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The main purpose of this paper is to determine the conditions of starlikeness for certain class of multivalent analytic functions.
Relevant connections of the results presented here with those obtained in earlier works are pointed out.

1. Introduction and Main Result

LetA𝑝 denote the class of functions of the form

𝑓 (𝑧) = 𝑧𝑝 +
∞

∑
𝑛=𝑝+1

𝑎𝑛𝑧
𝑛 (𝑝 ∈ N := {1, 2, . . .}) , (1)

which are analytic in the open unit disk U := {𝑧 : 𝑧 ∈
C and |𝑧| < 1}. For convenience, we setA1 =: A. A function
𝑓 ∈ A𝑝 is said to be in the class S∗

𝑝
(󰜚) of 𝑝-valent starlike

functions of order 󰜚 inU, if it satisfies the following inequality:

R(
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
) > 󰜚 (0 ≦ 󰜚 < 𝑝; 𝑧 ∈ U) . (2)

For simplicity, we write S∗
1
(0) =: S∗.

In [1], Chichra introduced the class R of analytic func-
tions 𝑓 ∈ A which satisfy the condition

R (𝑓󸀠 (𝑧) + 𝑧𝑓󸀠󸀠 (𝑧)) > 0 (𝑧 ∈ U) . (3)

He proved that the members of R are univalent in U. Later,
R. Singh and S. Singh [2] showed thatR ⊂ S∗. Recently, Gao
and Zhou [3] considered the subclass R(𝛽, 𝛾) of A which is
defined by

R (𝛽, 𝛾) := {𝑓 ∈ A : R (𝑓󸀠 (𝑧) + 𝛽𝑧𝑓󸀠󸀠 (𝑧)) > 𝛾}

(𝛽 > 0; 𝛾 < 1; 𝑧 ∈ U) .
(4)

They derived some mapping properties of this class. More-
over, several authors discussed some related analytic function
classes associated with the class R (see [4–7]). By using
the method of differential subordination, Yang and Liu
[8] generalized the above works and studied the subclass
T𝑝(𝐴, 𝐵, 𝛾, 𝛼) ofA𝑝 which satisfies the condition

𝑓󸀠 (𝑧) + 𝛼𝑧𝑓󸀠󸀠 (𝑧) ≺ ℎ (𝑧) (𝑧 ∈ U) , (5)

where

ℎ (𝑧) =

{{{
{{{
{

(
1 + 𝐴𝑧

1 + 𝐵𝑧
)
𝛾

, (𝐴 ≦ 1; 0 < 𝛾 < 1) ,

1 + 𝐴𝑧

1 + 𝐵𝑧
, (𝛾 = 1) .

(6)

In [9], Owa et al. introduced a new subclassR𝑝(𝛼, 𝛽, 𝛾; 𝑗) of
A𝑝 which satisfies the inequality

R(𝛼
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+ 𝛽

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
) > 𝛾

(𝑗 ∈ {0, 1, 2, . . . , 𝑝} ; 𝑝 ∈ N; 𝑧 ∈ U) ,

(7)
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where 𝛼 > 0, 𝛽 > 0, and (throughout this paper unless
otherwisementioned) the parameters 𝛾 and 𝛿 are constrained
as follows:

𝛾 < 𝛿 :=
𝑝! [𝛼 + (𝑝 − 𝑗) 𝛽]

(𝑝 − 𝑗)!

(𝛼 > 0; 𝛽 > 0; 𝑝 ∈ N; 𝑗 ∈ {0, 1, 2, . . . , 𝑝}) .

(8)

The extreme points, coefficient inequalities, radius of starlike-
ness, and inclusion relationship for the classR𝑝(𝛼, 𝛽, 𝛾; 𝑗) are
derived. By setting 𝑝 = 𝑗 = 𝛼 = 1, it is easy to see that
the class R𝑝(𝛼, 𝛽, 𝛾; 𝑗) reduces to the class R(𝛽, 𝛾). If we set
𝑝 = 𝑗 = 𝛼 = 𝛾 = 1 in the classR𝑝(𝛼, 𝛽, 𝛾; 𝑗), then it reduces
to the classR(𝛾), whichwas studied earlier by Silverman [10],
R. Singh and S. Singh [2, 11], independently.

For some recent investigations on the starlikeness of
analytic functions, one can refer to [12–20]. In the present
paper, we aim at deriving the conditions of starlikeness for
the classR𝑝(𝛼, 𝛽, 𝛾; 𝑗). The main result is presented below.

Theorem 1. Let 𝛽 ≧ 𝛼 > 0. Then

(1) R𝑝(𝛼, 𝛽, 𝛾; 1) ⊂ S∗
𝑝
for 𝛾1 ≦ 𝛾 < 𝑝[𝛼 + (𝑝 − 1)𝛽],

where 𝛾1 is the solution of the following equation:

−
𝑝

2
(1 + 2 {𝑝 [𝛼 + (𝑝 − 1) 𝛽] − 𝛾1}

×
∞

∑
𝑛=2

(−1)𝑛−1

(𝑛 + 𝑝 − 1) [𝛼 + (𝑛 + 𝑝 − 2) 𝛽]
)

=
𝛾1
𝛽

+
𝛽 − 𝛼

𝛽

× (𝑝 + 2 {𝑝 [𝛼 + (𝑝 − 1) 𝛽] − 𝛾1}

×
∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 2) 𝛽
) ;

(9)

(2) R𝑝(𝛼, 𝛽, 𝛾; 𝑗) ⊂ S∗
𝑝
(𝑗 − 1) (𝑗 ∈ {2, 3, . . . , 𝑝}) for 𝛾2 ≦

𝛾 < 𝑝[𝛼 + (𝑝 − 1)𝛽], where 𝛾2 is the solution of the
following equation:

−
𝑝 − 𝑗 + 1

2
(

𝑝!

(𝑝 − 𝑗 + 1)!
+ 2 (𝛿 − 𝛾2)

×
∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗) 𝛽
)

=
𝛾2
𝛽

+
𝛽 − 𝛼

𝛽

× (
𝑝!

(𝑝 − 𝑗)!
+ 2 (𝛿 − 𝛾2)

×
∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽
) .

(10)

2. Preliminary Results

In order to establish our main theorem, we will require the
following lemmas.

Lemma 2 (see [9]). A function 𝑓 ∈ R𝑝(𝛼, 𝛽, 𝛾; 𝑗) if and only
if f can be expressed as follows:

𝑓 (𝑧) = 𝑧𝑝 + 2 (𝛿 − 𝛾)

× ∫
|𝑥|=1

(
∞

∑
𝑛=𝑝+1

(𝑛 − 𝑗)!

𝑛! [𝛼 + (𝑛 − 𝑗) 𝛽]
𝑥𝑛−𝑝𝑧𝑛)𝑑𝜇 (𝑥) ,

(11)

where 𝜇(𝑥) is the probability measure on X := {𝑥 ∈ C : |𝑥| =
1}.

The proof of the following lemma is much akin to that of
Theorem 1 which was obtained by Nunokawa et al. [21] (see
also Liu [22] and Yang [23]). We, therefore, choose to omit
the analogous details involved.

Lemma 3. If 𝑓 ∈ A𝑝 satisfies the inequality

R(
𝑧𝑓(𝑗) (𝑧)

𝑓(𝑗−1) (𝑧)
) > 0 (𝑗 ∈ {1, 2, . . . , 𝑝} ; 𝑧 ∈ U) , (12)

then 𝑓 ∈ S∗
𝑝
(𝑗 − 1).

Lemma4 (Jack’s Lemma [24]). Let𝜙 be a nonconstant regular
function in U. If |𝜙| attains its maximum value on the circle
|𝑧| = 𝑟 < 1 at 𝑧0, then

𝑧0𝜙
󸀠 (𝑧0) = 𝑘𝜙 (𝑧0) , (13)

where 𝑘 ≧ 1 is a real number.

We now give the lower bounds of the following continu-
ous linear operators:

L1 (𝑓) = R(
𝑓 (𝑧)

𝑧𝑝
) (𝑓 ∈ R𝑝 (𝛼, 𝛽, 𝛾; 1) ; 𝑧 ∈ U) ,

L2 (𝑓) = R(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
) (𝑓 ∈ R𝑝 (𝛼, 𝛽, 𝛾; 𝑗) ;

𝑗 ∈ {1, 2, . . . , 𝑝} ; 𝑧 ∈ U)

(14)

acting on the classR𝑝(𝛼, 𝛽, 𝛾; 𝑗), which played crucial role in
the proof of our main result.

Lemma 5. If 𝑓 ∈ R𝑝(𝛼, 𝛽, 𝛾; 𝑗), then, for |𝑧| ≦ 𝑟 < 1, one has
the following.
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(1) When 𝑗 ∈ {1, 2, . . . , 𝑝}, then

R(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
) ≧

𝑝!

(𝑝 − 𝑗)!

+ 2 (𝛿 − 𝛾)
∞

∑
𝑛=2

(−𝑟)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽

>
𝑝!

(𝑝 − 𝑗)!

+ 2 (𝛿 − 𝛾)
∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽
.

(15)

This inequality is sharp.
(2) When 𝑗 = 1, then

R(
𝑓 (𝑧)

𝑧𝑝
)

≧ 1 + 2 (𝛿1 − 𝛾)
∞

∑
𝑛=2

(−𝑟)𝑛−1

(𝑛 + 𝑝 − 1) [𝛼 + (𝑛 + 𝑝 − 2) 𝛽]

> 1 + 2 (𝛿1 − 𝛾)
∞

∑
𝑛=2

(−1)𝑛−1

(𝑛 + 𝑝 − 1) [𝛼 + (𝑛 + 𝑝 − 2) 𝛽]
,

(16)

where 𝛿1 = 𝑝[𝛼 + (𝑝 − 1)𝛽]. The inequality is sharp.

Proof. By Lemma 2, we know that

𝑓 (𝑧) = 𝑧𝑝 + 2 (𝛿 − 𝛾)
∞

∑
𝑛=𝑝+1

(𝑛 − 𝑗)!

𝑛! [𝛼 + (𝑛 − 𝑗) 𝛽]
𝑧𝑛 (17)

is the extreme function of the class R𝑝(𝛼, 𝛽, 𝛾; 𝑗). Thus, we
only need to consider the function𝑓defined by (17); it follows
that

𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
=

𝑝!

(𝑝 − 𝑗)!
+ 2 (𝛿 − 𝛾)

∞

∑
𝑛=2

(−𝑟)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽
𝑧𝑛−1.

(18)

We note that (18) can be written as follows:

𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
=

𝑝!

(𝑝 − 𝑗)!
+

2 (𝛿 − 𝛾)

𝛽
∫
1

0

𝑡(𝛼/𝛽)+𝑝−𝑗
𝑧

1 − 𝑡𝑧
𝑑𝑡.

(19)

Thus, we find from (19) that

R(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
) =

𝑝!

(𝑝 − 𝑗)!
+

2 (𝛿 − 𝛾)

𝛽

× ∫
1

0

𝑡(𝛼/𝛽)+𝑝−𝑗R(
𝑧

1 − 𝑡𝑧
) 𝑑𝑡.

(20)

Moreover, we observe that the function

𝑘 (𝑧) =
𝑧

1 − 𝑡𝑧
(0 ≦ 𝑡 ≦ 1) (21)

is convex in U, 𝑘(𝑧) = 𝑘(𝑧), and 𝑘(𝑧) maps real axis to real
axis; we have

−
𝑟

1 + 𝑡𝑟
≦ R(

𝑧

1 − 𝑡𝑧
) ≦

𝑟

1 − 𝑡𝑟
(|𝑧| ≦ 𝑟 < 1) . (22)

Upon substituting (22) into (20) and expanding the integrand
into the power series of 𝑡 and integrating it, we can easily get
(15). The sharpness of (15) can be seen from (18).

By similarly applying the method of proof of (15), we also
can prove (16) holds true. The sharpness of (16) can be found
in (17).

3. Proof of Theorem 1

Proof. Suppose that 𝑓 ∈ R𝑝(𝛼, 𝛽, 𝛾; 𝑗) with 𝛽 ≧ 𝛼 > 0. It
follows from (7) that

R(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝛽

𝛼

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
) >

𝛾

𝛼
(𝑧 ∈ U) . (23)

By noting that

𝛽

𝛼
(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
)

=
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝛽

𝛼

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
+ (

𝛽

𝛼
− 1)

𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
,

(24)

we get

R(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
) =

𝛼

𝛽
R(

𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝛽

𝛼

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
)

+
𝛽 − 𝛼

𝛽
R(

𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
) .

(25)

Thus, we can easily find from (15), (23), and (25) that

R(
𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1
)

>
𝛾

𝛽
+

𝛽 − 𝛼

𝛽

× (
𝑝!

(𝑝 − 𝑗)!
+ 2 (𝛿 − 𝛾)

∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽
) .

(26)

We now set

𝑓(𝑗) (𝑧)

𝑓(𝑗−1) (𝑧)
= (𝑝 − 𝑗 + 1)

1 + 𝜔 (𝑧)

1 − 𝜔 (𝑧)

(𝑗 ∈ {1, 2, . . . , 𝑝} ; 𝑧 ∈ U) .

(27)
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Then 𝜔 is analytic in U with 𝜔(0) = 0. It follows from (27)
that

𝑓(𝑗) (𝑧)

𝑧𝑝−𝑗
+

𝑓(𝑗+1) (𝑧)

𝑧𝑝−𝑗−1

= (𝑝 − 𝑗 + 1)
𝑓(𝑗−1) (𝑧)

𝑧𝑝−𝑗+1
[(

1 + 𝜔 (𝑧)

1 − 𝜔 (𝑧)
)
2

+
2𝑧𝜔󸀠 (𝑧)

(1 − 𝜔 (𝑧))2
] .

(28)

At the same time, we can claim that |𝜔(𝑧)| < 1. Indeed, if not,
there exists a point 𝑧0 ∈ U such that

max
|𝑧|≦|𝑧0|

|𝜔 (𝑧)| =
󵄨󵄨󵄨󵄨𝜔 (𝑧0)

󵄨󵄨󵄨󵄨 = 1; (29)

by Lemma 4, we obtain

𝑧0𝜔
󸀠 (𝑧0) = 𝑘𝜔 (𝑧0) = 𝑘𝑒𝑖𝜃 (0 < 𝜃 < 2𝜋; 𝑘 ≧ 1) . (30)

For 𝑧 = 𝑧0, by virtue of (28), we split it into two cases to prove
the following.

(1) When 𝑗 = 1, in view of (16), we get

R(
𝑓󸀠 (𝑧0)

𝑧
𝑝−1

0

+
𝑓󸀠󸀠 (𝑧0)

𝑧
𝑝−2

0

)

= 𝑝R(
𝑓 (𝑧0)

𝑧
𝑝

0

[(
1 + 𝑒𝑖𝜃

1 − 𝑒𝑖𝜃
)

2

+
2𝑘𝑒𝑖𝜃

(1 − 𝑒𝑖𝜃)
2
])

≦ −
𝑝𝑘

2sin2 (𝜃/2)
R(

𝑓 (𝑧0)

𝑧
𝑝

0

) ≦ −
𝑝

2
R(

𝑓 (𝑧0)

𝑧
𝑝

0

)

≦ −
𝑝

2
(1 + 2 {𝑝 [𝛼 + (𝑝 − 1) 𝛽] − 𝛾}

×
∞

∑
𝑛=2

(−1)𝑛−1

(𝑛 + 𝑝 − 1) [𝛼 + (𝑛 + 𝑝 − 2) 𝛽]
) .

(31)

Let 𝛽 ≧ 𝛼 > 0. If 𝛾 satisfies the condition

−
𝑝

2
(1 + 2 {𝑝 [𝛼 + (𝑝 − 1) 𝛽] − 𝛾}

×
∞

∑
𝑛=2

(−1)𝑛−1

(𝑛 + 𝑝 − 1) [𝛼 + (𝑛 + 𝑝 − 2) 𝛽]
)

≦
𝛾

𝛽
+

𝛽 − 𝛼

𝛽

× (𝑝 + 2 {𝑝 [𝛼 + (𝑝 − 1) 𝛽] − 𝛾}

×
∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽
) ,

(32)

we have a contradiction to (26) at 𝑧 = 𝑧0; the smallest
𝛾 satisfies (32) is solution 𝛾1 of (9). This implies that
if 𝛽 ≧ 𝛼 > 0 and 𝛾1 ≦ 𝛾 < 𝑝[𝛼 + (𝑝 − 1)𝛽], we have
|𝜔(𝑧)| < 1. Thus, we conclude that 𝑓 ∈ S∗

𝑝
.

(2) When 𝑗 ∈ {2, 3, . . . , 𝑝}, by means of (15), we have

R(
𝑓(𝑗) (𝑧0)

𝑧
𝑝−𝑗

0

+
𝑓(𝑗+1) (𝑧0)

𝑧
𝑝−𝑗−1

0

)

= (𝑝 − 𝑗 + 1)R(
𝑓(𝑗−1) (𝑧0)

𝑧
𝑝−𝑗+1

0

[(
1 + 𝑒𝑖𝜃

1 − 𝑒𝑖𝜃
)

2

+
2𝑘𝑒𝑖𝜃

(1 − 𝑒𝑖𝜃)
2
])

≦ −
(𝑝 − 𝑗 + 1) 𝑘

2sin2 (𝜃/2)
R(

𝑓(𝑗−1) (𝑧0)

𝑧
𝑝−𝑗+1

0

)

≦ −
𝑝 − 𝑗 + 1

2
R(

𝑓(𝑗−1) (𝑧0)

𝑧
𝑝−𝑗+1

0

)

≦ −
𝑝 − 𝑗 + 1

2

× (
𝑝!

(𝑝 − 𝑗 + 1)!
+ 2 (𝛿 − 𝛾)

∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗) 𝛽
) .

(33)

Let 𝛽 ≧ 𝛼 > 0. If 𝛾 satisfies the following inequality,

−
𝑝 − 𝑗 + 1

2

× (
𝑝!

(𝑝 − 𝑗 + 1)!
+ 2 (𝛿 − 𝛾)

∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗) 𝛽
)

≦
𝛾

𝛽
+

𝛽 − 𝛼

𝛽

× (
𝑝!

(𝑝 − 𝑗)!
+ 2 (𝛿 − 𝛾)

∞

∑
𝑛=2

(−1)𝑛−1

𝛼 + (𝑛 + 𝑝 − 𝑗 − 1) 𝛽
) ,

(34)

we have a contradiction to (26) at 𝑧 = 𝑧0; the smallest
𝛾 satisfies (34) is solution 𝛾2 of (10). This shows that
if 𝛽 ≧ 𝛼 > 0 and 𝛾2 ≦ 𝛾 < 𝛿, we have |𝜔(𝑧)| < 1. It
follows from (27) that

R(
𝑧𝑓(𝑗) (𝑧)

𝑓(𝑗−1) (𝑧)
) > 0 (𝑗 ∈ {2, 3, . . . , 𝑝} ; 𝑧 ∈ U) . (35)

Therefore, by Lemma 3, we deduce that

R𝑝 (𝛼, 𝛽, 𝛾; 𝑗) ∈ S
∗

𝑝
(𝑗 − 1) (𝑗 ∈ {2, 3, . . . , 𝑝}) . (36)

The proof of the theorem is thus completed.

Remark 6. If 𝛽 < 𝛼 (𝛼 > 0; 𝛽 > 0), we cannot find the
number 𝛾(𝛼, 𝛽) such that

R𝑝 (𝛼, 𝛽, 𝛾; 𝑗) ∈ S
∗

𝑝
(𝑗 − 1) (𝑗 ∈ {2, 3, . . . , 𝑝}) , (37)

since the continuous linear operators L1(𝑓) and L2(𝑓)
acting onR𝑝(𝛼, 𝛽, 𝛾; 𝑗) do not exist in sharp upper bounds.

Putting 𝑝 = 𝛼 = 1 in the first part of Theorem 1, we can
get the following result.
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Corollary 7. Let 𝛽 ≧ 1. Then R(𝛽, 𝛾) ⊂ S∗ for 𝛾3 ≦ 𝛾 < 1,
where 𝛾3 is the solution of the following equation:

1 −
3

2
𝛽 = 𝛾3 + (1 − 𝛾3)

∞

∑
𝑛=2

(−1)𝑛−1 [𝛽 + 2𝑛 (𝛽 − 1)]

𝑛 [1 + (𝑛 − 1) 𝛽]
. (38)

Remark 8. Corollary 7 corrects some errors of Theorem 4 in
[3].

By setting 𝑝 = 𝛼 = 𝛽 = 1 in the first part ofTheorem 1, we
also can get the following criterion for starlikeness obtained
by Silverman [10].

Corollary 9. Consider R(𝛾) ⊂ S∗ for (6 − 𝜋2)/(24 − 𝜋2) ≦
𝛾 < 1.
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