1

> 𝑚
𝑘
> 𝑛
𝑘
, 𝑑 (𝑥

𝑚𝑘
, 𝑥
𝑛𝑘
) > 𝛾 ∀𝑘. (19)

Let

𝑦
𝑘
= 𝑥
𝑚𝑘

, 𝑧
𝑘
= 𝑥
𝑛𝑘

∀𝑘. (20)

Then

lim 𝑑 (𝑦
𝑘
, 𝑥) = 0, lim 𝑑 (𝑧

𝑘
, 𝑥) = 0. (21)

But lim 𝑑(𝑦
𝑘
, 𝑧
𝑘
) ̸= 0; this contradicts 𝐶

1
.

Proof. For 𝐶 ⇒ 𝐶
2
, suppose that lim 𝑑(𝑥

𝑛
, 𝑥) = lim 𝑑(𝑦

𝑛
,

𝑥) = 0.
Let (𝑧

𝑛
) be the sequence defined by 𝑧

2𝑛−1
= 𝑥
𝑛
and

𝑧
2𝑛

= 𝑦
𝑛
. Then lim 𝑑(𝑧

𝑛
, 𝑥) = 0. Hence (𝑧

𝑛
) satisfies Cauchy

criterion.
Given ∈> 0 ∃𝑁(∈) ∈ N such that 𝑑(𝑧

𝑛
, 𝑧
𝑚
) < ∈ for𝑚, 𝑛 ≥

𝑁(∈):

⇒ 𝑑(𝑧
2𝑛−1

, 𝑧
2𝑛
) < ∈ for 𝑛 ≥ 𝑁(∈),

⇒ lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) < ∈ for 𝑛 ≥ 𝑁(∈),

⇒ lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

3. Examples for Nonimplications

Example 4. A 𝑑-symmetric space in which the triangular
inequality fails and 𝐶

1
through 𝐶

5
hold.

Let𝑋 = [0, 1]. Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑 (𝑥, 𝑦) =

{{

{{

{

𝑥 + 𝑦 if 𝑥 ̸= 𝑦,

1 if 𝑥 = 𝑦 ̸= 0,

0 if 𝑥 = 𝑦 = 0.

(22)

Clearly 𝑑 is a 𝑑-symmetric space. 𝑑 does not satisfy the
triangular inequality since 𝑑(0.1, 0.2) + 𝑑(0.2, 0.1) = 0.6 <

1 = 𝑑(0.1, 0.1).

We show that 𝐶
1
through 𝐶

5
holds. We first show that

lim 𝑑(𝑥
𝑛
, 𝑥) = 0 iff 𝑥 = 0 and lim𝑥

𝑛
= 0 in 𝑅.

If 𝑥 ̸= 0 then lim 𝑑(𝑥
𝑛
, 𝑥) = 𝑥

𝑛
+ 𝑥 ≥ 𝑥 > 0. Hence

lim 𝑑(𝑥
𝑛
, 𝑥) ≥ 𝑥 > 0.

If 𝑥 = 0 then lim 𝑑(𝑥
𝑛
, 0) = 0 or 𝑥

𝑛
. Hence lim𝑑(𝑥

𝑛
, 𝑥) =

0 ⇔ lim𝑥
𝑛
= 0 in 𝑅.

Now we show that lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
)=0 if and only if lim𝑥

𝑛
=

lim𝑦
𝑛
= 0 in 𝑅.

Consider lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 ⇒ 𝑑(𝑥

𝑛
, 𝑦
𝑛
) < 1/2 for large 𝑛:

⇒ 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 𝑥
𝑛

+ 𝑦
𝑛
or 0 for large 𝑛,

⇒ either 𝑥
𝑛

= 𝑦
𝑛
= 0 or 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 𝑥
𝑛
+ 𝑦
𝑛
for large

𝑛,

⇒ lim𝑥
𝑛
= lim𝑦

𝑛
= 0 in 𝑅.

Conversely if lim𝑥
𝑛
= lim𝑦

𝑛
=0 in 𝑅 then lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) =

0 or 𝑥
𝑛
+ 𝑦
𝑛
for large 𝑛.

Hence lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

Verification of validity of 𝐶
1
through 𝐶

5
is done as

follows.
𝐶
1
: let lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 and lim 𝑑(𝑥

𝑛
, 𝑥) = 0; then

lim𝑥
𝑛
= lim𝑦

𝑛
= 0 in 𝑅 and 𝑥 = 0.

Hence 𝑑(𝑦
𝑛
, 𝑥) = 𝑑(𝑦

𝑛
, 0) = 𝑦

𝑛
or 0. This implies that

lim 𝑑(𝑦
𝑛
, 𝑥) = 0.

𝐶
2
: let 𝑑(𝑥

𝑛
, 𝑥) = 𝑑(𝑦

𝑛
, 𝑥) = 0. Then 𝑥 = 0 and lim𝑥

𝑛
=

lim𝑦
𝑛
= 0 in 𝑅.

Hence lim 𝑑(𝑦
𝑛
, 𝑥
𝑛
) = 0.

𝐶
3
: let 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 𝑑(𝑦

𝑛
, 𝑧
𝑛
) = 0; then lim𝑥

𝑛
= lim𝑦

𝑛
=

lim 𝑧
𝑛
= 0 in 𝑅.

Hence lim 𝑑(𝑥
𝑛
, 𝑧
𝑛
) = 0.

𝐶
4
: let lim 𝑑(𝑥

𝑛
, 𝑥) = 0. Then 𝑥 = 0 and lim𝑥

𝑛
= 0.

If 𝑦 = 0, 0 ≤ 𝑑(𝑥
𝑛
, 𝑦) ≤ 𝑥

𝑛
. Hence lim 𝑑(𝑥

𝑛
, 𝑦) = 0 =

𝑑(𝑥, 𝑦).
If 𝑦 ̸= 0, 𝑑(𝑥

𝑛
, 𝑦) = 𝑥

𝑛
+ 𝑦. Hence lim𝑑(𝑥

𝑛
, 𝑦) = 𝑦 =

0 + 𝑦 = 𝑑(𝑥, 𝑦).
𝐶
5
: let lim 𝑑(𝑥

𝑛
, 𝑥) = 0 and lim 𝑑(𝑥

𝑛
, 𝑦) = 0.

Then 𝑥 = 0, 𝑦 = 0 and lim𝑥
𝑛
= 0. Hence 𝑥 = 𝑦.

Example 5. A 𝑑-symmetric space (𝑋, 𝑑) in which 𝐶
1
[hence

𝐶
5
] holds while 𝐶

𝑗
does not hold for 𝑗 = 2, 3, 4.
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Let𝑋 = [0,∞). Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑 (𝑥, 𝑦) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑥 + 𝑦 if 𝑥 ̸= 0 ̸= 𝑦,

1

𝑥
if 𝑥 ̸= 0 = 𝑦,

1

𝑦
if 𝑥 = 0 ̸= 𝑦,

0 if 𝑥 = 0 = 𝑦.

(23)

Clearly (𝑋, 𝑑) is a 𝑑-symmetric space. We show that 𝐶
1
, 𝐶
5

hold.
Let lim 𝑑(𝑥

𝑛
, 𝑥) = 0 = lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
).

If 𝑥 ̸= 0, 𝑑(𝑥
𝑛
, 𝑥) > 𝑥 if 𝑥

𝑛
̸= 0.

=
1

𝑥
if 𝑥
𝑛
= 0. (24)

This implies that

lim 𝑑 (𝑥
𝑛
, 𝑥) ≥ min {𝑥,

1

𝑥
} > 0. (25)

Thus lim 𝑑(𝑥
𝑛
, 𝑥) = 0 ⇒ 𝑥 = 0 and (𝑥

𝑛
) can be split into two

subsequences (𝑥
𝑛

(1)
), (𝑥
𝑛

(2)
), where (𝑥

𝑛

(1)
) = 0 ∀𝑛, (𝑥

𝑛

(2)
) ̸=

0 for every 𝑛 and if (𝑥
𝑛

(2)
) is infinite subsequence lim(𝑥

𝑛

(2)
) =

∞. We consider the case where both (𝑥
𝑛

(1)
) and (𝑥

𝑛

(2)
) are

infinite sequences as when one is a finite sequence the same
proof works with minor modifications. Consider

lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 󳨐⇒ lim 𝑑(𝑥

𝑛

(1)

, 𝑦
𝑛

(1)

)

= lim 𝑑(𝑥
𝑛

(2)

, 𝑦
𝑛

(2)

) = 0.

(26)

If we show that 𝑦
𝑛

(2) cannot be positive for infinitely many 𝑛,
it will follow that lim𝑑(𝑥

𝑛

(2)
, 𝑦
𝑛

(2)
) = lim 𝑑(𝑥

𝑛

(2)
, 0) = 0 so

that lim 𝑑(0, 𝑦
𝑛
) = 0. Hence 𝐶

1
holds.

If 𝑦
𝑛

(2)
̸= 0 for infinitely many 𝑛, say {𝑦

𝑛𝑘

(2)
} is

the infinite subsequence of {𝑦
𝑛

(2)
} with 𝑦

𝑛𝑘

(2)
̸= 0 ∀𝑛

𝑘
,

then 𝑑(𝑥
𝑛𝑘

(2)
, 𝑦
𝑛𝑘

(2)
) = 𝑥

𝑛𝑘

(2)
+ 𝑦
𝑛𝑘

(2)
> 𝑥
𝑛𝑘

(2) so that
lim 𝑑(𝑥

𝑛𝑘

(2)
, 𝑦
𝑛𝑘

(2)
) ≥ lim𝑥

𝑛𝑘

(2)
≥ ∞ contradicting the

assumption that lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0. Thus 𝐶

1
holds. Since

𝐶
1
⇒ 𝐶
5
, 𝐶
5
holds.

𝐶
2
does not hold since 𝑑(𝑛, 0) = 1/𝑛 while 𝑑(𝑛, 𝑛) =

2𝑛 ∀𝑛 so that lim𝑑(𝑛, 𝑛) ̸= 0.
𝐶
3
does not hold since lim 𝑑(𝑛, 0) = lim 𝑑(0, 𝑛) while

lim 𝑑(𝑛, 𝑛) = ∞.
𝐶
4
does not hold since lim𝑑(𝑛, 0) = 0 but lim𝑑(𝑛, 2) = ∞

while 𝑑(0, 2) = 1/2.

Example 6. A 𝑑-symmetric space (𝑋, 𝑑) in which 𝐶
2
holds

but 𝐶
1
, 𝐶
3
, 𝐶
4
, and 𝐶

5
fail.

Let𝑋 = [0, 1] ∪ {2}. Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑 (𝑥, 𝑦) =

{{{{{{{{{

{{{{{{{{{

{

𝑥 + 𝑦 if 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1

𝑥 if 0 ≤ 𝑥 ≤ 1, 𝑦 = 2

𝑦 if 𝑥 = 2, 0 ≤ 𝑦 ≤ 1

1 if
{{

{{

{

𝑥 = 2, 𝑦 ∈ {0, 2}

or
𝑥 ∈ {0, 2} , 𝑦 = 2.

(27)

Clearly (𝑋, 𝑑) is a 𝑑-symmetric space.
We first show that if {𝑥

𝑛
} in 𝑋 converges to 𝑥 in (𝑋, 𝑑)

then 𝑥 ∈ {0, 2}.
Suppose that 𝑥 ̸= 0 and 𝑥 ̸= 2; then 𝑥 ∈ (0, 1]:

⇒ lim 𝑑(𝑥
𝑛
, 𝑥) = 0 = 𝑥

𝑛
+ 𝑥 or 𝑥,

⇒ lim 𝑑(𝑥
𝑛
, 𝑥) ≥ 𝑥 > 0,

⇒ lim 𝑑(𝑥
𝑛
, 𝑥) ̸= 0.

Hence if lim𝑑(𝑥
𝑛
, 𝑥) = 0 then 𝑥 ∈ {0, 2}.

𝐶
1
fails: 𝑥

𝑛
= 1/𝑛, 𝑦

𝑛
= 2, and 𝑥 = 0;

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) =

1

𝑛
, 𝑑 (𝑥

𝑛
, 𝑥) =

1

𝑛
, 𝑑 (𝑦

𝑛
, 𝑥) = 1

󳨐⇒ lim 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) = 0 = 𝑑 (𝑥

𝑛
, 𝑥) but lim𝑑 (𝑦

𝑛
, 𝑥) ̸= 0.

(28)

𝐶
2
holds: suppose that lim𝑑(𝑥

𝑛
, 𝑥) = lim 𝑑(𝑦

𝑛
, 𝑥) =

0; then 𝑥 ∈ {0, 2}.

Case 1. If 𝑥 = 2, lim 𝑑(𝑥
𝑛
, 𝑥) → 0 ⇒ 𝑑(𝑥

𝑛
, 𝑥) = 𝑥

𝑛

eventually and lim𝑥
𝑛
= 0 in 𝑅. Hence ∃𝑁 ∈ N ∋ 𝑥

𝑛
< 1

and 𝑦
𝑛
< 1 for 𝑛 ≥ 𝑁.

Here 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 𝑥
𝑛
+𝑦
𝑛
.This implies that lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) =

0.

Case 2. If 𝑥 = 0,

𝑑(𝑥
𝑛
, 0) = {

1 if 𝑥
𝑛
= 2 or 0,

𝑥
𝑛

if 0 ≤ 𝑥
𝑛
≤ 1.

(29)

If lim 𝑑(𝑥
𝑛
, 0) = 0, 𝑑(𝑥

𝑛
, 0) = 𝑥

𝑛
eventually and lim𝑥

𝑛
=

0 in 𝑅.
Similarly 𝑑(𝑦

𝑛
, 0) = 𝑦

𝑛
eventually and lim𝑦

𝑛
= 0 in 𝑅.

As in Case 1 it follows that

lim𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim(𝑥

𝑛
+ 𝑦
𝑛
) = 0. (30)

Thus 𝐶
2
holds.

𝐶
3
fails since 𝐶

3
⇒ 𝐶
1
.

𝐶
5
fails: let 𝑥

𝑛
= 1/𝑛, 𝑥 = 0, and 𝑦 = 2

lim𝑑 (𝑥
𝑛
, 0) = lim(

1

𝑛
) = 0 = lim𝑑 (𝑥

𝑛
, 2) (31)

𝐶
4
fails since 𝐶

4
⇒ 𝐶
5
.



Abstract and Applied Analysis 5

Example 7. A𝑑-symmetric space (𝑋, 𝑑) inwhich𝐶
4
holds but

𝐶
1
fails.

Let𝑋 = 𝑁 ∪ {0}. Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑(𝑚, 𝑛) = 𝑑 (𝑛,𝑚) ∀𝑚, 𝑛 ∈ 𝑋,

𝑑(0, 𝑛) =

{

{

{

1

𝑛
if 𝑛 is odd,

1 if 𝑛 is even,

𝑑(0, 0) = 0,

𝑑(𝑚, 𝑛) =

{{{

{{{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑚
−

1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
if 𝑚 + 𝑛 is even
or 𝑚 + 𝑛 is odd and |𝑚 − 𝑛| = 1,

1 if 𝑚 + 𝑛 is odd and |𝑚 − 𝑛| > 2.

(32)

If {𝑥
𝑛
} in𝑋 and lim 𝑑(𝑥

𝑛
, 0) = 0 then 𝑥

𝑛
is eventually odd.

If 𝑥 ̸= 0, 𝑑(𝑥
𝑛
, 𝑥) cannot be 1 so 𝑥

𝑛
+ 𝑥 is even or odd and

|𝑥
𝑛
− 𝑥| = 1.
But in this case 𝑑(𝑥

𝑛
, 𝑥) = |1/𝑥

𝑛
− 1/𝑥| so that 𝑑(𝑥

𝑛
, 𝑥) ̸=

0.
Thus 𝑑(𝑥

𝑛
, 𝑥) = 0 ⇔ 𝑥 = 0 and 𝑥

𝑛
is eventually odd.

If 𝑚 is a fixed even integer and 𝑥
𝑛
is odd, 𝑥

𝑛
+ 𝑚 is odd

and eventually >2.
So

lim 𝑑 (𝑥
𝑛
, 𝑚) = 1 = 𝑑 (0,𝑚) . (33)

If𝑚 is a fixed odd integer and 𝑥
𝑛
is odd, 𝑥

𝑛
+ 𝑚 is even.

So 𝑑(𝑥
𝑛
, 𝑚) = |1/𝑚 − 1/𝑥

𝑛
| so that lim 𝑑(𝑥

𝑛
, 0) = 0 ⇒

lim 𝑑(𝑥
𝑛
, 𝑚) = 𝑑(0,𝑚).

If𝑚=0 and 𝑥
𝑛
is odd eventually

𝑑(𝑥
𝑛
, 0) =

1

𝑛
so lim 𝑑(𝑥

𝑛
, 𝑚) = lim 1

𝑛
= 0 = 𝑑 (0,𝑚) .

(34)

If𝑚 = 0 and 𝑥
𝑛
= 0 eventually

𝑑(𝑥
𝑛
, 0) =

1

𝑛
so lim 𝑑(𝑥

𝑛
, 𝑚) = lim 1

𝑛
= 0 = 𝑑 (0,𝑚) .

(35)

Hence 𝐶
4
holds in (𝑋, 𝑑).

𝐶
1
does not hold: let 𝑥

𝑛
= 2𝑛 − 1 and 𝑦

𝑛
= 2𝑛:

𝑑(𝑥
𝑛
, 0) =

1

2𝑛 − 1
, 𝑑(𝑥

𝑛
, 𝑦
𝑛
) =

1

2𝑛 − 1
−

1

2𝑛
,

𝑑(𝑦
𝑛
, 0) = 1.

(36)

Hence 𝑑(𝑥
𝑛
, 0) = 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 and 𝑑(𝑦

𝑛
, 0) ̸= 0.

Example 8. A 𝑑-symmetric space (𝑋, 𝑑) in which 𝐶
3
holds

but 𝐶
4
does not hold.

Let𝑋 = [0, 1] ∪ {2}. Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑 (𝑥, 𝑦) =

{{{{{{{

{{{{{{{

{

𝑥 + 𝑦 if 0 ≤ 𝑥 ̸= 𝑦 ≤ 1,

1 if 𝑥 = 𝑦 ̸= 0 or 𝑥 = 𝑦 = 2

or 𝑥 ∈ (0, 1] and 𝑦 = 2,

2 if 𝑥 = 0 & 𝑦 = 2 or 𝑥 = 2 and 𝑦 = 0,

0 if 𝑥 = 𝑦 = 0.

(37)

Clearly (𝑋, 𝑑) is a 𝑑-symmetric space which is not a symmet-
ric space.

We first show that if {𝑥
𝑛
} converges to 𝑥 in (𝑋, 𝑑) then

𝑥 ∈ {0, 2}.
Suppose that 0 ̸= 𝑥 ̸= 2; then 𝑥 ∈ (0, 1]:

󳨐⇒ 𝑑 (𝑥, 𝑥
𝑛
) =

{{{{

{{{{

{

𝑥 + 𝑥
𝑛

if 0 < 𝑥 ̸= 𝑥
𝑛
≤ 1,

1 if 𝑥 = 𝑥
𝑛

̸= 0

or 𝑥
𝑛
= 2 or 𝑥 ∈ (0, 1]

and 𝑥
𝑛
= 2.

(38)

Since lim 𝑑(𝑥, 𝑥
𝑛
) = 0 ∃𝑁 ∋ 𝑑(𝑥, 𝑥

𝑛
) < 1 for 𝑛 ≥ 𝑁

⇒ 𝑑(𝑥, 𝑥
𝑛
) = 𝑥 + 𝑥

𝑛
≥ 𝑥 for 𝑛 ≥ 𝑁,

⇒ lim 𝑑(𝑥, 𝑥
𝑛
) ̸= 0, a contradiction.

We now show that lim𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 if and only if lim𝑥

𝑛
=

lim𝑦
𝑛
= 0. Consider

lim𝑑(𝑥
𝑛
, 𝑦
𝑛
)

= 0 󳨐⇒ ∃𝑁 ∈ N ∋ 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) < 1 for 𝑛 ≥ 𝑁

󳨐⇒ lim𝑑 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑥
𝑛
+ 𝑦
𝑛

or 0 for 𝑛 ≥ 𝑁

󳨐⇒ either 𝑥
𝑛
= 𝑦
𝑛
= 0 or 𝑑 (𝑥

𝑛
, 𝑦
𝑛
) = 𝑥
𝑛
+ 𝑦
𝑛

for 𝑛 ≥ 𝑁

󳨐⇒ lim𝑥
𝑛
= lim𝑦

𝑛
= 0.

(39)

Conversely if lim𝑥
𝑛
= lim𝑦

𝑛
= 0 then ∃𝑁 ∈ N ∋ 𝑥

𝑛
<

1, 𝑦
𝑛
< 1 for 𝑛 ≥ 𝑁 ⇒ lim𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0 or 𝑥

𝑛
+ 𝑦
𝑛
for large

𝑛.
Hence 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0.

Thus 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 if and only if lim𝑥

𝑛
= lim𝑦

𝑛
= 0.

As a consequence we have

lim𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 = lim 𝑑(𝑦

𝑛
, 𝑧
𝑛
) 󳨐⇒ lim𝑑(𝑥

𝑛
, 𝑧
𝑛
) = 0.

(40)

Hence 𝐶
3
holds in (𝑋, 𝑑).

𝐶
4
fails: 𝑥

𝑛
= 1/(𝑛 + 1) for 𝑛 ≥ 1:

𝑑(𝑥
𝑛
, 0) =

1

𝑛 + 1
󳨐⇒ lim𝑑(𝑥

𝑛
, 0) = 0,

𝑑(𝑥
𝑛
, 2) = 1 ∀𝑛 󳨐⇒ lim𝑑(𝑥

𝑛
, 2) = 1 but 𝑑(0, 2) = 2.

(41)

Example 9. A 𝑑-symmetric space (𝑋, 𝑑) in which 𝐶
4
holds

but 𝐶
2
, 𝐶
3
fail to hold.
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Let𝑋 = 𝑁 ∪ {0,∞}. Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑(𝑚,∞) = 𝑑(∞,𝑚) = 1 if 𝑚 ∈ 𝑋,

𝑑(𝑚, 0) = 𝑑(0,𝑚) =
1

𝑚
if 𝑚 ∈ 𝑁,

𝑑(0, 0) = 0.

(42)

If𝑚, 𝑛 ∈ 𝑁,

𝑑(𝑚, 𝑛) =

{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑚
−

1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
if |𝑚 − 𝑛| ≥ 2,

1 if |𝑚 − 𝑛| ≤ 1.

(43)

Clearly (𝑋, 𝑑) is a 𝑑-symmetric space which is not a symmet-
ric space.

We show that if lim 𝑑(𝑥
𝑛
, 𝑥) = 0 then 𝑥 = 0 and {𝑥

𝑛
}

consists of two subsequences {𝑦
𝑛
} and {𝑧

𝑛
}, one of whichmay

possibly be finite, where 𝑦
𝑛
= 0 ∀𝑛 and 0 ̸= 𝑧

𝑛
∈ 𝑁 ∀𝑛 and

lim(1/𝑧
𝑛
) = 0 (in case {𝑧

𝑛
} is an infinite sequence).

To prove this we first note that lim 𝑑(𝑥
𝑛
, 𝑥) = 0 ⇒ 𝑥 ̸= ∞

and 𝑥
𝑛

̸= ∞ eventually.
If 𝑥 ∈ 𝑁, 𝑑(𝑥

𝑛
, 𝑥) = 1/𝑥 or 1 or |1/𝑥

𝑛
− 1/𝑥|.

Hence lim 𝑑(𝑥
𝑛
, 𝑥) = 0 ⇒ 𝑥 ∉ 𝑁; hence 𝑥 = 0.

Further 𝑑(𝑥
𝑛
, 0) = 0 or 1/𝑥

𝑛
. Consequently {𝑥

𝑛
} may be

split into two sequences {𝑦
𝑛
} and {𝑧

𝑛
} as described above.

We show that 𝐶
4
holds. Assume that lim 𝑑(𝑥

𝑛
, 𝑥) = 0.

Then 𝑥 = 0.
Let 𝑚 ∈ 𝑁 and 𝑦

𝑛
= 0 ∀𝑛. Then 𝑑(𝑦

𝑛
, 𝑚) = 𝑑(𝑜,𝑚) =

1/𝑚.
So lim 𝑑(𝑦

𝑛
, 𝑚) = 𝑑(𝑜,𝑚).

If 𝑧
𝑛

̸= 0 ∀𝑛, and lim(1/𝑧
𝑛
) = 0 the 𝑑(𝑧

𝑛
, 𝑚) = |1/𝑧

𝑛
−

1/𝑚| for 𝑛 > 𝑚 so that lim𝑑(𝑧
𝑛
, 𝑚) = 1/𝑚 = 𝑑(0,𝑚).

Thus if 𝑚 ∈ 𝑁 and lim 𝑑(𝑥
𝑛
, 𝑥) = 0 then lim 𝑑(𝑥

𝑛
, 𝑚) =

𝑑(𝑥,𝑚).
Clearly this holds when𝑚 = ∞ or𝑚 = 0 as well.
Hence 𝐶

4
holds.

𝐶
2
does not hold: let 𝑥

𝑛
= 𝑥, 𝑦

𝑛
= 𝑛 + 1, and 𝑥 = 0:

𝑑(𝑥
𝑛
, 𝑥) = 𝑑(𝑛, 0) =

1

𝑛
, hence lim𝑑(𝑥

𝑛
, 𝑥) = 0,

𝑑 (𝑦
𝑛
, 𝑥)=𝑑 (𝑛 + 1, 0)=

1

𝑛 + 1
, hence lim𝑑 (𝑦

𝑛
, 𝑥) = 0,

lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim 𝑑(𝑛, 𝑛 + 1) 󳨐⇒ lim 𝑑(𝑥

𝑛
, 𝑦
𝑛
) ̸= 0.

(44)

𝐶
3
does not hold:

𝑥
𝑛
= 𝑛, 𝑦

𝑛
= 𝑛 + 2, 𝑧

𝑛
= 𝑥
𝑛
,

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 𝑑(𝑛, 𝑛 + 2) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛 + 2
−

1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

1

𝑛
−

1

𝑛 + 2
,

𝑑(𝑦
𝑛
, 𝑧
𝑛
) = 𝑑(𝑥

𝑛
, 𝑦
𝑛
) =

1

𝑛
−

1

𝑛 + 2
,

lim 𝑑(𝑥
𝑛
, 𝑧
𝑛
) = lim 𝑑(𝑛, 𝑛) = 1,

lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim 𝑑(𝑦

𝑛
, 𝑧
𝑛
) = 0 but lim 𝑑(𝑥

𝑛
, 𝑧
𝑛
) = 1.

(45)

𝐶
5
holds since 𝐶

4
⇒ 𝐶
5
.

Remarks. From this example we can conclude that
(1) 𝐶
5
does not imply 𝐶

2
as otherwise, since 𝐶

4
⇒ 𝐶
5
it

would follow that 𝐶
4
⇒ 𝐶
2
which does not hold as is

evident from the above example,
(2) in a 𝑑-symmetric space, convergent sequences are

necessarily Cauchy sequences.

Example 10. A 𝑑-symmetric space (𝑋, 𝑑) in which 𝐶
4
holds

but 𝐶
2
, 𝐶
3
fail to hold.

Let𝑋 = 𝑁 ∪ {0}. Define 𝑑 on𝑋 × 𝑋 as follows:

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) = 1 for every 𝑥, 𝑦 ∈ 𝑋,

𝑑 (2𝑚, 0) = 1,

𝑑 (2𝑚 − 1, 0) =
1

2𝑚 − 1
∀𝑚,

𝑑 (0, 0) = 0,

𝑑 (𝑚, 𝑛) =

{

{

{

1

𝑚
+

1

𝑛
if 𝑚 + 𝑛 is even or |𝑚 − 𝑛| = 1,

1 if 𝑚 + 𝑛 is odd and |𝑚 − 𝑛| > 2.

(46)

Clearly (𝑋, 𝑑) is a 𝑑-symmetric space.
We first characterize all convergent sequences in (𝑋, 𝑑).
Suppose that lim𝑑(𝑥

𝑛
, 𝑥) = 0. We show that 𝑥 = 0.

If 𝑥 is odd and 𝑥
𝑛
is even 𝑑(𝑥

𝑛
, 𝑥) = 1 if 𝑥

𝑛
> 𝑥 + 2.

So lim 𝑑(𝑥
𝑛
, 𝑥) ̸= 0. Thus 𝑥

𝑛
is even for at most finitely

many 𝑛.
We may thus assume that 𝑥

𝑛
is odd ∀𝑛.

The 𝑑(𝑥
𝑛
, 𝑥) = 1/𝑥

𝑛
+ 1/𝑥 so that 𝑑(𝑥

𝑛
, 𝑥) ≥ 1/𝑥 > 0.

Hence 𝑥 cannot be odd. Now suppose that 𝑥 > 0 and 𝑥 is
even.

Then 𝑑(𝑥
𝑛
, 𝑥) = 1 if 𝑥

𝑛
= 0 if 𝑥

𝑛
is odd and |𝑥

𝑛
− 𝑥| >

2while 𝑑(𝑥
𝑛
, 𝑥) = 1/𝑥

𝑛
+1/𝑥 if 𝑥

𝑛
+𝑥 is even or |𝑥

𝑛
−𝑥| = 1.

In all cases lim 𝑑(𝑥
𝑛
, 𝑥) ̸= 0.

Hence the only possibility is 𝑥 = 0.
We now show that the following are equivalent.
(a) lim 𝑑(𝑥

𝑛
, 𝑥) = 0 in 𝑅,

(b) there exists a positive integer𝑁 such that𝑥
𝑛
is positive

and even, only if 𝑛 < 𝑁.
Assumption (b): 𝑥

𝑛
is odd or zero if 𝑛 ≥ 𝑁 so that

lim 𝑑(𝑥
𝑛
, 0) = lim(1/𝑥

𝑛
) = 0.

Hence (b)⇒(a).
Assumption (a): since 𝑑(2𝑚, 0) = 1 for 𝑚 ∈ 𝑁, it follows

that at most finitely many terms of {𝑥
𝑛
} can be even. This

proves (b). Thus lim 𝑑(𝑥
𝑛
, 𝑥) = 0 ⇔ 𝑥 = 0 and ∃𝑁 ∈ N ∋ 𝑥

𝑛

is “0” or odd for 𝑛 ≥ 𝑁.
Consequently 𝐶

5
holds.

𝐶
1
does not hold: let 𝑥

𝑛
= 2𝑛 + 1, 𝑦

𝑛
= 2𝑛 and 𝑥 = 0;

lim𝑑(𝑥
𝑛
, 𝑥) = lim 1

2𝑛 + 1
= 0,

lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim 1

2𝑛 + 1
+

1

2𝑛
= 0.

(47)

But lim 𝑑(𝑦
𝑛
, 𝑥) = 1 since lim𝑑(2𝑛, 0) = 1 ∀𝑛.
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𝐶
2
holds: assume that lim 𝑑(𝑥

𝑛
, 𝑥) = 0 = lim 𝑑(𝑦

𝑛
, 𝑥).

Then 𝑥 = 0 and then there exists 𝑁 such that 𝑥
𝑛
is “0”

or odd and 𝑦
𝑛

= 0 or odd for 𝑛 ≥ 𝑁 and lim(1/𝑥
𝑛
) =

lim(1/𝑦
𝑛
) = 0.

If 𝑥
𝑛
= 𝑦
𝑛
= 0, 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 0.

If 𝑥
𝑛
= 0, 𝑦

𝑛
is odd, 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 1/𝑦

𝑛
.

If 𝑦
𝑛
= 0, 𝑥

𝑛
is odd, 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 1/𝑥

𝑛
.

If 𝑥
𝑛
is odd and 𝑦

𝑛
is odd, 𝑑(𝑥

𝑛
, 𝑦
𝑛
) = 1/𝑥

𝑛
+ 1/𝑦
𝑛
.

Consequently lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

𝐶
3
does not hold: let 𝑥

𝑛
= 0, 𝑦

𝑛
= 2𝑛 + 1, and 𝑧

𝑛
= 2𝑛:

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) =

1

2𝑛 + 1
, 𝑑 (𝑦

𝑛
, 𝑧
𝑛
) =

1

2𝑛 + 1
+

1

2𝑛
,

𝑑 (𝑥
𝑛
, 𝑧
𝑛
) = 1

(48)

so that lim 𝑑(𝑥
𝑛
, 𝑦
𝑛
) = lim 𝑑(𝑦

𝑛
, 𝑧
𝑛
) = 0 but lim 𝑑(𝑥

𝑛
, 𝑧
𝑛
) = 1.

𝐶
4
does not hold: let 𝑥

𝑛
= 2𝑛 + 1, 𝑥 = 0, and 𝑦 = 3 :

lim 𝑑 (𝑥
𝑛
, 0) = lim 1

2𝑛 + 1
= 0,

lim 𝑑 (𝑥
𝑛
, 3) = 1, lim𝑑 (0, 3) =

1

3
.

(49)

Example 11. The following example shows that there exist
symmetric spaces in which 𝐶 does not hold.

Let𝑋 = {0, 1/2, 1/3, 1/4, . . .}.
Define 𝑑(𝑥, 𝑥) = 0, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

𝑑 (
1

𝑛
, 0) = 𝑑 (0,

1

𝑛
) =

1

𝑛
∀𝑛 in 𝑁,

𝑑 (
1

𝑛
,
1

𝑚
) = 1 ∀𝑛,𝑚 in 𝑁.

(50)

Then (𝑋, 𝑑) is a symmetric space; {1/𝑛} converges to 0 but is
not a Cauchy sequence.
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