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This paper studies a class of transformation matrices and its applications. Firstly, we introduce a class of transformation matrices
between two different vector operators and give some important properties of it. Secondly, we consider its two applications. The
first one is to improve Qian Jiling’s formula. And the second one is to deal with the observability of discrete-time stochastic linear
systems with Markovian jump and multiplicative noises. A new necessary and sufficient condition for the weak observability will
be given in the second application.

1. Introduction

The vector operator is an important concept in matrix analy-
sis and an effective mathematical tool in many applications
[1]. For the symmetric case, we will consider a new vector
operator. We find that there exists a class of transformation
matrices between the two vector operators and they can be
used to solve many problems. In order to demonstrate the
importance of these transformation matrices, this paper will
consider their two applications in control theory.

Qian Jiling’s formula is an important and interesting
formula to compute the Lyapunov functions [2]. Our paper
will improve Qian Jiling’s formula by the help of these
transformation matrices.

Observability and detectability are two basic concepts in
control theory [3]. These concepts of deterministic systems
had been extended to the stochastic systems over the past few
decades, such as [4–11] and references therein. Particularly,
this paper will focus on the observability/detectability for
discrete-time stochastic linear systems. The definition of
the uniform observability/detectability [4] for determin-
istic discrete-time time-varying linear systems had been
extended to stochastic linear systems in [5]. Actually theweak
observability/detectability in [5] and the uniform observabil-
ity/detectability in [4] are consistent. Reference [5] showed
that the weak detectability was weaker than the mean square

detectability. Still, the weak detectability plays the same
role in the discussion of algebraic Lyapunov and Riccati
equations. Under the same framework, [6] investigated the
observability (i.e., the weak observability in [5]) problems
for a class of discrete-time stochastic linear systems subject
to Markovian jump and multiplicative noises and got some
necessary and sufficient conditions. Reference [7] studied
the equivalence between two different definitions of the
observability/detectability for discrete-time stochastic linear
systems. These are good works about the observability and
detectability of discrete-time stochastic linear systems. How-
ever, our paper will further study the weak observability for
discrete-time stochastic linear systems with the help of these
transformation matrices. The system in [6] is more compli-
cated than ours, but we get some more profound conclusions
which are not included in [6]. Although the systems in [5, 7]
are two special cases of our system, our results are not their
parallel results. We need these transformation matrices in
order to get these new results.

The outline of this paper is as follows. In Section 2,
we define a class of transformation matrices which exists
independently and study its important properties. Section 3
considers its applications. We use it to improve Qian Jiling’s
formula in Section 3.1. We use it to deal with the weak
observability of discrete-time stochastic linear systems with
Markovian jump and multiplicative noises in Section 3.2.
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A new necessary and sufficient condition for the weak
observability will be given.
Notations. 𝑅𝑛 is 𝑛-dimensional real Euclidean space. 𝐶𝑛 is 𝑛-
dimensional complex space. 𝐴𝑇, |𝐴|, and tr(𝐴), respectively,
denote the transpose, determinant, and trace of 𝐴. 𝐴 >

(≥)0 means that 𝐴 is a symmetric positive (semipositive)
definite matrix. E(⋅) denotes the mathematical expectation
of a random variable. 𝑍+ ≜ {0, 1, 2, . . .}. 𝑆 ≜ {1, 2, . . . , 𝑠},
where 𝑠 is a positive integer. 𝑅𝑛×𝑚 denotes 𝑛 × 𝑚 real matrix
space with the inner product ⟨𝐴, 𝐵⟩ ≜ tr(𝐴𝑇𝐵). 𝑅𝑛×𝑚

𝑠
≜

{(𝑈
1
, . . . , 𝑈

𝑠
) | 𝑈

𝑖
∈ 𝑅
𝑛×𝑚

, 𝑖 ∈ 𝑆} with the inner product
⟨𝑈, 𝑉⟩ ≜ ∑

𝑠

𝑖=1
tr(𝑈𝑇
𝑖
𝑉
𝑖
). 1
𝐴
(𝑥) ≜ {

1 𝑥∈A,
0 𝑥∉𝐴.

2. Transformation Matrix and Its Properties

2.1. Transformation Matrix between Two Vector Operators

Definition 1 (see [1]). 𝐿
1
: 𝐶
𝑛×𝑚

→ 𝐶
𝑛𝑚×1 is called a

vector operator by column, if 𝐿
1
(𝑋) = (𝑥

11
, 𝑥
21
, . . . , 𝑥

𝑛1
, 𝑥
12
,

𝑥
22
, . . . , 𝑥

𝑛2
, . . . , 𝑥

1𝑚
, 𝑥
2𝑚
, . . . , 𝑥

𝑛𝑚
)
𝑇 for any𝑋 = (𝑥

𝑖𝑗
)
𝑛×𝑚

.

Definition 2. 𝐿
2
: 𝑊
𝑛×𝑛

→ 𝐶
(𝑛(𝑛+1)/2)×1 is called a half

vector operator by column, if 𝐿
2
(𝑋) = (𝑥

11
, 𝑥
21
, . . . , 𝑥

𝑛1
,

𝑥
22
, . . . , 𝑥

𝑛2
, . . . , 𝑥

𝑛𝑛
)
𝑇 for any 𝑋 = (𝑥

𝑖𝑗
)
𝑛×𝑛

, where 𝑊𝑛×𝑛 ≜
{𝑋 | 𝑋

𝑇

= 𝑋 ∈ 𝐶
𝑛×𝑛

}.

Definition 3 (see [1]). For matrices 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑚

and 𝐵 =

(𝑏
𝑖𝑗
)
𝑠×𝑡
, one calls matrix 𝐴 ⊗ 𝐵 = (𝑎

𝑖𝑗
𝐵)
𝑛×𝑚

the Kronecker
product of matrices 𝐴 and 𝐵.

It is easy to find that 𝐿
1
and 𝐿

2
have many similar

properties, such as the following:

(a) 𝐿
1
and 𝐿

2
are all linear operators,

(b) 𝑋 = 𝑌 ⇔ 𝐿
1
(𝑋) = 𝐿

1
(𝑌),

(c) 𝑋 = 𝑌 ⇔ 𝐿
2
(𝑋) = 𝐿

2
(𝑌), where𝑋,𝑌 ∈ 𝑊

𝑛×𝑛.

For convenience, we will adopt the following notations.
𝐸
𝑛,𝑖,𝑗

denotes a 𝑛 × 𝑛 matrix; its (𝑖, 𝑗)-element is 1, and it
is zero elsewhere.

𝐻(𝑛) denotes a 𝑛2×(𝑛(𝑛+1)/2)matrix. Its column vectors
are denoted by 𝐻

11

, 𝐻
21

, . . . , 𝐻
𝑛1

, 𝐻
22

, . . . , 𝐻
𝑛2

, . . . , 𝐻
𝑛𝑛

from left to right and row vectors are denoted by
𝐻
11
, 𝐻
21
, . . . , 𝐻

𝑛1
, . . . , 𝐻

1𝑛
, 𝐻
2𝑛
, . . . , 𝐻

𝑛𝑛
from top to bottom,

where

𝐻
𝑖𝑗

≜
{

{

{

𝐿
1
(𝐸
𝑛,𝑖,𝑗

) 𝑖 = 𝑗,

𝐿
1
(𝐸
𝑛,𝑖,𝑗

+ 𝐸
𝑛,𝑗,𝑖

) 𝑖 > 𝑗.

(1)

It is easy to prove

𝐻
𝑖𝑗
=
{

{

{

𝐿
𝑇

2
(𝐸
𝑛,𝑗,𝑖

) 𝑖 < 𝑗,

𝐿
𝑇

2
(𝐸
𝑛,𝑖,𝑗

) 𝑖 ≥ 𝑗.

(2)

We will denote𝐻 = 𝐻
𝑛
≜ 𝐻(𝑛).

𝐻
−

(𝑛) denotes a (𝑛(𝑛 + 1)/2) × 𝑛
2 matrix. Its

column vectors are denoted by 𝐻
−11

, 𝐻
−21

, . . . , 𝐻
−𝑛1

, . . . ,

𝐻
−1𝑛

, 𝐻
−2𝑛

, . . . , 𝐻
−𝑛𝑛 from left to right and row vectors are

denoted by 𝐻
−

11
, 𝐻
−

21
, . . . , 𝐻

−

𝑛1
, 𝐻
−

22
, . . . ,𝐻

−

𝑛2
, . . . , 𝐻

−

𝑛𝑛
from

top to bottom, where 𝐻
−

𝑖𝑗
≜ 𝐿
𝑇

1
(𝐸
𝑛,𝑖,𝑗

). We will denote
𝐻
−

= 𝐻
−

𝑛
≜ 𝐻
−

(𝑛).
For example,

𝐻(1) = [1] , 𝐻
−

(1) = [1] ,

𝐻 (2) =
[
[
[

[

1 0 0

0 1 0

0 1 0

0 0 1

]
]
]

]

, 𝐻
−

(2) = [

[

1 0 0 0

0 1 0 0

0 0 0 1

]

]

,

(3)

and so forth.
Considering Property 3, we generally call 𝐻 and 𝐻

−

transformation matrices between 𝐿
1
and 𝐿

2
.

2.2. Properties of Transformation Matrix

Property 1. Consider

𝐻
−

𝑛
𝐻
𝑛
= 𝐼
𝑛(𝑛+1)/2

. (4)

Proof. For 𝑘 = 𝑙,

𝐻
−

𝑖𝑗
𝐻
𝑘𝑙

= 𝐿
𝑇

1
(𝐸
𝑛,𝑖,𝑗

) 𝐿
1
(𝐸
𝑛,𝑘,𝑘

) = {
1 𝑖 = 𝑗 = 𝑘,

0 others.
(5)

For 𝑘 > 𝑙,

𝐻
−

𝑖𝑗
𝐻
𝑘𝑙

= 𝐿
𝑇

1
(𝐸
𝑛,𝑖,𝑗

) 𝐿
1
(𝐸
𝑛,𝑘,𝑙

+ 𝐸
𝑛,𝑙,𝑘

) = {
1 𝑖 = 𝑘, 𝑗 = 𝑙,

0 others.
(6)

Thus,𝐻−
𝑛
𝐻
𝑛
= 𝐼
𝑛(𝑛+1)/2

.

Remark 4. Generally𝐻
𝑛
𝐻
−

𝑛
̸= 𝐼
𝑛
2 , such as

𝐻
2
𝐻
−

2
=
[
[
[

[

1 0 0 0

0 1 0 0

0 1 0 0

0 0 0 1

]
]
]

]

. (7)

Property 2. Consider
𝐻𝐻
−

𝐻 = 𝐻,𝐻−𝐻𝐻− = 𝐻−, (𝐻−𝐻)𝑇 = 𝐻−𝐻.

Remark 5. Generally (𝐻𝐻−)𝑇 ̸=𝐻𝐻
−, such as𝐻

2
𝐻
−

2
which is

not a symmetric matrix.This indicates that𝐻− is the {1, 2, 3}-
generalized inverse matrix of 𝐻, but not the {1, 2, 3, 4}-
generalized inverse matrix of𝐻 (see [1]).

Property 3. If 𝑋𝑇 = 𝑋 ≜ (𝑥
𝑖𝑗
)
𝑛×𝑛

, then 𝐻𝐿
2
(𝑋) = 𝐿

1
(𝑋),

𝐻
−

𝐿
1
(𝑋) = 𝐿

2
(𝑋).
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Proof. Consider

∵ 𝐻
𝑖𝑗
𝐿
2
(𝑋) = 𝐿

𝑇

2
(𝐸
𝑛,𝑖,𝑗

) 𝐿
2
(𝑋) = 𝑥

𝑖𝑗
(𝑖 ≥ 𝑗) ,

𝐻
𝑖𝑗
𝐿
2
(𝑋) = 𝐿

𝑇

2
(𝐸
𝑛,𝑗,𝑖

) 𝐿
2
(𝑋) = 𝑥

𝑗𝑖
= 𝑥
𝑖𝑗

(𝑖 < 𝑗) ,

∴ 𝐻𝐿
2
(𝑋) = 𝐿

1
(𝑋) ,

𝐿
2
(𝑋) = 𝐻

−

𝐿
1
(𝑋) (by Property 1) .

(8)

Property 4. For matrices 𝐴
𝑛×𝑛
, 𝐵
𝑟×𝑛

and 𝑋𝑇
𝑛×𝑛

= 𝑋, we have
the following:

(a) 𝐿
1
(𝐴𝑋 + 𝑋𝐴

𝑇

) = (𝐼 ⊗ 𝐴 + 𝐴 ⊗ 𝐼)𝐿
1
(𝑋),

(b) 𝐿
1
(𝐵𝑋𝐵

𝑇

) = (𝐵 ⊗ 𝐵)𝐿
1
(𝑋),

(c) 𝐿
2
(𝐴𝑋 + 𝑋𝐴

𝑇

) = 𝐻
−

(𝐼 ⊗ 𝐴 + 𝐴 ⊗ 𝐼)𝐻𝐿
2
(𝑋),

(d) 𝐿
2
(𝐵𝑋𝐵

𝑇

) = 𝐻
−

(𝐵 ⊗ 𝐵)𝐻𝐿
2
(𝑋).

Proof. We can get (a) and (b) in [1], so we only need to prove
(c) and (d).

Obviously,𝐴𝑋+𝑋𝐴𝑇 and 𝐵𝑋𝐵𝑇 are symmetrical.There-
fore

𝐿
2
(𝐴𝑋 + 𝑋𝐴

𝑇

) = 𝐻
−

𝐿
1
(𝐴𝑋 + 𝑋𝐴

𝑇

)

= 𝐻
−

(𝐼 ⊗ 𝐴 + 𝐴 ⊗ 𝐼) 𝐿
1
(𝑋)

= 𝐻
−

(𝐼 ⊗ 𝐴 + 𝐴 ⊗ 𝐼)𝐻𝐿
2
(𝑋) ,

𝐿
2
(𝐵𝑋𝐵

𝑇

) = 𝐻
−

𝐿
1
(𝐵𝑋𝐵

𝑇

) = 𝐻
−

(𝐵 ⊗ 𝐵)𝐻𝐿
2
(𝑋) .

(9)

Remark 6. If 𝐿
1
and 𝐿

2
are defined by row, that is,

𝐿
1
(𝑋) = (𝑥

11
, 𝑥
12
, . . . , 𝑥

1𝑚
, 𝑥
21
, 𝑥
22
, . . . ,

𝑥
2𝑚
, . . . , 𝑥

𝑛1
, 𝑥
𝑛2
, . . . , 𝑥

𝑛𝑚
)
𝑇 for 𝑋 ∈ 𝐶

𝑛×𝑚

,

𝐿
2
(𝑋) = (𝑥

11
, 𝑥
12
, . . . , 𝑥

1𝑛
, 𝑥
22
, . . . ,

𝑥
2𝑛
, . . . , 𝑥

𝑛𝑛
)
𝑇 for 𝑋 ∈ 𝑊

𝑛×𝑛

,

(10)

we find that Properties 3 and 4 are still true.

Property 5. For all 𝐴 ∈ 𝐶
𝑛×𝑛, then

(a) 𝜎(𝐴 ⊗ 𝐴) = 𝜎(𝐻
−

(𝐴 ⊗ 𝐴)𝐻) = 𝜎(𝐻
−

(𝐴
𝑇

⊗ 𝐴
𝑇

)𝐻),

(b) 𝜎(𝐴⊗𝐼+𝐼⊗𝐴) = 𝜎(𝐻−(𝐴⊗𝐼+𝐼⊗𝐴)𝐻) = 𝜎(𝐻−(𝐴𝑇⊗
𝐼 + 𝐼 ⊗ 𝐴

𝑇

)𝐻),

where 𝜎(⋅) denotes the set of all eigenvalues of matrix.

Proof. (a) Let

𝜎
1
(𝐴) ≜ {𝜆 ∈ 𝐶 | 𝐴𝑋𝐴

𝑇

= 𝜆𝑋,𝑋 ̸= 0, 𝑋 ∈ 𝐶
𝑛×𝑛

} ,

𝜎
2
(𝐴) ≜ {𝜆 ∈ 𝐶 | 𝐴𝑋𝐴

𝑇

= 𝜆𝑋,𝑋
𝑇

= 𝑋 ̸= 0,𝑋 ∈ 𝐶
𝑛×𝑛

} ,

∵ 𝐴𝑋𝐴
𝑇

= 𝜆𝑋 ⇐⇒ (𝐴 ⊗ 𝐴) 𝐿
1
(𝑋) = 𝜆𝐿

1
(𝑋)

∴ 𝜎
1
(𝐴) = 𝜎 (𝐴 ⊗ 𝐴) .

(11)

If 𝑋𝑇 = 𝑋, then 𝐴𝑋𝐴𝑇 = 𝜆𝑋 ⇔ 𝐻
−

(𝐴 ⊗ 𝐴)𝐻𝐿
2
(𝑋) =

𝜆𝐿
2
(𝑋). Thus, 𝜎

2
(𝐴) = 𝜎(𝐻

−

(𝐴 ⊗ 𝐴)𝐻).
Next we prove 𝜎

1
(𝐴) = 𝜎

2
(𝐴). Obviously 𝜎

2
(𝐴) ⊆ 𝜎

1
(𝐴),

so we only need to prove 𝜎
1
(𝐴) ⊆ 𝜎

2
(𝐴).

For any 𝜆 ∈ 𝜎
1
(𝐴), ∃�̂�, �̃� ∈ 𝜎(𝐴) such that 𝜆 = �̂��̃�, �̂�𝑥 =

𝐴𝑥 with 0 ̸= 𝑥 ∈ 𝐶
𝑛, �̃�𝑦 = 𝐴𝑦 with 0 ̸= 𝑦 ∈ 𝐶

𝑛 (see [1]). Let
𝑋 ≜ 𝑥𝑦

𝑇

, 𝑍 ≜ 𝑋 + 𝑋
𝑇; then

𝜆𝑍 = �̂��̃�𝑥𝑦
𝑇

+ �̂��̃�𝑦𝑥
𝑇

= 𝐴𝑥𝑦
𝑇

𝐴
𝑇

+ 𝐴𝑦𝑥
𝑇

𝐴
𝑇

= 𝐴𝑍𝐴
𝑇

.

(12)

If 𝑍 ̸= 0, then 𝜆 ∈ 𝜎
2
(𝐴). Actually we always have 𝑍 ̸= 0.

Suppose that 𝑍 = 0; then 𝑧
𝑖𝑖
= 0 for 𝑖 = 1, 2, . . . , 𝑛 (i.e.,

𝑥
𝑖
𝑦
𝑖
= 0 for 𝑖 = 1, 2, . . . , 𝑛). Without loss of generality, let

𝑥
𝑖
̸= 0, 𝑦
𝑗
̸= 0; then 𝑦

𝑖
= 0, 𝑥

𝑗
= 0, 𝑧

𝑖𝑗
= 𝑥
𝑖
𝑦
𝑗
+ 𝑦
𝑖
𝑥
𝑗
= 𝑥
𝑖
𝑦
𝑗
̸= 0.

This contradicts 𝑍 = 0. Then 𝑍 ̸= 0.
Thus, 𝜎(𝐴 ⊗ 𝐴) = 𝜎

1
(𝐴) = 𝜎

2
(𝐴) = 𝜎(𝐻

−

(𝐴 ⊗ 𝐴)𝐻).
And because 𝜎(𝐴 ⊗ 𝐴) = 𝜎

1
(𝐴
𝑇

⊗ 𝐴
𝑇

) = 𝜎(𝐻
−

(𝐴
𝑇

⊗ 𝐴
𝑇

)𝐻),
therefore 𝜎(𝐴 ⊗ 𝐴) = 𝜎(𝐻−(𝐴 ⊗ 𝐴)𝐻) = 𝜎(𝐻−(𝐴𝑇 ⊗ 𝐴𝑇)𝐻).

(b) Let

𝜎
3
(𝐴) ≜ {𝜆 ∈ 𝐶 | 𝐴𝑋 + 𝑋𝐴

𝑇

= 𝜆𝑋,𝑋 ̸= 0, 𝑋 ∈ 𝐶
𝑛×𝑛

} ,

𝜎
4
(𝐴) ≜ {𝜆 ∈ 𝐶 | 𝐴𝑋 + 𝑋𝐴

𝑇

= 𝜆𝑋,𝑋
𝑇

= 𝑋 ̸= 0,𝑋 ∈ 𝐶
𝑛×𝑛

} ,

∵ 𝐴𝑋 + 𝑋𝐴
𝑇

= 𝜆𝑋 ⇐⇒ (𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐴) 𝐿
1
(𝑋) = 𝜆𝐿

1
(𝑋)

∴ 𝜎
3
(𝐴) = 𝜎 (𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐴) .

(13)

If 𝑋𝑇 = 𝑋, then 𝐴𝑋 + 𝑋𝐴
𝑇

= 𝜆𝑋 ⇔ 𝐻
−

(𝐴 ⊗ 𝐼 + 𝐼 ⊗

𝐴)𝐻𝐿
2
(𝑋) = 𝜆𝐿

2
(𝑋).

Thus, 𝜎
4
(𝐴) = 𝜎(𝐻

−

(𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐴)𝐻).
Next we prove 𝜎

3
(𝐴) = 𝜎

4
(𝐴). Obviously 𝜎

4
(𝐴) ⊆ 𝜎

3
(𝐴),

so we only need to prove 𝜎
3
(𝐴) ⊆ 𝜎

4
(𝐴).

For any 𝜆 ∈ 𝜎
3
(𝐴), ∃�̂�, �̃� ∈ 𝜎(𝐴) such that 𝜆 = �̂� + �̃�,

�̂�𝑥 = 𝐴𝑥 with 0 ̸= 𝑥 ∈ 𝐶
𝑛, �̃�𝑦 = 𝐴𝑦 with 0 ̸= 𝑦 ∈ 𝐶

𝑛 (see [1]).
Let𝑋 ≜ 𝑥𝑦

𝑇

, 𝑍 ≜ 𝑋 + 𝑋
𝑇; then

𝜆𝑍 = �̂�𝑥𝑦
𝑇

+ �̃�𝑥𝑦
𝑇

+ �̂�𝑦𝑥
𝑇

+ �̃�𝑦𝑥
𝑇

= 𝐴𝑥𝑦
𝑇

+ 𝑥𝑦
𝑇

𝐴
𝑇

+ 𝑦𝑥
𝑇

𝐴
𝑇

+ 𝐴𝑦𝑥
𝑇

= 𝐴𝑍 + 𝑍𝐴
𝑇

.

(14)

If 𝑍 ̸= 0, then 𝜆 ∈ 𝜎
4
(𝐴). Actually, we always have 𝑍 ̸= 0.

Suppose that 𝑍 = 0; then 𝑧
𝑖𝑖
= 0 for 𝑖 = 1, 2, . . . , 𝑛 (i.e.,

𝑥
𝑖
𝑦
𝑖
= 0 for 𝑖 = 1, 2, . . . , 𝑛). Without loss of generality, let



4 Abstract and Applied Analysis

𝑥
𝑖
̸= 0, 𝑦
𝑗
̸= 0; then 𝑦

𝑖
= 0, 𝑥

𝑗
= 0, 𝑧

𝑖𝑗
= 𝑥
𝑖
𝑦
𝑗
+ 𝑦
𝑖
𝑥
𝑗
= 𝑥
𝑖
𝑦
𝑗
̸= 0.

This contradicts 𝑍 = 0. Then 𝑍 ̸= 0.
Thus, 𝜎(𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐴) = 𝜎

3
(𝐴) = 𝜎

4
(𝐴) = 𝜎(𝐻

−

(𝐴 ⊗ 𝐼 +

𝐼 ⊗ 𝐴)𝐻).
And because 𝜎(𝐴 ⊗ 𝐼 + 𝐼 ⊗ 𝐴) = 𝜎

1
(𝐴
𝑇

⊗ 𝐼 + 𝐼 ⊗ 𝐴
𝑇

) =

𝜎(𝐻
−

(𝐴
𝑇

⊗𝐼+𝐼⊗𝐴
𝑇

)𝐻), therefore𝜎(𝐴⊗𝐼+𝐼⊗𝐴) = 𝜎(𝐻−(𝐴⊗
𝐼 + 𝐼 ⊗ 𝐴)𝐻) = 𝜎(𝐻

−

(𝐴
𝑇

⊗ 𝐼 + 𝐼 ⊗ 𝐴
𝑇

)𝐻).

3. Applications of Transformation Matrix

3.1. Application 1: The Improvement of Qian Jiling’s Formula.
Qian Jiling’s formula is an important and interesting formula
to compute the Lyapunov functions [2].However, the formula
can be improved with the help of the above transformation
matrices.

Theorem 7. Assume that the system �̇�(𝑡) = 𝐴𝑥(𝑡) is
asymptotically stable (i.e.,𝐴 ∈ 𝑅

𝑛×𝑛 is a Hurwitz matrix); then
one has the following:

(a) for any𝐷 ∈ 𝑅
𝑛×𝑛,𝐴𝑇𝑌+𝑌𝐴 = 𝐷, there exists a unique

solution 𝑌 ∈ 𝑅
𝑛×𝑛,

(b) for any 𝐷 > 0, there exists a unique quadratic
Lyapunov function 𝑉 = 𝑥

𝑇

𝑌𝑥, such that 𝐴𝑇𝑌 + 𝑌𝐴 =

−𝐷, and the expression is

𝑉 =
1

|Δ|



0 𝑋

𝐿
2
(𝐷) Δ



, (15)

where

Δ = 𝐻
−

(𝐼 ⊗ 𝐴
𝑇

+ 𝐴
𝑇

⊗ 𝐼)𝐻,

𝑋 = (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) ,

𝑋
1
= (𝑥
2

1
, 2𝑥
1
𝑥
2
, . . . , 2𝑥

1
𝑥
𝑛
) ,

𝑋
2
= (𝑥
2

2
, 2𝑥
2
𝑥
3
, . . . , 2𝑥

2
𝑥
𝑛
) ,

...

𝑋
𝑛
= (𝑥
2

𝑛
) .

(16)

Proof. We can get (a) in [2], so we only need to prove (b).
Let𝑌 = ∫

∞

0

𝑒
𝑡𝐴
𝑇

𝐷𝑒
𝑡𝐴d𝑡. Because𝐷 > 0 and𝐴 is aHurwitz

matrix, so 𝑌 > 0 and

𝐴
𝑇

𝑌 + 𝑌𝐴 = 𝐴
𝑇

∫

∞

0

𝑒
𝑡𝐴
𝑇

𝐷𝑒
𝑡𝐴d𝑡 + ∫

∞

0

𝑒
𝑡𝐴
𝑇

𝐷𝑒
𝑡𝐴d𝑡𝐴

= ∫

∞

0

d (𝑒𝑡𝐴
𝑇

𝐷𝑒
𝑡𝐴

) = −𝐷.

(17)

By (a), the quadratic Lyapunov function 𝑉 = 𝑥
𝑇

𝑌𝑥 which
satisfies 𝐴𝑇𝑌 + 𝑌𝐴 = −𝐷 is unique.

Next we prove that 𝑉 can be expressed as (15). Note that
𝐴
𝑇

𝑌 + 𝑌𝐴 = −𝐷; then

𝐻
−

(𝐼 ⊗ 𝐴
𝑇

+ 𝐴
𝑇

⊗ 𝐼)𝐻𝐿
2
(𝑌) = −𝐿

2
(𝐷) . (18)

By (a), we have |𝐼 ⊗ 𝐴𝑇 + 𝐴𝑇 ⊗ 𝐼| ̸= 0.
By Property 5, we have |𝐻−(𝐼 ⊗ 𝐴𝑇 + 𝐴𝑇 ⊗ 𝐼)𝐻| ̸= 0.
By the Cramer rule, (18) has a unique solution and

𝑦
𝑖𝑗
=


Δ
∗𝑖𝑗


|Δ|
(1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛) , (19)

where we use −𝐿
2
(𝐷) to replace Δ’s (𝑖, 𝑗)-column in Δ

and denote this new matrix by Δ
∗𝑖𝑗 (Δ’s column vectors

are, respectively, called the (1, 1), (2, 1), . . . , (𝑛, 1), (2, 2), . . . ,
(𝑛, 2), . . . , (𝑛, 𝑛)-column vector from left to right).

By expanding the determinant, we have

1

|Δ|



0 𝑋

𝐿
2
(𝐷) Δ



=

𝑛

∑

𝑖=1

𝑥
2

𝑖


Δ
∗𝑖𝑖


|Δ|

+ ∑

1≤𝑗<𝑖≤𝑛

2𝑥
𝑗
𝑥
𝑖


Δ
∗𝑖𝑗


|Δ|

=

𝑛

∑

𝑖,𝑗=1

𝑥
𝑖
𝑦
𝑖𝑗
𝑥
𝑗
= 𝑉.

(20)

For the uniqueness of 𝑉, (15) is the desired expression.

Remark 8. The dimensions of Δ and [
0 𝑋

𝐿
2
(𝐷) Δ

] in (15) are
significantly smaller than those in [2] due to the application
of the transformation matrices𝐻 and𝐻−.

3.2. Application 2:NewResults for theObservability of Stochas-
tic Linear Systems. This subsection considers the observabil-
ity of discrete-time stochastic linear systems. Anewnecessary
and sufficient condition for the weak observability will be
given with the help of these transformation matrices.

3.2.1. Description of the Stochastic Linear Systems. This sub-
section considers the following discrete-time stochastic linear
system with Markovian jump and multiplicative noises:

𝑥 (𝑘 + 1) = 𝐴
0,𝜃(𝑘)

𝑥 (𝑘) + 𝐵
𝜃(𝑘)

𝑢 (𝑘)

+

𝑁

∑

𝑗=1

𝐴
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘) ,

𝑦 (𝑘) = 𝐶
0,𝜃(𝑘)

𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐶
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘) ,

(21)

for 𝑘 ∈ 𝑍
+, where 𝑥(𝑘) ∈ 𝑅

𝑛, 𝑢(𝑘) ∈ 𝑅
𝑚, and 𝑦(𝑘) ∈

𝑅
𝑟, respectively, denote the system state, control input, and

measured output. 𝐴
𝑖𝑗
∈ 𝑅
𝑛×𝑛, 𝐵

𝑗
∈ 𝑅
𝑛×𝑚, and 𝐶

𝑖𝑗
∈ 𝑅
𝑟×𝑛.

{𝜃(𝑘); 𝑘 ∈ 𝑍
+

} is a discrete-time homogeneous Markovian
chain. Its state space is 𝑆, transition probability matrix is
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𝑃 = (𝑝
𝑖𝑗
)
𝑠×𝑠

, and initial distribution is 𝜇
0

= {𝜇
0,𝑖

≜

𝑃(𝜃(0) = 𝑖)}
𝑖∈𝑆
. 𝑤
1
(𝑘), . . . , 𝑤

𝑁
(𝑘) ∈ 𝑅 are wide sense

stationary processes and independent of each other, such that

E (𝑤
𝑖
(𝑘)) = 0, E (𝑤

𝑖
(𝑘) 𝑤
𝑗
(𝑘)) = 𝛿

𝑖𝑗
≜ {

1 𝑖 = 𝑗

0 𝑖 ̸= 𝑗
(22)

and all independent of {𝜃(𝑘); 𝑘 ∈ 𝑍+}.
Let Θ ≜ {𝜇 | 𝜇 be initial distribution of Markovian chain

{𝜃(𝑘); 𝑘 ∈ 𝑍
+

}}.
For the stochastic system (21), its solution and output

processes with 𝑥(0) = 𝑥
0
and 𝜃(0) ∼ 𝜇

0
are, respectively,

denoted by 𝑥(𝑘, 𝜔, 𝑥
0
, 𝜇
0
) and 𝑦(𝑘, 𝜔, 𝑥

0
, 𝜇
0
). We will simply

denote 𝑥(𝑘) = 𝑥(𝑘, 𝑥
0
, 𝜇
0
) ≜ 𝑥(𝑘, 𝜔, 𝑥

0
, 𝜇
0
), 𝑦(𝑘) =

𝑦(𝑘, 𝑥
0
, 𝜇
0
) ≜ 𝑦(𝑘, 𝜔, 𝑥

0
, 𝜇
0
).

If 𝑢(𝑘) ≡ 0, the stochastic system (21) becomes

𝑥 (𝑘 + 1) = 𝐴
0,𝜃(𝑘)

𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐴
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘) ,

𝑦 (𝑘) = 𝐶
0,𝜃(𝑘)

𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐶
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘)

(23)

for 𝑘 ∈ 𝑍+.
For convenience, we will use the following notations:

𝑋
𝑖
(𝑘) ≜ E (𝑥 (𝑘) 𝑥𝑇 (𝑘) 1

𝜃(𝑘)=𝑖
) ,

𝑋 (𝑘) ≜ (𝑋
1
(𝑘) , . . . , 𝑋

𝑠
(𝑘)) ,

𝑋 (𝑘) ≜ E (𝑥 (𝑘) 𝑥𝑇 (𝑘)) ,

𝑌
𝑖
(𝑘) ≜ E (𝑦 (𝑘) 𝑦𝑇 (𝑘) 1

𝜃(𝑘)=𝑖
) ,

�̂� (𝑘) ≜ (𝑌
1
(𝑘) , . . . , 𝑌

𝑠
(𝑘)) ,

𝑌 (𝑘) ≜ E (𝑦 (𝑘) 𝑦𝑇 (𝑘)) ,

W
0
≜ {𝑋 (0) | 𝑥

0
∈ 𝑅
𝑛

, 𝜇
0
∈ Θ,𝑋

𝑖
(0) ≜ 𝑥

0
𝑥
𝑇

0
𝜇
0,𝑖
, 𝑖 ∈ 𝑆} .

(24)

It is easy to get 𝑋
1
(𝑘) + ⋅ ⋅ ⋅ + 𝑋

𝑠
(𝑘) = 𝑋(𝑘), 𝑌

1
(𝑘) +

⋅ ⋅ ⋅ + 𝑌
𝑠
(𝑘) = 𝑌(𝑘), E|𝑥(𝑘)|2 = E(𝑥𝑇(𝑘)𝑥(𝑘)) = tr(𝑋(𝑘)) =

∑
𝑠

𝑖=1
tr(𝑋
𝑖
(𝑘)) = ⟨𝑋(𝑘), 𝐼⟩, where 𝐼 ≜ [𝐼, . . . , 𝐼] ∈ 𝑅

𝑛×𝑛

𝑠
.

Specifically E|𝑥(0)|2 = |𝑥
0
|
2.

For the system (23), we define several operators in𝑅𝑛×𝑛
𝑠

as
follows:

E
𝑖
(𝑈) =

𝑠

∑

𝑗=1

𝑝
𝑖𝑗
𝑈
𝑗
,

F
𝑖
(𝑈) =

𝑁

∑

𝑙=0

𝐴
𝑇

𝑙𝑖
E
𝑖
(𝑈)𝐴

𝑙𝑖
=

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
𝑖𝑗
𝐴
𝑇

𝑙𝑖
𝑈
𝑗
𝐴
𝑙𝑖
,

F
∗

𝑖
(𝑈) =

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
𝑗𝑖
𝐴
𝑙𝑗
𝑈
𝑗
𝐴
𝑇

𝑙𝑗
,

E (𝑈) = (E
1
(𝑈) , . . . ,E

𝑠
(𝑈)) ,

F (𝑈) = (F
1
(𝑈) , . . . ,F

𝑠
(𝑈)) ,

F
∗

(𝑈) = (F
∗

1
(𝑈) , . . . ,F

∗

𝑠
(𝑈)) ,

F
𝑘

(𝑈)

= F (F
𝑘−1

(𝑈)) (𝑘 = 1, 2, . . .) , where F
0

(𝑈) = 𝑈,

F
∗𝑘

(𝑈)

= F
∗

(F
∗𝑘−1

(𝑈)) (𝑘 = 1, 2, . . .) , where F
∗0

(𝑈) = 𝑈.

(25)

F∗ and F are called dual operators for each other (see
Lemma 15).

Also, we define the operator O
𝑖
(𝑙) = 𝐶

𝑖
+ F
𝑖
(O(𝑙 −

1)) for 𝑖 ∈ 𝑆, 𝑙 = 1, 2, . . ., where

𝐶
𝑖
=

𝑁

∑

𝑙=0

𝐶
𝑇

𝑙𝑖
𝐶
𝑙𝑖
,

O (0) = 0,

O (𝑙) = (O
1
(𝑙) , . . . ,O

𝑠
(𝑙)) .

(26)

Then

O (𝑙) = 𝐶 +F (O (𝑙 − 1)) (𝐶 ≜ (𝐶
1
, . . . , 𝐶

𝑠
))

= 𝐶 +F (𝐶) +F
2

(𝐶) + ⋅ ⋅ ⋅ +F
𝑙−1

(𝐶)

𝑙 = 1, 2, . . . .

(27)

3.2.2. Some Preliminaries and Auxiliary Results. Let

𝑊
𝑙

𝑖
(𝑋 (𝑡)) ≜

𝑙−1

∑

𝑘=0

⟨𝑋
𝑖
(𝑡 + 𝑘) , 𝐶

𝑖
⟩

for 𝑡 ∈ 𝑍+, 𝑖 ∈ 𝑆, 𝑙 = 1, 2, . . . ,

𝑊
𝑙

(𝑋 (𝑡)) ≜

𝑙−1

∑

𝑘=0

⟨𝑋 (𝑡 + 𝑘) , 𝐶⟩ =

𝑠

∑

𝑖=1

𝑊
𝑙

𝑖
(𝑋 (𝑡))

for 𝑡 ∈ 𝑍+, 𝑙 = 1, 2, . . . .

(28)

Lemma 9. For the system (23), one has O
𝑖
(𝑙) ≥ O

𝑖
(𝑙 − 1) for

all 𝑖 ∈ 𝑆, 𝑙 = 1, 2, . . ..

Proof. Firstly, it is easy to get O
𝑖
(1) = 𝐶

𝑖
= ∑
𝑁

𝑙=0
𝐶
𝑇

𝑙𝑖
𝐶
𝑙𝑖
≥ 0 =

O
𝑖
(0) for all 𝑖 ∈ 𝑆. Secondly, we assume thatO

𝑖
(𝑙) ≥ O

𝑖
(𝑙−1)for
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all 𝑖 ∈ 𝑆, 𝑙 = 1, 2, . . . , 𝑚. Then, for 𝑙 = 𝑚 + 1, for all 𝑖 ∈ 𝑆, we
have

O
𝑖
(𝑚 + 1) − O

𝑖
(𝑚)

= F
𝑖
(O (𝑚)) −F

𝑖
(O (𝑚 − 1))

=

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
𝑖𝑗
𝐴
𝑇

𝑙𝑖
(O
𝑗
(𝑚) − O

𝑗
(𝑚 − 1))𝐴

𝑙𝑖

≥ 0.

(29)

By mathematical induction, it is right.

Lemma 10. For the system (23), one has F𝑙+1(O(𝑚 − 1)) =

F𝑙(O(𝑚)) −F𝑙(𝐶) for𝑚 = 1, 2, . . ., 𝑙 = 0, 1, . . ..

Proof. It is easy to get the result by mathematical induction,
so we will omit the details.

Lemma 11. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈ Θ

(i.e., for all 𝑋(0) = 𝑋
0
∈W
0
), one has

𝑋 (𝑘 + 1) = F
∗

(𝑋 (𝑘)) for 𝑘 ∈ 𝑍+,

𝑋 (𝑘 + 𝑡) = F
∗𝑡

(𝑋 (𝑘)) for 𝑘, 𝑡 ∈ 𝑍+.
(30)

Proof. For all 𝑖 ∈ 𝑆, we have

F
∗

𝑖
(𝑋 (𝑘)) =

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
𝑗𝑖
𝐴
𝑙𝑗
E (𝑥 (𝑘) 𝑥𝑇 (𝑘) 1

𝜃(𝑘)=𝑗
)𝐴
𝑇

𝑙𝑗

=

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
𝑗𝑖
E (𝐴
𝑙,𝜃(𝑘)

𝑥 (𝑘) 𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑙,𝜃(𝑘)
1
𝜃(𝑘)=𝑗

)

=

𝑁

∑

𝑙=0

E (𝐴
𝑙,𝜃(𝑘)

𝑥 (𝑘) 𝑥
𝑇

(𝑘) 𝐴
𝑇

𝑙,𝜃(𝑘)
1
𝜃(𝑘+1)=𝑖

)

=E
{{

{{

{

[

[

𝐴
0,𝜃(𝑘)

𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐴
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘)]

]

× [

[

𝐴
0,𝜃(𝑘)

𝑥 (𝑘)

+

𝑁

∑

𝑗=1

𝐴
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘)]

]

𝑇

1
𝜃(𝑘+1)=𝑖

}}

}}

}

=E {𝑥 (𝑘 + 1) 𝑥𝑇 (𝑘 + 1) 1
𝜃(𝑘+1)=𝑖

}

= 𝑋
𝑖
(𝑘 + 1) 𝑘 ∈ 𝑍

+

.

(31)

then𝑋(𝑘 + 1) = F∗(𝑋(𝑘)) for 𝑘 ∈ 𝑍+.
By induction, we have 𝑋(𝑘 + 𝑡) = F∗𝑡(𝑋(𝑘)) for 𝑘, 𝑡 ∈

𝑍
+.

Lemma 12. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈ Θ,

one has

𝑊
𝑙

𝑖
(𝑋 (𝑡)) =

𝑙−1

∑

𝑘=0

E [𝑦𝑇 (𝑡 + 𝑘) 𝑦 (𝑡 + 𝑘) 1
𝜃(𝑡+𝑘)=𝑖

]

for 𝑡 ∈ 𝑍+, 𝑖 ∈ 𝑆, 𝑙 = 1, 2, . . . ,

𝑊
𝑙

(𝑋 (𝑡)) =

𝑙−1

∑

𝑘=0

E [𝑦𝑇 (𝑡 + 𝑘) 𝑦 (𝑡 + 𝑘)]

for 𝑡 ∈ 𝑍+, 𝑙 = 1, 2, . . . .

(32)

Proof. Because

𝑌
𝑖
(𝑘) = E

{{

{{

{

[

[

𝐶
0,𝜃(𝑘)

𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐶
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘)]

]

×[

[

𝐶
0,𝜃(𝑘)

𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐶
𝑗,𝜃(𝑘)

𝑥 (𝑘)𝑤
𝑗
(𝑘)]

]

𝑇

1
𝜃(𝑘)=𝑖

}}

}}

}

=

𝑁

∑

𝑙=0

𝐶
𝑙,𝑖
𝑋
𝑖
(𝑘) 𝐶
𝑇

𝑙,𝑖
,

(33)

therefore

⟨𝑋
𝑖
(𝑘) , 𝐶

𝑖
⟩ = tr[𝑋

𝑖
(𝑘)(

𝑁

∑

𝑙=0

𝐶
𝑇

𝑙𝑖
𝐶
𝑙𝑖
)] = tr (𝑌

𝑖
(𝑘)) ,

𝑊
𝑙

𝑖
(𝑋 (𝑡)) =

𝑙−1

∑

𝑘=0

⟨𝑋
𝑖
(𝑡 + 𝑘) , 𝐶

𝑖
⟩ =

𝑙−1

∑

𝑘=0

tr (𝑌
𝑖
(𝑡 + 𝑘))

=

𝑙−1

∑

𝑘=0

E [𝑦𝑇 (𝑡 + 𝑘) 𝑦 (𝑡 + 𝑘) 1
𝜃(𝑡+𝑘)=𝑖

] ,

⟨𝑋 (𝑘) , 𝐶⟩ =

𝑠

∑

𝑖=1

tr (𝑋
𝑖
(𝑘) 𝐶
𝑖
) = tr (𝑌 (𝑘)) ,

𝑊
𝑙

(𝑋 (𝑡)) =

𝑙−1

∑

𝑘=0

⟨𝑋 (𝑡 + 𝑘) , 𝐶⟩ =

𝑙−1

∑

𝑘=0

tr (𝑌 (𝑡 + 𝑘))

=

𝑙−1

∑

𝑘=0

E [𝑦𝑇 (𝑡 + 𝑘) 𝑦 (𝑡 + 𝑘)] .

(34)

Remark 13. There is a physical interpretation.𝑊𝑙(𝑋(𝑡)) is the
accumulated energy of the output process𝑦(𝑘) on the interval
𝑡 ≤ 𝑘 ≤ 𝑡 + 𝑙 − 1. The 𝑖th modal is𝑊𝑙

𝑖
(𝑋(𝑡)).

Lemma 14. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈ Θ,

𝑡 ∈ 𝑍
+, one has𝑊𝑙(𝑋(𝑡)) = ⟨𝑋(𝑡),O(𝑙)⟩ for 𝑙 = 1, 2, . . ..

Proof. It is easy to get the result by mathematical induction,
so we will omit the details.
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Lemma 15. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈ Θ,

𝑚 ∈ 𝑍
+

, 𝑡 ∈ 𝑍
+, one has

⟨𝑋 (𝑡) ,F
𝑙

(O (𝑚))⟩ = ⟨F
∗𝑙

(𝑋 (𝑡)) ,O (𝑚)⟩ 𝑙 ∈ 𝑍
+

.

(35)

Proof. Firstly, it is easy to get

⟨𝑋 (𝑡) ,F
0

(O (𝑚))⟩

= ⟨𝑋 (𝑡) ,O (𝑚)⟩

= ⟨F
∗0

(𝑋 (𝑡)) ,O (𝑚)⟩ ∀𝑚, 𝑡 ∈ 𝑍
+

.

(36)

Secondly, we assume that ⟨𝑋(𝑡),F𝑙(O(𝑚))⟩ = ⟨F∗𝑙(𝑋(𝑡)),
O(𝑚)⟩ for all𝑚, 𝑡 ∈ 𝑍+, 𝑙 = 1, 2, . . . , 𝑞. Then, for 𝑙 = 𝑞 + 1, for
all𝑚, 𝑡 ∈ 𝑍+, we have

⟨𝑋 (𝑡) ,F
𝑞+1

(O (𝑚))⟩ = ⟨𝑋 (𝑡) ,F
𝑞

(O (𝑚 + 1))⟩

− ⟨𝑋 (𝑡) ,F
𝑞

(𝐶)⟩

= ⟨F
∗𝑞

(𝑋 (𝑡)) ,O (𝑚 + 1)⟩

− ⟨F
∗𝑞

(𝑋 (𝑡)) , 𝐶⟩

= ⟨𝑋 (𝑡 + 𝑞) ,O (𝑚 + 1)⟩

− ⟨𝑋 (𝑡 + 𝑞) , 𝐶⟩

= 𝑊
𝑚+1

(𝑋 (𝑡 + 𝑞)) − ⟨𝑋 (𝑡 + 𝑞) , 𝐶⟩

=

𝑚

∑

𝑘=0

⟨𝑋 (𝑡 + 𝑞 + 𝑘) , 𝐶⟩

− ⟨𝑋 (𝑡 + 𝑞) , 𝐶⟩

= ⟨𝑋 (𝑡 + 𝑞 + 1) ,O (𝑚)⟩

= ⟨F
∗𝑞+1

(𝑋 (𝑡)) ,O (𝑚)⟩ .

(37)

By mathematical induction, it is right.

Corollary 16. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈

Θ, 𝑡 ∈ 𝑍+, one has

⟨𝑋 (𝑡) ,F
𝑙

(𝐶)⟩ = E [𝑦𝑇 (𝑡 + 𝑙) 𝑦 (𝑡 + 𝑙)] . (38)

Proof. Consider

⟨𝑋 (𝑡) ,F
𝑙

(𝐶)⟩ = ⟨𝑋 (𝑡) ,F
𝑙

(O (1))⟩

= ⟨F
∗𝑙

(𝑋 (𝑡)) ,O (1)⟩

= ⟨𝑋 (𝑡 + 𝑙) , 𝐶⟩

= E [𝑦𝑇 (𝑡 + 𝑙) 𝑦 (𝑡 + 𝑙)] .

(39)

In particular, we have ⟨𝑋(0),F𝑙(𝐶)⟩ = E[𝑦𝑇(𝑙)𝑦(𝑙)]when
𝑡 = 0,𝑚 = 1.

Lemma 17 (see [12]). For any random variable 𝑦 ∈ 𝑅
𝑛, one

has

𝑦 = 0 a.s.⇐⇒ E (𝑦𝑦𝑇) = 0 ⇐⇒ E (𝑦𝑇𝑦) = 0. (40)

Lemma 18. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈ Θ,

one has

lim
𝑘→∞

E [𝑥 (𝑘) 𝑥𝑇 (𝑘)] = 0 ⇐⇒ lim
𝑘→∞

E [𝑥𝑇 (𝑘) 𝑥 (𝑘)] = 0.
(41)

Proof. This proof is omitted.

Lemma 19 (see [1]). If 0 ≤ 𝑋 ∈ 𝑅
𝑛×𝑛

, 𝑟 ≜ rank(𝑋), then there
exist nonzero vectors 𝑥

1
, . . . , 𝑥

𝑟
∈ 𝑅
𝑛 such that 𝑋 = 𝑥

1
𝑥
𝑇

1
+

⋅ ⋅ ⋅ + 𝑥
𝑟
𝑥
𝑇

𝑟
.

3.2.3. A Useful Formula. Define two operators L
1
(𝑈) =

[

𝐿
1
(𝑈
1
)

...
𝐿
1
(𝑈
𝑠
)

] for 𝑈
𝑖
∈ 𝑅
𝑛×𝑛 andL

2
(𝑈) = [

𝐿
2
(𝑈
1
)

...
𝐿
2
(𝑈
𝑠
)

] for 𝑈
𝑖
∈ {𝑋 |

𝑋
𝑇

= 𝑋 ∈ 𝑅
𝑛×𝑛

} in 𝑅𝑛×𝑛
𝑠

.
For convenience, we naturally think 𝑌 ∈ {𝑋 | 𝑋

𝑇

= 𝑋 ∈

𝑅
𝑛×𝑛

} when we use 𝐿
2
(𝑌) in this subsection.

Theorem 20. For the system (23), for all 𝑈,𝑉 ∈ 𝑅
𝑛×𝑛

𝑠
, one has

L
1
(F (𝑈)) = AL

1
(𝑈) ,

L
2
(F (𝑈)) = BL

2
(𝑈) ,

⟨𝑈, 𝑉⟩ = L
𝑇

1
(𝑈)L

1
(𝑉) ,

⟨𝑈, 𝑉⟩ = L
𝑇

1
(𝑈) (𝐼 ⊗ 𝐻)L

2
(𝑉) ,

(42)

where

A ≜

𝑁

∑

𝑙=0

diag (𝐴𝑇
𝑙1
⊗ 𝐴
𝑇

𝑙1
, . . . , 𝐴

𝑇

𝑙𝑠
⊗ 𝐴
𝑇

𝑙𝑠
) (𝑃 ⊗ 𝐼)L

1
(𝑈) ,

B ≜

𝑁

∑

𝑙=0

diag (𝐻− (𝐴𝑇
𝑙1
⊗ 𝐴
𝑇

𝑙1
)𝐻, . . . ,

𝐻
−

(𝐴
𝑇

𝑙𝑠
⊗ 𝐴
𝑇

𝑙𝑠
)𝐻) (𝑃 ⊗ 𝐼)L

2
(𝑈) .

(43)
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Proof. When 𝑈𝑇
𝑖
= 𝑈
𝑖
for 𝑖 ∈ 𝑆, then

L
2
(F (𝑈)) =

[
[
[
[
[
[
[
[
[

[

𝐿
2
(

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
1,𝑗
𝐴
𝑇

𝑙1
𝑈
𝑗
𝐴
𝑙1
)

...

𝐿
2
(

𝑁

∑

𝑙=0

𝑠

∑

𝑗=1

𝑝
𝑠𝑗
𝐴
𝑇

𝑙𝑠
𝑈
𝑗
𝐴
𝑙𝑠
)

]
]
]
]
]
]
]
]
]

]

=

𝑁

∑

𝑙=0

[
[
[
[
[
[
[
[

[

𝐻
−

(𝐴
𝑇

𝑙1
⊗ 𝐴
𝑇

𝑙1
)𝐻

𝑠

∑

𝑗=1

𝑝
1,𝑗
𝐿
2
(𝑈
𝑗
)

...

𝐻
−

(𝐴
𝑇

𝑙𝑠
⊗ 𝐴
𝑇

𝑙𝑠
)𝐻

𝑠

∑

𝑗=1

𝑝
𝑠𝑗
𝐿
2
(𝑈
𝑗
)

]
]
]
]
]
]
]
]

]

= Σ
𝑁

𝑙=0
diag (𝐻− (𝐴𝑇

𝑙1
⊗ 𝐴
𝑇

𝑙1
)𝐻, . . . ,

𝐻
−

(𝐴
𝑇

𝑙𝑠
⊗ 𝐴
𝑇

𝑙𝑠
)𝐻) (𝑃 ⊗ 𝐼)L

2
(𝑈)

=BL
2
(𝑈) .

(44)

By the same way, it is easy to get

L
1
(F (𝑈)) =

𝑁

∑

𝑙=0

diag (𝐴𝑇
𝑙1
⊗ 𝐴
𝑇

𝑙1
, . . . ,

𝐴
𝑇

𝑙𝑠
⊗ 𝐴
𝑇

𝑙𝑠
) (𝑃 ⊗ 𝐼)L

1
(𝑈)

= AL
1
(𝑈) .

(45)

Consider

⟨𝑈, 𝑉⟩ =

𝑠

∑

𝑖=1

tr (𝑈𝑇
𝑖
𝑉
𝑖
) =

𝑠

∑

𝑖=1

𝐿
𝑇

1
(𝑈
𝑖
) 𝐿
1
(𝑉
𝑖
)

=L
𝑇

1
(𝑈)L

1
(𝑉) ,

⟨𝑈, 𝑉⟩ =

𝑠

∑

𝑖=1

𝐿
𝑇

1
(𝑈
𝑖
) 𝐿
1
(𝑉
𝑖
)

=

𝑠

∑

𝑖=1

𝐿
𝑇

1
(𝑈
𝑖
)𝐻𝐿
2
(𝑉
𝑖
)

=L
𝑇

1
(𝑈) (𝐼 ⊗ 𝐻)L

2
(𝑉) .

(46)

Let 𝑑 ≜ 𝑠(𝑛(𝑛 + 1)/2).

Remark 21. For the symmetric case, L
2
(⋅) is more suit-

able than L
1
(⋅) in applications (such as Lemma 22 and

Theorem 26). Without the transformation matrices, it is
very difficult to obtain these results. Thus, we say that the
transformation matrices are an effective mathematical tool.

Lemma 22. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈ Θ,

𝑡 ∈ 𝑍
+, one has

𝑊
d
(𝑋 (𝑡)) = 0 ⇐⇒ 𝑊

𝑙

(𝑋 (𝑘)) = 0 (𝑙 ≥ 1, 𝑘 ≥ 𝑡)

⇐⇒ 𝐸(𝑦
𝑇

(𝑘) 𝑦 (𝑘)) = 0 (𝑘 ≥ 𝑡) .

(47)

Proof. By Lemma 12, it is easy to get

𝑊
𝑙

(𝑋 (𝑘)) = 0 (𝑙 ≥ 1, 𝑘 ≥ 𝑡)

⇐⇒ 𝐸(𝑦
𝑇

(𝑘) 𝑦 (𝑘)) = 0 (𝑘 ≥ 𝑡) .

(48)

Obviously,𝑊𝑙(𝑋(𝑘)) = 0 (𝑙 ≥ 1, 𝑘 ≥ 𝑡) ⇒ 𝑊
𝑑

(𝑋(𝑡)) = 0.
We only need to prove 𝑊𝑑(𝑋(𝑡)) = 0 ⇒ 𝑊

𝑙

(𝑋(𝑘)) =

0 (𝑙 ≥ 1, 𝑘 ≥ 𝑡):

∵L
2
(F (𝑈)) =BL

2
(𝑈) (by Theorem 20)

O (𝑙) = 𝐶 +F (O (𝑙 − 1))

∴L
2
(O (𝑙)) =L

2
(𝐶) +BL

2
(O (𝑙 − 1))

= 𝑞 +B [𝑞 +BL
2
(O (𝑙 − 2))]

where 𝑞 ≜L
2
(𝐶)

= 𝑞 +B𝑞 + ⋅ ⋅ ⋅ +B
𝑙−1

𝑞 (𝑙 = 1, 2, . . .)

∵ ⟨𝑋 (𝑡) ,F
𝑙

(𝐶)⟩

= E [𝑦𝑇 (𝑡 + 𝑙) 𝑦 (𝑡 + 𝑙)] ≥ 0 (by Corollary 16)

∴ ⟨𝑋 (𝑡) ,F
𝑙

(𝐶)⟩

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)L

2
(F
𝑙

(𝐶)) (by Theorem 20)

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)BL

2
(F
𝑙−1

(𝐶))

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)B

𝑙

𝑞 ≥ 0 (𝑙 ∈ 𝑍
+

) .

(49)

If𝑊𝑑(𝑋(𝑡)) = 0, then

⟨𝑋 (𝑡) ,O (𝑑)⟩ =L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)L

2
(O (𝑑))

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)

× (𝑞 +B𝑞 + ⋅ ⋅ ⋅ +B
𝑑−1

𝑞)

= 0.

(50)

Thus,L𝑇
1
(𝑋(𝑡))(𝐼 ⊗ 𝐻)B𝑘𝑞 = 0 for 𝑘 = 0, 1, . . . , 𝑑 − 1.

For B ∈ 𝑅
𝑑×𝑑, there exist 𝑎

0
(𝑙), 𝑎
1
(𝑙), . . . , 𝑎

𝑑−1
(𝑙) ∈ 𝑅 by

the 𝐶𝑎𝑦𝑙𝑒𝑦-𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛 theorem, such that

B
𝑙

= 𝑎
0
(𝑙)B
0

+ 𝑎
1
(𝑙)B
1

+ ⋅ ⋅ ⋅ + 𝑎
𝑑−1

(𝑙)B
𝑑−1

(𝑙 ∈ 𝑍
+

) .

(51)
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For 𝑙 ≥ 1, 𝑘 ≥ 𝑡, we have

𝑊
𝑙

(𝑋 (𝑘)) = ⟨𝑋 (𝑡) ,F
𝑘−𝑡

(O (𝑙))⟩

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)B

𝑘−𝑡

L
2
(O (𝑙))

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)

× (B
𝑘−𝑡

+B
𝑘−𝑡+1

+ ⋅ ⋅ ⋅ +B
𝑘−𝑡+𝑙−1

) 𝑞

=L
𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)

× [𝑏
0
(])B0 + 𝑏

1
(])B1

+ ⋅ ⋅ ⋅ + 𝑏
𝑑−1

(])B𝑑−1] 𝑞

= 𝑏
0
(])L𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)B

0

𝑞

+ 𝑏
1
(])L𝑇

1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)B

1

𝑞

+ ⋅ ⋅ ⋅ + 𝑏
𝑑−1

(])L𝑇
1
(𝑋 (𝑡)) (𝐼 ⊗ 𝐻)B

𝑑−1

𝑞

= 0,

(52)

where 𝑏
0
(]), 𝑏
1
(]), . . . , 𝑏

𝑑−1
(]) ∈ 𝑅.

Corollary 23. For the system (23), for all 𝑥
0
∈ 𝑅
𝑛, for all 𝜇

0
∈

Θ, one has𝑊𝑑(𝑋
0
) = 0 ⇔ E(𝑦𝑇(𝑘)𝑦(𝑘)) = 0(𝑘 ≥ 0).

3.2.4. Main Results for the Weak Observability

Definition 24. The stochastic linear system (23) is weak
observable (𝑊-observable), if, for all 𝜇

0
∈ Θ, one has

𝑦 (𝑘) = 0 a.s., ∀𝑘 ∈ 𝑍+ ⇒ 𝑥
0
= 0. (53)

Remark 25. By Lemma 22, (53) is equivalent to

𝑊
𝑑

(𝑋
0
) = 0 ⇒ 𝑥

0
= 0. (54)

Theorem 26. The system (23) is 𝑊-observable if and only if
O
𝑖
(𝑑) > 0 for all 𝑖 ∈ 𝑆.

Proof. (Sufficiency) For all 𝜇
0
∈ Θ, if 𝑦(𝑘) = 0 a.s. (𝑘 ∈ 𝑍+),

by Lemmas 14 and 22, we have

𝑊
𝑑

(𝑋
0
) = ⟨𝑋

0
,O (𝑑)⟩ =

𝑠

∑

𝑖=1

tr (𝑋
𝑖
(0)O
𝑖
(𝑑))

=

𝑠

∑

𝑖=1

𝜇
0,𝑖
𝑥
𝑇

0
O
𝑖
(𝑑) 𝑥
0
= 0.

(55)

Because O
𝑖
(𝑑) > 0 for all 𝑖 ∈ 𝑆, so 𝑥

0
= 0.

That is, the system (23) is𝑊-observable.
(Necessity) Suppose that the system (23) is𝑊-observable;

then, for all 𝜇
0
∈ Θ, we have

𝑥
0
̸= 0 ⇒ ∃𝑘

0
≜ 𝑘
0
(𝜇
0
, 𝑥
0
) such that 𝑃 (𝑦 (𝑘

0
) = 0) ̸= 1.

(56)

By Corollary 23, if 𝑊𝑑(𝑋
0
) = 0, then E(𝑦𝑇(𝑘)𝑦(𝑘)) = 0 for

𝑘 ∈ 𝑍
+. Thus we can consistently select 0 ≤ 𝑘

0
≤ 𝑑 for above

𝑥
0
, such that

𝑊
𝑑+1

(𝑋
0
) =

𝑑

∑

𝑘=0

E (𝑦𝑇 (𝑘) 𝑦 (𝑘)) ≥ E (𝑦𝑇 (𝑘
0
) 𝑦 (𝑘
0
)) > 0.

(57)

Assume that there exists 𝑖 ∈ 𝑆 such that O
𝑖
(𝑑) is strictly

semipositive definite (i.e., ∃0 ̸= V ∈ 𝑅𝑛 such that V𝑇O
𝑖
(𝑑)V =

0). Select 𝜇
0
∈ Θ such that 𝜇

0,𝑗
= 0 (𝑗 ̸= 𝑖). Let 𝑋

0
=

(VV𝑇𝜇
𝑜,1
, . . . , VV𝑇𝜇

𝑜,𝑠
); then

𝑊
𝑑

(𝑋
0
) = ⟨𝑋

0
,O (𝑑)⟩ =

𝑠

∑

𝑗=1

𝜇
0,𝑗
V𝑇O
𝑗
(𝑑) V = 0. (58)

By Lemma 22,𝑊𝑑+1(𝑋
0
) = 0. It contradicts𝑊𝑑+1(𝑋

0
) > 0.

Thus, O
𝑖
(𝑑) > 0 for 𝑖 ∈ 𝑆.

Theorem27. For the system (23), if∃𝑘 ∈ 𝑍+ such thatO
𝑖
(𝑘) >

0 for any 𝑖 ∈ 𝑆, then O
𝑖
(𝑘 + 1) > 0 for any 𝑖 ∈ 𝑆.

Proof. Assume that there exists 𝑖 ∈ 𝑆 such that O
𝑖
(𝑘 + 1)

is strictly semipositive definite (i.e., ∃0 ̸= V ∈ 𝑅
𝑛 such that

V𝑇O
𝑖
(𝑘 + 1)V = 0). Select 𝜇

0
∈ Θ to satisfy 𝜇

0,𝑗
= 0 (𝑗 ̸= 𝑖).

Let𝑋
0
= (VV𝑇𝜇

𝑜,1
, . . . , VV𝑇𝜇

𝑜,𝑠
); then

𝑊
𝑘+1

(𝑋
0
) = ⟨𝑋

0
,O (𝑘 + 1)⟩ =

𝑠

∑

𝑗=1

𝜇
0,𝑗
V𝑇O
𝑗
(𝑘 + 1) V = 0.

(59)

It contradicts𝑊𝑘+1(𝑋
0
) ≥ 𝑊

𝑘

(𝑋
0
) = ⟨𝑋

0
,O(𝑘)⟩ > 0. Thus

O
𝑖
(𝑘 + 1) > 0 for 𝑖 ∈ 𝑆.

Theorem28. For the system (23), the following two statements
are equivalent:

(a) the system (23) is𝑊-observable,
(b) ∃𝑁

𝑑
≥ 1, 𝛾 > 0, for all 𝑥

0
∈ 𝑅
𝑛 and 𝜇

0
∈ Θ; one has

𝑊
𝑁
𝑑(𝑋
0
) ≥ 𝛾|𝑥

0
|
2.

Proof. (a) ⇒ (b) The system (23) is 𝑊-observable; then
O
𝑖
(𝑑) > 0 for 𝑖 ∈ 𝑆. Select𝑁

𝑑
= 𝑑; then

𝑊
𝑑

(𝑋
0
) = ⟨𝑋

0
,O (𝑑)⟩ =

𝑠

∑

𝑖=1

𝜇
0,𝑖
𝑥
𝑇

0
O
𝑖
(𝑑) 𝑥
0

≥

𝑠

∑

𝑖=1

[𝜇
0,𝑖
𝜆min (O𝑖 (𝑑))]

𝑥0


2

≥

𝑠

∑

𝑖=1

[𝜇
0,𝑖
𝛾]
𝑥0


2

= 𝛾
𝑥0


2

,

(60)

where 𝛾 = min{𝜆min(O1(𝑑)), . . . , 𝜆min(O𝑠(𝑑))} > 0.
(b)⇒ (a) For all 𝜇

0
∈ Θ, if 𝑦(𝑘) = 0 a.s.(𝑘 ∈ 𝑍+), then

𝑊
𝑙

(𝑋
0
) =

𝑙−1

∑

𝑘=0

E (𝑦𝑇 (𝑘) 𝑦 (𝑘)) = 0 (61)
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for 𝑙 = 1, 2, . . .. Because 0 = 𝑊
𝑁
𝑑(𝑋
0
) ≥ 𝛾|𝑥

0
|
2, so 𝑥

0
= 0.

That is, the system (23) is𝑊-observable.

By Theorem 28 and [6], it is easy to get the following
theorem.

Theorem29. For the system (23), the following two statements
are equivalent:

(a) the system (23) is𝑊-observable,
(b) ∃𝑘 ∈ 𝑍+, such that O

𝑖
(𝑘) > 0 for all 𝑖 ∈ 𝑆.

Remark 30. Based on the above theorems, we can determine
that the𝑊-observability in this paper is essentially consistent
with [5]. We believe that Definition 24 in this paper is more
aligned with the intuitive physical meanings. Furthermore,
Theorem 26 gives a new necessary and sufficient condition
for the𝑊-observability.

If we do not consider the noises, that is, 𝐴
𝑗,𝑖
= 𝐶
𝑗,𝑖
= 0

for 𝑗 = 1, . . . , 𝑁, 𝑖 ∈ 𝑆, (23) becomes the followingMarkovian
jump linear system:

𝑥 (𝑘 + 1) = 𝐴
0,𝜃(𝑘)

𝑥 (𝑘) ,

𝑦 (𝑘) = 𝐶
0,𝜃(𝑘)

𝑥 (𝑘) .

(62)

If the Markovian chain degenerates into an ordinary
situation, that is, 𝑆 = {1}, (23) becomes the following
stochastic linear system:

𝑥 (𝑘 + 1) = 𝐴
0
𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐴
𝑗
𝑥 (𝑘)𝑤

𝑗
(𝑘) ,

𝑦 (𝑘) = 𝐶
0
𝑥 (𝑘) +

𝑁

∑

𝑗=1

𝐶
𝑗
𝑥 (𝑘)𝑤

𝑗
(𝑘) ,

(63)

where 𝐴
𝑗
≜ 𝐴
𝑗,1
, 𝐶
𝑗
≜ 𝐶
𝑗,1

for 𝑗 = 0, 1, . . . , 𝑁.
For the above two special situations, it is easy to get the

following theorems.

Theorem 31. For the Markovian jump linear system (62), the
following statements are equivalent:

(a) the Markovian jump linear system (62) is 𝑊-
observable,

(b) ∃𝑁
𝑑
≥ 1, 𝛾 > 0, for all 𝑥

0
∈ 𝑅
𝑛 and 𝜇

0
∈ Θ; one has

𝑊
𝑁
𝑑(𝑋
0
) ≥ 𝛾|𝑥

0
|
2,

(c) ∃𝑘 ∈ 𝑍+, such that O
𝑖
(𝑘) > 0 for all 𝑖 ∈ 𝑆,

(d) O
𝑖
(𝑑) > 0 for all 𝑖 ∈ 𝑆.

Theorem 32. For the stochastic linear system (63), the follow-
ing statements are equivalent:

(a) the stochastic linear system (63) is𝑊-observable,
(b) ∃𝑁

𝑑
≥ 1, 𝛾 > 0, for all 𝑥

0
∈ 𝑅
𝑛; one has𝑊𝑁𝑑(𝑥

0
𝑥
𝑇

0
) ≥

𝛾|𝑥
0
|
2,

(c) ∃𝑘 ∈ 𝑍+, such that O(𝑘) > 0,
(d) O(𝑑) > 0.

Remark 33. Theorems 31 and 32 have essential improvements
compared with those theorems in [5–7] (because 𝑑 = 𝑠(𝑛(𝑛 +
1)/2) ≤ 𝑠𝑛

2). Furthermore, {O
𝑖
(𝑑)}
𝑖∈𝑆

are the characteristic
matrices for the observability of discrete-time stochastic
linear system (such as (23), (62), and (63)).

4. Conclusions

This paper studies a class of important transformation
matrices between two different vector operators, gives some
important properties of it, and demonstrates its applications
with two examples. One is to improve Qian Jiling’s formula.
Another is to give a new necessary and sufficient condition
for the 𝑊-observability of stochastic linear systems. We
emphasize that the transformation matrices are not only
used to study these two problems but also used to study
other problems. Actually the transformation matrices are an
effective mathematical tool in applications.
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