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We use the reproducing kernel method to solve the well-known classes of Lane-Emden-type equations. These classes of equations
have the form of Lane-Emden problem. Comparing the results of the reproducing kernel method with the analytical solutions by
means of some typical examples, we can affirm that the reproducing kernel method is an efficient and accurate method.

1. Introduction

Let us consider the following Lane-Emden problem:

W)+ S 0+ fw=g(x), xelob],
x @)
u© =21, w0 =21,
where n > 0, g(x) is given bounded, continuous function,
and f(u) is nonlinear function; in [1], we can see that the
most popular form of f(u) is f(u) = u™, where m is a
constant parameter; this type of equation is the Lane-Emden
equations of the first kind; in addition, f(u) can be the
exponential functions f(u) = €"; this type of equations
is called the Lane-Emden equations of the second kind;
furthermore, the function f(u) can be logarithmic functions
and trigonometric functions; all these types of equations are
named after the astrophysicists Jonathan Lane and Robert
Emden; they were the first to study these types of equations.
Lane-Emden equations are widely used in various physical
phenomena. Many scholars [2-5] devote their energies to
this field, with the high development of computer technol-
ogy; lots of numerical methods have been put forward to
solve this type of equation, such as pseudospectral method,
Haar wavelet method, and Adomian decomposition method
(ADM) [6-11].
Reproducing kernel method (RKM) is an attractive
method because of its accuracy, and it has already been

applied to various fields. In this paper, we use the reproducing
kernel method to solve (1) to show the efficiency and accuracy
of this method.

2. The Reproducing Kernel Method

2.1. Practise Homogenization for Lane-Emden Equations. In
order to use reproducing kernel method to solve (1), we need
to practise homogenization for (1); previously, we multiplied
(1) by x; we find that

(Zu) (x) = F(x,u), x€]0,b],

u©) =21, u(0)=2, @
where Zu(x) = xu' (x) + mu'(x), F(x,u) = xg(x) — xf (u).
Obviously, the solution of (2) is the solution of (1). So we
only need to gain the solution of (2). The question (2) with
nonhomogeneous boundary value conditions is equivalent to
the problem of having a function v(x) satisfying

(V) (x) =F(x,v), x¢€]l0,b],

3
v(0) =0, v (0) =0, G)

where F(x,v) = xg(x) —xf(v+ A, +A,x) — A,n.

2.2. Construct Reproducing Kernel Space. Aiming at the
purpose of solving (3), we need to introduce the reproducing
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FIGURE I: Present numerical method for Example 1.

kernel space; previously, let us introduce the concept of the
reproducing kernel space.

For each of x € X, there is a function of two variables
K,.(y) € H, where H is Hilbert space and X is a set
abstraction. If we can get

() K. (y)) =ux), u(y)eH, (4)

we say that H is the reproducing kernel Hilbert space and
K. (y) is the reproducing kernel of H.
We give a linear space W23 [0, b] as follows:

W, [0,b]
! n
= {u | u,u ,u
is one-variable absolutely continuous function,

W € 12[0,b], u(0) = 0, u' (0) = 0}.
(5)

According to [12, 13], we give the inner product as follows:

b
@) o) =" OV O+ [ " ()v" ()dy. (©

And according to [14], we can prove that W23 [0,b] is a
reproducing kernel space; its reproducing kernel R(x, y) is

R(x,y)

% (120 + x° + 120xy
- 5x*y +30x7y* + 10x3y2) , x<y, ()
120 + y° + 10x*y* (3 + y)
—5xy <y3 - 24)),

In order to use reproducing kernel method to solve (3) and
referring to [15, 16], we can get y;(x) as follows:

20
¥y < x.

v; (x)
'<ix(4x(3+x)y
+n(24— X+ 12xy+4x2y))> , X<y,
V=%
= <i (4y (—3xy2 +y 357 (1 +y))
+n(y4+6x2y(2+y)
_ _ 3
wlor))) o res
(8)

wherei=1,2,3,....
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FIGURE 2: Present numerical method for Example 2.
TABLE 1: Numerical solutions for Example 1.
x ur(x) Usg Jtar(x) = usy (x| |1 (x) = gy ()] | (x) — ugy (%)
0.0 1 1 0 0 0.00298864
0.1 0.998337 0.998338 3.37916 x 1077 1.12915% 10~ 3.93668 x 107°
0.2 0.993399 0.9934 3.57116 x 1077 3.49412 x 1077 5.2331x107°
0.3 0.985329 0.98533 420119 x 1077 9.49753 x 1077 8.31208 x 10°°
0.4 0.974355 0.974355 5.53188 x 1077 1.72224 x 107° 1.10979 x 10~°
0.5 0.960769 0.96077 7.64858 x 1077 2.49738 x 1076 1.31351 x 107°
0.6 0.944911 0.944912 1.04891 x 107° 3.16098 x 107° 1.37757 x 107>
0.7 0.927146 0.927147 1.39484 x 10°° 3.77284 x 107° 1.06634 x 10™°
0.8 0.907841 0.907843 1.81934x 107¢ 49052 x 10°° 3.95915 % 107
0.9 0.887357 0.887359 2.455 % 107° 8.51793 x 107° 5.08462 x 107°
1.0 0.866025 0.866029 3.77266 x 107° 1.98432 x 107° 1.76573 x 10~

Then practise Gram-Schmidt orthonormalization for
{y;(x)}:2); according to [17, 18] we get

v, (x) = By (%),

Y, (%) = By (X) + Loy, (),
Y5 (%) = By (X) + By (%) + Basys (%),

Y, (%) = By (%) + By, (x) + By (X) + -+ + By, (%),
9

where f3; are coeflicients of Gram-Schmidt orthonorma-
lization.

If {x;};°, are distinct points dense in [0,b] and Flis
existent, we get that

u(x) = Z ZﬁikF (% V(X)) ¥, (x) + A1 + A,x (10)
i=1 k=1
is the solution of (3). The proof of it refers to [19, 20]. If
the equations are linear ones, F(x,v) = F(x), we can solve
the problems directly. If they are nonlinear equations, we
have to use iteration method to solve them, and the specific
methodology refers to [21, 22].
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FIGURE 3: Present numerical method for Example 3.

TABLE 2: Numerical solutions for Example 2.
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293318 x107°
430454 x 107°
6.15161 x 107°
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266219 x 107*
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x
x up(x) Usy
0.0 1 1
0.1 0.995037 0.99504
0.2 0.980581 0.980585
0.3 0.957826 0.957832
0.4 0.928477 0.928485
0.5 0.894427 0.894438
0.6 0.857493 0.857506
0.7 0.819232 0.819258
0.8 0.780869 0.780948
0.9 0.743294 0.74356
1.0 0.707107 0.707909

8.02319 x 107*

0
1.29666 x 107°
1.58583 x 107
2.06044 x 107°
2.10852 x 107°
2.12716 x 107°
530101 x 107°
2.43656 x 107*
9.70462 x 107*
3.10842 x 107
8.31259 x 107°

0.0112026
1.64099 x 107
1.26869 x 107*
1.3056 x 107*
1.15115x 107*
1.93154 x 10~
7.5356 x 107
3.6414 x 107°
1.22923 x 1072
3.31332 x 1072
7.52151 x 1072

2.3. The Approximate Solution. We denote the approximate
solution of u,,(x) by

u,, (x) = Z Zﬁikﬁ (%o v (%)) ¥ () + A, + Ax. (1)
i=1 k=1

According to the proof of [23] we can easily get that [|lu,,,(x) —
u(x)|| — 0and ugf)(x) - uPx), k=0,1,2.

3. Numerical Experiment

Example 1. Let us talk about the well-known polytropic
differential equation in [3]. Consider
u"+zu'+u5(x) =0, xe€][0,1],

* (12)

u(0) =1, u' (0) =0,
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FIGURE 4: Present numerical method for Example 4.

TABLE 3: Numerical solutions for Example 3.

Exact solution 50-order RKM approximation

100-order RKM approximation

150-order RKM approximation

X
ur(x) Usy(x) U0 (%) Uy50(x)
0.0 0 0 0 0
0.1 0.009 0.00886466 0.00897728 0.00899228
0.2 0.032 0.0318207 0.0319718 0.0319906
0.3 0.063 0.0627957 0.0629686 0.0629896
0.4 0.096 0.0957782 0.0959661 0.0959888
0.5 0.125 0.124764 0.124964 0.124988
0.6 0.144 0.143752 0.143962 0.143987
0.7 0.147 0.146741 0.14696 0.146986
0.8 0.128 0.12773 0.127957 0.127985
09 0.081 0.0807176 0.0809539 0.0809837
1.0 0 —0.000295352 —0.0000496372 —0.0000179019
whose exact solution is given by up(x) = (1 + x2/3)’1/ 2 the exact solution is given by ur(x) = 1/V1 + x?; using the
using the reproducing kernel method, x; = ih, h = 1/N,  reproducing kernel method, x; = ih,h = 1/N,i=1,2,...,N,
i=1,2,...,N,and N = 50. The numerical results are shown and N = 50. The numerical results are shown in Figure 2 and
in Figure 1 and Table 1. Table 2.

Example 2. Considering the following nonlinear equation:

n 1 ! 3 5 _
u (x)+;u (x)—u (x)+3u” (x) =0, xe€]0,1], 13)

u(0) =1, u' (0)=0,

Example 3. Consider a linear Lane-Emden equation:
1
W' () +—u' () +u) =g(x), xel01],
¥ (14)

u(0) =0, u' (0) =0,
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FIGURE 5: Present numerical method for Example 5.

where g(x) = 4 — 9x + x> — x°; using the reproducing kernel
method, x; = ih, h = 1/N,i = 1,2,...,N,and N =
50,100, 150. The exact solution is given by uy(x) = x* — x°.
The numerical results are presented in Figure 3 and Table 3.

Example 4. Consider a Lane-Emden equation of the second
kind in [1]. One has

u” (x) + L x)+e¥ =0, n>0,
x
(15)

u(0) =0, 4 (0) =0,

where n = 0; using the reproducing kernel method, x; = ih,
h=1/N,i=12,...,N,and N = 50. The exact solution is
given by ur(x) = 2Ln(sech(x/ V2)). The numerical results are
presented in Figure 4 and Table 4.

Example 5. Consider a Lane-Emden equation in [3]. One has
2
" (x)+ Zu (%) +4 (Zeu(x) + e“(x)/z) =0, x>0,
¥ (16)
u(0) =0, u' (0) = 0.

Using the reproducing kernel method, x; = ih, h = 1/N,
i=12,...,N,and N = 50. The exact solution is given by

up(x) = -2Ln(1+ x?). The numerical results are presented in
Figure 5 and Table 5.

4. Conclusions and Remarks

In this paper, reproducing kernel method has been used to
solve some typical Lane-Emden examples; the computation
implies that the solutions by the reproducing kernel method
are very accurate. Moreover, the first and second derivatives
of the solutions also have very high accuracy. From all of
this, we can affirm that the reproducing kernel method
is an efficient and accurate method. All computations are
performed by the Mathematica 8.0 software package.
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TABLE 4: Numerical solutions for Example 4.

|tr(x) — 1154 (x)]

[ (x) — ugy (x)|

Jug () — uig ()]

X up(x) Usy

0.0 0 0

0.1 0.00499584 0.00497722
0.2 0.0199337 0.0198951
0.3 0.0446665 0.0446089
0.4 0.0789556 0.0788834
0.5 0.122479 0.122407
0.6 0.174846 0.174807
0.7 0.235604 0.235676
0.8 0.304261 0.304599
0.9 0.380294 0.381194
1.0 0.463163 0.465161

0
1.86175x 10~
3.85998 x 107°
5.76023 x 107°
7.21411 x 107°
7.29154 x 107°
3.90139 x 107°
7.16611 x 107°
3.37896 x 107*
8.99901 x 107*
1.99826 x 10~°

0
2.00342 x 107*
1.97876 x 107*
1.76911 x 10~
9.9302 x 10~°
1.17118 x 10™*
6.28561 x 107*
1.71224 x 1072
3.83982 x 107
7.7914 x 10~
1.48297 x 1072

0.0198013
232373 x107°
1.09236 x 107*
426393 x 107
1.3039x 107°
3.30994 x 107°
7.38437 x 1072
1.50496 x 107>
2.87368 x 1072
5.2279 x 1072
9.16336 x 1072

TABLE 5: Numerical solutions for Example 5.

Exact solution

50-order RKM approximation

The approximation solutions in [3]

up(x) Usy(x) u(x) in [3]

0.0 0 0 0

0.01 —0.0001999900 —0.00019999 —0.0001970587
0.1 —0.0199006617 —0.0199007 —0.0198967225
0.5 —0.4462871026 —0.446287 —0.4462840851
1.0 —1.3862943611 —-1.38629 —1.3862934297
2.0 —3.2188758249 —3.21888 —3.2188763248
3.0 —4.6051701860 —4.60517 —4.6051709964
4.0 —5.6664266881 —5.66643 —5.6664274573
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