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This work deals with Feigenbaum’s functional equation 𝑓(𝜑(𝑥)) = 𝜑
𝑝
(𝑓(𝑥)), 𝜑(0) = 1, 0 ≤ 𝜑(𝑥) ≤ 1, 𝑥 ∈ [0, 1], where 𝑝 ≥ 2

is an integer, 𝜑𝑝 is the 𝑝-fold iteration of 𝜑, and 𝑓(𝑥) is a strictly increasing continuous function on [0, 1] that satisfies 𝑓(0) = 0,
𝑓(𝑥) < 𝑥, (𝑥 ∈ (0, 1]). Using a constructive method, we discuss the existence of non-single-valley continuous solutions of the above
equation.

1. Introduction

In 1978, Feigenbaum [1, 2] and independently Couliet and
Tresser [3] introduced the notion of renormalization for
real dynamical systems. In 1992, Sullivan [4] proved the
uniqueness of the fixed point for the period-doubling renor-
malization operator. This fixed point of renormalization
satisfies a functional equation known as the Cvitanović-
Feigenbaum equation:

𝑔 (𝑥) = −
1

𝜆
𝑔 (𝑔 (−𝜆𝑥)) , 0 < 𝜆 < 1,

𝑔 (0) = 1, −1 ≤ 𝑔 (𝑥) ≤ 1, 𝑥 ∈ [−1, 1] .

(1)

As mentioned above, this equation and its solution play
an important role in the theory initiated by Feigenbaum [1, 2].
However, it is difficult to find an exact solution of the above
equation in general. This problem can be studied in classes
of smooth functions or of continuous functions. In classes
of smooth functions, the existence of smooth solutions for
(1) has been established in [5–8] and references therein. As
far as we know, continuous solutions of (1) in classes of
continuous functions have been relatively little researched.
In this direction, we refer to [9, 10]. In particular, Yang

and Zhang [9] demonstrated the existence of a single-valley
continuous solution for the following equation:

𝜑 (𝑥) =
1

𝜆
𝜑 (𝜑 (𝜆𝑥)) , 0 < 𝜆 < 1,

𝜑 (0) = 1, 0 ≤ 𝜑 (𝑥) ≤ 1, 𝑥 ∈ [0, 1] ,

(2)

which is called the second type of Feigenbaum’s functional
equations. In the last years, a number of authors considered
the more general equation

𝜑 (𝑥) =
1

𝜆
𝜑
𝑝
(𝜆𝑥) , 0 < 𝜆 < 1,

𝜑 (0) = 1, 0 ≤ 𝜑 (𝑥) ≤ 1, 𝑥 ∈ [0, 1] ,

(3)

where 𝑝 ≥ 2 is an integer and 𝜑𝑝 is the 𝑝-fold iteration
of 𝜑. It is easy to see that (2) is a special case of (3). For 𝑝
large enough, Eckmann et al. [11] showed that there exists a
solution of (3) similar to the function 𝜑(𝑥) = |1 − 2𝑥2|. For
any 𝑝 ≥ 2, Zhang et al. [12] and Liao et al. [13] proved that (3)
has single-valley-extended continuous solutions.

In the present paper, we will consider Feigenbaum’s
functional equations

𝑓 (𝜑 (𝑥)) = 𝜑
𝑝
(𝑓 (𝑥)) ,

𝜑 (0) = 1, 0 ≤ 𝜑 (𝑥) ≤ 1, 𝑥 ∈ [0, 1] ,
(4)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 731863, 8 pages
http://dx.doi.org/10.1155/2014/731863

http://dx.doi.org/10.1155/2014/731863


2 Abstract and Applied Analysis

where 𝑓(𝑥) is a strictly increasing continuous function on
[0, 1] that satisfies 𝑓(0) = 0, 𝑓(𝑥) < 𝑥, (𝑥 ∈ (0, 1]).
We will prove the existence of single-valley-extended non-
single-valley continuous solutions of (4) by the constructive
method. Obviously, let 𝑓(𝑥) = 𝜆𝑥; then (4) is (3).

2. Basic Definitions and Lemmas

In this section, we will give some characterizations of single-
valley-extended non-single-valley continuous solutions of
(4); they will be proved in the appendix.

Definition 1. One calls 𝜑 a single-valley-extended continuous
solution of (4) if (i) 𝜑 is a continuous solution of (4); (ii)
there exists 𝛼 ∈ (𝑓(1), 1) such that 𝜑 is strictly decreasing
on [𝑓(1), 𝛼] and strictly increasing on [𝛼, 1].

Definition 2. One calls 𝜑 a single-valley-extended non-
single-valley continuous solution of (4) if (i) 𝜑 is a single-
valley-extended continuous solution of (4); (ii) 𝜑 has at least
an extreme point on (0, 𝑓(1)).

In the following, we always let 𝜆 = 𝑓(1) = 𝜑
𝑝−1
(1) and

define the sets

Δ 𝑘 = [𝑓
𝑘+1

(1) , 𝑓
𝑘
(1)] ,

Δ
1

𝑘
= [𝑓
𝑘
(𝛼) , 𝑓

𝑘
(1)] ,

Δ
2

𝑘
= [𝑓
𝑘+1

(1) , 𝑓
𝑘
(𝛼)] ,

Δ
𝛼

𝑘
= [𝑓
𝑘+1

(𝛼) , 𝑓
𝑘
(𝛼)] ,

∀𝑘 ≥ 0.

(5)

Obviously,

Δ 𝑘 = Δ
1

𝑘
∪ Δ
2

𝑘
, Δ

𝛼

𝑘
= Δ
1

𝑘+1
∪ Δ
2

𝑘
, (6)

and, from the fact that {𝑓𝑘(1)} and {𝑓𝑘(𝛼)} are, respectively,
strictly decreasing and lim𝑘→+∞𝑓

𝑘
(1) = 0, lim𝑘→+∞𝑓

𝑘
(𝛼) =

0, then

[0, 1] =

+∞

⋃

𝑘=0

Δ 𝑘 =

+∞

⋃

𝑘=0

(Δ
1

𝑘
∪ Δ
2

𝑘
) ,

[0, 𝛼] =

+∞

⋃

𝑘=0

Δ
𝛼

𝑘
=

+∞

⋃

𝑘=0

(Δ
1

𝑘+1
∪ Δ
2

𝑘
) .

(7)

Lemma 3. Suppose that 𝜑(𝑥) is a single-valley-extended non-
single-valley continuous solution of (4) and 𝛼 is the extreme
point of 𝜑 in (𝜆, 1). Then the following conclusions hold:

(i) 𝜑(𝑥) has a unique minimum point 𝛼 with 𝜑(𝛼) = 0;
(ii) 0 is a recurrent but not periodic point of 𝜑;
(iii) 𝜆 is an extreme point of 𝜑 and 𝜑(𝜆) > 𝜆;
(iv) 𝜑(𝑥) has a unique fixed point 𝛽 = 𝜑(𝛽) on [0, 1], and

𝜑
𝑝−1

(1) = 𝑓 (1) = 𝜆 < 𝛽 < 𝛼; (8)

(v) for 𝑥 ∈ [0, 𝜆] and 0 ≤ 𝑖 ≤ 𝑝 − 1, then 𝜑𝑖(𝑥) = 𝛼 if and
only if 𝑥 = 𝑓(𝛼) and 𝑖 = 𝑝 − 1.

Lemma 4. Suppose that 𝜑(𝑥) is a single-valley-extended non-
single-valley continuous solution of (4). Let 𝐽 = [0, 𝜆], 𝐽0 =
𝜑(𝐽), and 𝐽𝑖 = 𝜑𝑖(𝐽0); then the following conclusions hold:

(i) 𝐽0, 𝐽1, . . . , 𝐽𝑝−2 ⊂ (𝜆, 1] are pairwise disjoint;

(ii) for all 𝑖 = 0, 1, . . . , 𝑝 − 2, then 𝜑𝑖 : 𝐽0 󳨃→ 𝐽𝑖 is a
homeomorphism.

Lemma 5. Suppose that 𝜑(𝑥) is a single-valley-extended non-
single-valley continuous solution of (4). Then for all 𝑛 ≥ 1,
𝜑 has infinite many extreme points 𝑓𝑛(1) and 𝑓𝑛(𝛼); 𝑓𝑛(1) is
the maximum point of 𝜑 on [𝑓𝑛(𝛼), 𝛼]; 𝑓𝑛(𝛼) is the minimum
point of 𝜑 on [0, 𝑓𝑛(1)].

Lemma 6. Suppose that 𝜑(𝑥) is a single-valley-extended non-
single-valley continuous solution of (4). Then the equation
𝜑
𝑝−1
(𝑥) = 𝑓(𝑥) has only one solution 𝑥 = 1 on (𝜑(𝑓(𝛼)), 1].

Lemma7. Let𝜑1,𝜑2 be two single-valley-extended non-single-
valley continuous solutions of (4). If

𝜑1 (𝑥) = 𝜑2 (𝑥) , 𝑥 ∈ [𝜆, 1] , (9)

then 𝜑1(𝑥) = 𝜑2(𝑥) on [0, 1].

3. Constructive Method of Solutions

In this section, we will prove constructively the existence
of single-valley-extended non-single-valley continuous solu-
tions of (4).

Theorem 8. Fix a strictly increasing continuous function 𝑓(𝑥)
on [0, 1] with 𝑓(0) = 0, 𝑓(𝑥) < 𝑥 (𝑥 ∈ (0, 1]). Denote 𝑓(1) =
𝜆. If 𝜑0(𝑥) is a continuous function on [𝜆, 1] and satisfies the
following conditions,

(i) there exists an 𝛼 ∈ (𝜆, 1) such that 𝜑0(𝛼) = 0 and 𝜑0
is strictly decreasing on [𝜆, 𝛼] and strictly increasing on
[𝛼, 1];

(ii) 𝜑𝑝−1
0
(1) = 𝑓(1) = 𝜆, 𝜑𝑝

0
(𝜆) = 𝑓(𝜑0(1));

(iii) there exists an 𝛼0 ∈ (𝜆, 1] with 𝜑
𝑝−1

0
(𝛼0) = 0, 𝜑0(𝜆) >

𝛼0; denote 𝐽0 = [𝛼0, 1], 𝐽𝑖 = 𝜑𝑖0(𝐽0); then

(a) 𝐽0, 𝐽1, . . . , 𝐽𝑝−2 ⊂ (𝜆, 1] are pairwise disjoint,
(b) for all 𝑖 = 0, 1, . . . , 𝑝 − 2, then 𝜑𝑖

0
: 𝐽0 󳨃→ 𝐽𝑖 is a

homeomorphism,
(c) 𝛼 is an endpoint of 𝐽𝑝−2 and 𝛼 = 𝜑

𝑝−2

0
(𝛼0);

(iv) the equation 𝜑𝑝−1
0
(𝑥) = 𝑓(𝑥) has only one solution 𝑥 =

1 on (𝛼0, 1],

then there exists a uniquely single-valley-extended non-single-
valley continuous function 𝜑(𝑥) satisfying the equation

𝑓 (𝜑 (𝑥)) = 𝜑
𝑝
(𝑓 (𝑥)) , 𝑥 ∈ [0, 1] ,

𝜑 (𝑥) = 𝜑0 (𝑥) , 𝑥 ∈ [𝜆, 1] .
(10)
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And 𝜑 has infinitely many extreme points. Conversely, if 𝜑0 is
the restriction on [𝜆, 1] of a single-valley-extended non-single-
valley continuous solution to (4), then conditions (𝑖)–(𝑖V) above
must hold.

Proof. Suppose that 𝜑0 satisfies conditions (i)–(iv). Define
𝜓+ = 𝜑

𝑝−1

0
|[𝛼0 ,1]

. By condition (iii), we have that 𝜓+ is a ho-
meomorphism. And by 𝜓+(𝛼0) = 𝜑

𝑝−1

0
(𝛼0) = 0 ≤ 𝜓+(1) we

know that 𝜓+ is strictly increasing.
Firstly, we define 𝜑 on Δ 𝑘 by induction. Obviously,

𝜑 = 𝜑0 is well defined on Δ 0. Suppose that 𝜑(𝑥) is well
defined as𝜑𝑘(𝑥) onΔ 𝑘 and strictly increasing and decreasing,
respectively, on Δ1

𝑘
and Δ2

𝑘
for all 𝑘 ≤ 𝑚, where 𝑚 ≥ 0 is a

certain integer. Let

𝜑𝑚+1 (𝑥) = 𝜓
−1

+
(𝑓 (𝜑𝑚 (𝑓

−1
(𝑥)))) , (𝑥 ∈ Δ𝑚+1) ; (11)

then 𝜑(𝑥) is well defined as 𝜑𝑚+1(𝑥) on Δ𝑚+1 and strictly
increasing and decreasing, respectively, on Δ1

𝑚+1
and Δ2

𝑚+1
.

Thereby 𝜑(𝑥) is well defined as a continuous function 𝜑𝑘(𝑥)
on Δ 𝑘 and strictly increasing and decreasing, respectively, on
Δ
1

𝑘
and Δ2

𝑘
for all 𝑘 ≥ 0 by induction. And

𝜓+ (𝜑𝑘+1 (𝑓 (𝑥))) = 𝑓 (𝜑𝑘 (𝑥)) , 𝑥 ∈ Δ 𝑘. (12)

Secondly, we prove that 𝜑𝑘 and 𝜑𝑘+1 have the same value
on the common endpoint𝑓𝑘+1(1) ofΔ 𝑘 andΔ 𝑘+1 for all 𝑘 ≥ 0.
From condition (ii) we have

𝜓+ (𝜑0 (𝜆)) = 𝜑
𝑝−1

0
(𝜑0 (𝜆)) = 𝜑

𝑝

0
(𝜆) = 𝑓 (𝜑0 (1)) . (13)

And letting𝑚 = 0, 𝑥 = 𝜆 in (11) we get

𝜑1 (𝑓 (1)) = 𝜓
−1

+
(𝑓 (𝜑0 (1))) = 𝜑0 (𝜆) = 𝜑0 (𝑓 (1)) . (14)

That is, 𝜑0 and 𝜑1 have the same value on the common
endpoint 𝑓(1) = 𝜆 of Δ 0 and Δ 1. Suppose that

𝜑𝑚 (𝑓
𝑚
(1)) = 𝜑𝑚−1 (𝑓

𝑚
(1)) , (15)

where𝑚 ≥ 1 is a certain integer. Let 𝑥 = 𝑓𝑚+1(1) in (11); then
we have

𝜑𝑚+1 (𝑓
𝑚+1

(1)) = 𝜓
−1

+
(𝑓 (𝜑𝑚 (𝑓

𝑚
(1))))

= 𝜓
−1

+
(𝑓 (𝜑𝑚−1 (𝑓

𝑚
(1))))

= 𝜑𝑚 (𝑓
𝑚+1

(1)) .

(16)

That is, 𝜑𝑘 and 𝜑𝑘+1 have the same value on the common
endpoint 𝑓𝑘+1(1) of Δ 𝑘 and Δ 𝑘+1 for all 𝑘 ≥ 0 by induction.
Therefore, we can let

𝜑 (𝑥) = {
1, (𝑥 = 0) ,

𝜑𝑘 (𝑥) , (𝑥 ∈ Δ 𝑘) .
(17)

Since 𝜑𝑘 is continuous on Δ 𝑘 and increasing and decreasing,
respectively, on Δ1

𝑘
and Δ2

𝑘
for 𝑘 ≥ 0 and (14), (15), and (16),

we have that 𝜑 is a non-single-valley continuous function and
has infinitely many extreme points on (0, 1].

Thirdly, we prove that 𝜑 is continuous at 𝑥 = 0

as follows. It is trivial that {𝑓𝑘(𝛼)} is strictly decreasing
and lim𝑘→∞𝑓

𝑘
(𝛼) = 0. We prove {𝜑𝑘(𝑓

𝑘
(𝛼))}|
∞

𝑘=1
is

strictly increasing on [𝛼0, 1] by induction as follows. Since
𝑓(𝜑1(𝑓(𝛼))) > 0 and from (11), we get

𝜑2 (𝑓
2
(𝛼)) = 𝜓

−1

+
(𝑓 (𝜑1 (𝑓 (𝛼))))

> 𝜓
−1

+
(0) = 𝜓

−1

+
(𝑓 (𝜑0 (𝛼))) = 𝜑1 (𝑓 (𝛼)) .

(18)

Suppose that 𝜑𝑚(𝑓
𝑚
(𝛼)) > 𝜑𝑚−1(𝑓

𝑚−1
(𝛼)), where 𝑚 ≥ 2 is a

certain integer. Therefore, by (11) and the fact that 𝜓−1
+
∘ 𝑓 is

strictly increasing, we have that

𝜑𝑚+1 (𝑓
𝑚+1

(𝛼))

= 𝜓
−1

+
(𝑓 (𝜑𝑚 (𝑓

𝑚
(𝛼))))

> 𝜓
−1

+
(𝑓 (𝜑𝑚−1 (𝑓

𝑚−1
(𝛼)))) = 𝜑𝑚 (𝑓

𝑚
(𝛼)) .

(19)

Thereby, {𝜑𝑘(𝑓
𝑘
(𝛼))}|
∞

𝑘=1
is strictly increasing in [𝛼0, 1] by

induction. Let lim𝑘→∞𝜑𝑘(𝑓
𝑘
(𝛼)) = 𝛾; then 𝛾 ∈ [𝛼0, 1]. From

(12), we have that

𝜑
𝑝−1

0
(𝜑𝑘+1 (𝑓

𝑘+1
(𝛼))) = 𝜓+ (𝜑𝑘+1 (𝑓

𝑘+1
(𝛼)))

= 𝑓 (𝜑𝑘 (𝑓
𝑘
(𝛼))) .

(20)

Let 𝑘 → ∞; we get 𝜑𝑝−1
0
(𝛾) = 𝑓(𝛾). By condition (iv), we

know 𝛾 = 1 = 𝜑(0). This proves that 𝜑 is continuous at 𝑥 = 0.
Thereby, 𝜑 is a continuous function on [0, 1]. We have that
𝜑(𝑥) satisfies (10) by (12) and 𝜑(𝑥) is unique from Lemma 7.

Obviously, if 𝜑0 is the restriction on [𝜆, 1] of a single-
valley-extended non-single-valley continuous solution to
(4), then conditions (i)–(iv) must hold by the lemmas in
Section 2.

Example 9. Let 𝜑0(𝑥) : [1/4, 1] 󳨃→ [0, 1] be defined by

𝜑0 (𝑥) =

{{{

{{{

{

−
13

8
𝑥 +

39

32
, (

1

4
≤ 𝑥 ≤

3

4
) ,

𝑥 −
3

4
, (

3

4
≤ 𝑥 ≤ 1) .

(21)

Obviously, 𝜑0 satisfies the conditions of Theorem 8 with 𝑝 =
2, 𝑓(𝑥) = 𝑥/4, and 𝜆 = 𝑓(1) = 1/4, 𝛼 = 3/4. Hence it is the
restriction to [1/4, 1] of a single-valley-extended continuous
solution 𝜑 to (4). Since 𝜑0 has the minimum point 𝛼 = 3/4

and 𝜑0(1/4) = 13/16 > 3/4, 𝜑 is a single-valley-extended
non-single-valley continuous solution. Its graph is depicted
in Figure 1.

Example 10. Let 𝜑0(𝑥) : [1/5, 1] 󳨃→ [0, 1] be defined by

𝜑0 (𝑥) =

{{{

{{{

{

−
109

25
𝑥 +

218

125
, (

1

5
≤ 𝑥 ≤

2

5
) ,

𝑥 −
2

5
, (

2

5
≤ 𝑥 ≤ 1) .

(22)
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x

𝜙(𝜆)

𝜙(f(𝜆))

𝜙(f(𝛼))

𝜙
(
x
)

𝜙(1)

f(𝛼)f(𝜆)

Non-single-valley solution

1

1

0 𝛼𝜆

Figure 1: The graph of non-single-valley solution.

Obviously, 𝜑0 satisfies the conditions of Theorem 8 with 𝑝 =
3, 𝑓(𝑥) = 𝑥2/5, and 𝜆 = 𝑓(1) = 1/5, 𝛼 = 2/5. Hence it is the
restriction to [1/5, 1] of a single-valley-extended continuous
solution 𝜑 to (4). Since 𝜑0 has the minimum point 𝛼 = 2/5

and 𝜑0(1/5) = 109/125 > 2/5, 𝜑2
0
(1/5) = 59/125 > 2/5,

𝜑 is a single-valley-extended non-single-valley continuous
solution. Its graph is similar to Figure 1.

Appendix

Proof of Lemma 3. (i) Suppose that 𝛾 is a minimum point of
𝜑. By (4) we have

𝑓 (𝜑 (𝛾)) = 𝜑
𝑝
(𝑓 (𝛾)) ≥ 𝜑 (𝛾) . (A.1)

And from 𝑓(0) = 0, 𝑓(𝑥) < 𝑥 (𝑥 ∈ (0, 1]) we know 𝜑(𝛾) = 0.
If 𝛾 < 𝜆, then for all 𝑖 = 1, 2, . . . we have 𝜑𝑖([0, 𝜆]) = [0, 1].
Thus there exists 𝑥0 ∈ [0, 𝜆] such that 𝜑𝑝−1(𝑥0) = 0. And by
(4) we have

𝑓 (𝜑 (𝑓
−1
(𝑥0))) = 𝜑

𝑝
(𝑥0) = 𝜑 (0) = 1. (A.2)

This contradicts 𝑓(0) = 0, 𝑓(𝑥) < 𝑥 (𝑥 ∈ (0, 1]). Thus 𝛾 > 𝜆.
And from the definition of 𝛼 we know 𝛾 = 𝛼 and 𝜑(𝛼) =
𝜑(𝛾) = 0.

(ii) We now prove that, for all 𝑛 ≥ 0 and each 𝑥 ∈ [0, 1],
we have

𝑓
𝑛
(𝜑 (𝑥)) = 𝜑

𝑝
𝑛

(𝑓
𝑛
(𝑥)) . (A.3)

Obviously, (A.3) holds for 𝑛 = 1 by (4). Suppose that (A.3)
holds for 𝑛 ≤ 𝑘, where 𝑘 is a certain integer. Therefore, by
induction and (4), we have that

𝜑
𝑝
𝑘+1

(𝑓
𝑘+1

(𝑥))

= (𝜑
𝑝
𝑘

)
𝑝

(𝑓
𝑘+1

(𝑥)) = (𝜑
𝑝
𝑘

)
𝑝−1

∘ 𝜑
𝑝
𝑘

(𝑓
𝑘+1

(𝑥))

= (𝜑
𝑝
𝑘

)
𝑝−1

(𝑓
𝑘
(𝜑 (𝑓 (𝑥))))

= (𝜑
𝑝
𝑘

)
𝑝−2

∘ 𝜑
𝑝
𝑘

(𝑓
𝑘
(𝜑 (𝑓 (𝑥))))

= (𝜑
𝑝
𝑘

)
𝑝−2

(𝑓
𝑘
(𝜑
2
(𝑓 (𝑥)))) = ⋅ ⋅ ⋅

= (𝜑
𝑝
𝑘

)
𝑝−𝑖

(𝑓
𝑘
(𝜑
𝑖
(𝑓 (𝑥)))) = ⋅ ⋅ ⋅

= 𝑓
𝑘
(𝜑
𝑝
(𝑓 (𝑥))) = 𝑓

𝑘
(𝑓 (𝜑 (𝑥))) = 𝑓

𝑘+1
(𝜑 (𝑥)) ;

(A.4)

that is, (A.3) holds for 𝑛 = 𝑘 + 1. Thereby, (A.3) is proved by
induction. Let 𝑥 = 0 in (A.3); we have that

𝑓
𝑛
(1) = 𝑓

𝑛
(𝜑 (0)) = 𝜑

𝑝
𝑛

(𝑓
𝑛
(0)) = 𝜑

𝑝
𝑛

(0) . (A.5)

And it is trivial that {𝑓𝑛(1)} is strictly decreasing and
lim𝑛→+∞𝑓

𝑛
(1) = 0. Thereby, we have that

lim
𝑛→+∞

𝜑
𝑝
𝑛

(0) = lim
𝑛→+∞

𝑓
𝑛
(1) = 0; (A.6)

that is, we proved that 0 is a recurrent but not periodic point
of 𝜑.

(iii) Firstly, we prove that𝜆 is an extreme point of𝜑. By the
fact that 𝜑 is strictly increasing on [𝛼, 1] and (4), we have that
𝜑
𝑝 is strictly increasing in [𝑓(𝛼), 𝑓(1)]. Thereby 𝜑 is strictly

monotone in [𝑓(𝛼), 𝑓(1)]. Suppose that 𝜆 is not an extreme
point; then 𝜑 is strictly decreasing on [𝑓(𝛼), 𝛼]. We prove 𝜑
is strictly decreasing on Δ𝛼

𝑘
(𝑘 ≥ 0), respectively, as follows.

Obviously, 𝜑 is strictly decreasing on Δ𝛼
0
. Suppose that 𝜑

is strictly decreasing on Δ𝛼
𝑘
for all 𝑘 ≤ 𝑚, where 𝑚 ≥ 0 is a

certain integer. By (4), we have that 𝜑𝑝 is strictly decreasing
on Δ𝛼
𝑚+1

. Thereby 𝜑 is strictly monotone on Δ𝛼
𝑚+1

. Suppose
that 𝜑 is strictly increasing on Δ𝛼

𝑚+1
; then we claim that

𝜑 (𝑓
𝑛
(𝛼)) < 𝜑 (𝑓

𝑚+1
(𝛼)) , ∀𝑛 ≥ 𝑚 + 2. (A.7)

We first prove that

𝜑 (𝑓
𝑠
(𝛼)) ̸= 𝜑 (𝑓

𝑙
(𝛼)) , ∀𝑠 ̸= 𝑙. (A.8)

Suppose that there exists 𝑠 ̸= 𝑙 such that𝜑(𝑓𝑠(𝛼)) = 𝜑(𝑓𝑙(𝛼)) =
𝛿. And from (A.3) we get

𝜑
𝑝
𝑠
−1
(𝛿) = 𝜑

𝑝
𝑠

(𝑓
𝑠
(𝛼)) = 𝑓

𝑠
(𝜑 (𝛼)) = 𝑓

𝑠
(0) = 0. (A.9)

Similarly, we have 𝜑𝑝
𝑙
−1
(𝛿) = 0. If 𝑠 > 𝑙, then

0 = 𝜑
𝑝
𝑠
−1
(𝛿) = 𝜑

(𝑝
𝑠
−𝑝
𝑙
)+(𝑝
𝑙
−1)
(𝛿) = 𝜑

(𝑝
𝑠
−𝑝
𝑙
)
(0) . (A.10)
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This contradicts that 0 is not a periodic point. That is,
we proved (A.8). Thereby, we have 𝜑(𝑓𝑛(𝛼)) ̸= 𝜑(𝑓

𝑚+1
(𝛼)),

∀𝑛 ≥ 𝑚 + 2. And from the fact that 𝜑 is strictly increasing
on Δ𝛼
𝑚+1

, we get 𝜑(𝑓𝑚+2(𝛼)) < 𝜑(𝑓
𝑚+1

(𝛼)). Suppose that
𝜑(𝑓
𝑛
(𝛼)) < 𝜑(𝑓

𝑚+1
(𝛼)), where 𝑛 ≥ 𝑚 + 2 is a certain integer.

If 𝜑(𝑓𝑛+1(𝛼)) > 𝜑(𝑓𝑚+1(𝛼)) > 𝜑(𝑓𝑛(𝛼)), and by the fact that
𝜑
𝑝
𝑚+1
−1 is strictlymonotone on𝜑([𝑓𝑛+1(𝛼), 𝑓𝑛(𝛼)]) and (A.3),

we get

𝜑
𝑝
𝑚+1
−1
(𝜑 (𝑓

𝑛+1
(𝛼)))

< 𝜑
𝑝
𝑚+1
−1
(𝜑 (𝑓

𝑚+1
(𝛼)))

= 𝜑
𝑝
𝑚+1

(𝑓
𝑚+1

(𝛼)) = 𝑓
𝑚+1

(0) = 0,

(A.11)

or

𝜑
𝑝
𝑚+1
−1
(𝜑 (𝑓
𝑛
(𝛼)))

< 𝜑
𝑝
𝑚+1
−1
(𝜑 (𝑓

𝑚+1
(𝛼)))

= 𝜑
𝑝
𝑚+1

(𝑓
𝑚+1

(𝛼)) = 𝑓
𝑚+1

(0) = 0.

(A.12)

This contradicts that 𝜑𝑝
𝑚+1
−1
(𝑥) ≥ 0. That is, 𝜑(𝑓𝑛+1(𝛼)) <

𝜑(𝑓
𝑚+1

(𝛼)). Thereby, we proved (A.7) by induction. If
𝜑(𝑓
𝑚+1

(𝛼)) = 1, then by (A.3) we have

𝜑
𝑝
𝑚+1

(1) = 𝜑
𝑝
𝑚+1

(𝜑 (𝑓
𝑚+1

(𝛼))) = 𝜑 (𝜑
𝑝
𝑚+1

(𝑓
𝑚+1

(𝛼)))

= 𝜑 (𝑓
𝑚+1

(𝜑 (𝛼))) = 𝜑 (0) = 1.

(A.13)

This contradicts conclusion (ii). Thereby, we get 𝜑(𝑓𝑛(𝛼)) <
𝜑(𝑓
𝑚+1

(𝛼)) < 1, ∀𝑛 ≥ 𝑚 + 2. This contradicts that 𝜑(0) =
1. Thereby, 𝜑 is strictly decreasing on Δ𝛼

𝑚+1
. Furthermore,

we proved that 𝜑 is strictly decreasing on Δ
𝛼

𝑘
(𝑘 ≥ 0),

respectively, by induction; that is, 𝜑 is single-valley solution
of (4). This contradicts the condition that 𝜑 is a non-single-
valley solution of (4). That is, we proved that 𝜆 is an extreme
point of 𝜑.

Secondly, we prove that 𝜑(𝜆) > 𝜆. We claim that

𝜑 (𝑓
𝑛
(1)) ̸= 𝜆, 𝜑 (𝑓

𝑛
(𝛼)) ̸= 𝜆, ∀𝑛 ≥ 1. (A.14)

Suppose that 𝜑(𝑓𝑛(1)) = 𝜆; by (A.5) we get 𝜑(𝑓𝑛(1)) =

𝜑
𝑝
𝑛
+1
(0). And from 𝜑

𝑝
(0) = 𝜆, we have that 𝜑𝑝(0) = 𝜑𝑝

𝑛
+1
(0).

Let

𝐿 = {0, 𝜑 (0) , . . . , 𝜑
𝑝
(0) , 𝜑

𝑝+1
(0) , . . . , 𝜑

𝑝
𝑛

(0)} ; (A.15)

obviously, 𝐿 is a limited set and 𝜑
𝑖
(0) ∈ 𝐿, ∀𝑖 ∈ 𝑍

+.
By (A.5), we have that 𝑓𝑖(1) = 𝜑

𝑝
𝑖

(0) ∈ 𝐿, ∀𝑖 ∈ 𝑍
+.

This contradicts that 𝐿 is limited. Thereby, we proved that
𝜑(𝑓
𝑛
(1)) ̸= 𝜆. Suppose that 𝜑(𝑓𝑛(𝛼)) = 𝜆; from (A.3), we have

0 = 𝑓
𝑛
(𝜑 (𝛼)) = 𝜑

𝑝
𝑛

(𝑓
𝑛
(𝛼))

= 𝜑
𝑝
𝑛
−1
(𝜆) = 𝜑

𝑝
𝑛
+𝑝−1

(0) .

(A.16)

This contradicts that 0 is not a periodic point of 𝜑. That is,
(A.14) holds. Suppose that 𝜑(𝜆) < 𝜆. Since 𝜆 is an extreme
point of 𝜑, we have that 𝜑 is strictly increasing on [𝑓(𝛼), 𝜆].
Furthermore, we have 𝜑(𝑓(𝛼)) < 𝜑(𝜆) < 𝜆. We claim that

𝜑 (𝑓
𝑛
(1)) < 𝜆, 𝜑 (𝑓

𝑛
(𝛼)) < 𝜆, ∀𝑛 ≥ 1. (A.17)

It is trivial that (A.17) holds for 𝑛 = 1. Suppose that (A.17)
holds for 𝑛 = 𝑚, where 𝑚 is a certain integer. By (A.3),
we know 𝜑

𝑝
𝑚

is strictly monotone on [𝑓𝑚+1(1), 𝑓𝑚(𝛼)]. If
𝜑(𝑓
𝑚+1

(1)) > 𝜆, then there exists 𝑥0 ∈ (𝑓
𝑚+1

(1), 𝑓
𝑚
(𝛼))

such that 𝜑(𝑥0) = 𝜆. Thus, 𝑥0 is an extreme point of
𝜑
2 on (𝑓

𝑚+1
(1), 𝑓
𝑚
(𝛼)). That is, 𝜑2 is not monotone on

[𝑓
𝑚+1

(1), 𝑓
𝑚
(𝛼)]. Furthermore, 𝜑𝑝

𝑚

is not monotone on
[𝑓
𝑚+1

(1), 𝑓
𝑚
(𝛼)]. This contradicts that 𝜑𝑝

𝑚

is monotone on
[𝑓
𝑚+1

(1), 𝑓
𝑚
(𝛼)]. Thus 𝜑(𝑓𝑚+1(1)) < 𝜆. Similarly, we have

𝜑(𝑓
𝑚+1

(𝛼)) < 𝜆. That is, (A.17) holds for 𝑛 = 𝑚 + 1. Thereby,
(A.17) holds by induction. This contradicts that 𝜑(0) = 1.
Thus 𝜑(𝜆) > 𝜆.

(iv) Firstly, suppose that 𝑞 is a fixed point of 𝜑; then by
(A.5), we have 𝑞 ̸= 1. And by 𝜑(𝛼) = 0, we have 𝑞 ̸= 𝛼. If 𝑞 ∈
(𝛼, 1), then 𝑞 = 𝜑(𝑞) < 𝜑(1). And by induction, for all𝑚 ≥ 0,
we have 𝑞 = 𝜑𝑚(𝑞) < 𝜑𝑚(1). Specially,

𝑞 = 𝜑
𝑝
𝑛
−1
(𝑞) < 𝜑

𝑝
𝑛
−1
(1) = 𝜑

𝑝
𝑛
−1
(𝜑 (0)) = 𝜑

𝑝
𝑛

(0) . (A.18)

This contradicts (A.5). Thereby, 𝑞 < 𝛼.
Secondly, there exists at least one fixed point 𝛽 ∈ (0, 𝛼) by

𝜑(0) = 1, 𝜑(𝛼) = 0. We prove 𝛽 is the unique fixed point as
follows. We claim that

𝛽 ∉ (𝑓
𝑛+1

(1) , 𝑓
𝑛
(1)] , ∀𝑛 ≥ 1. (A.19)

Suppose that there exists𝑚 ≥ 1 such that𝛽 ∈ [𝑓𝑚(𝛼), 𝑓𝑚(1)];
then by (A.3), we have

𝑓
𝑚
(𝜑 (𝑓
−𝑚
(𝛽))) = 𝜑

𝑝
𝑚

(𝑓
𝑚
(𝑓
−𝑚
(𝛽))) = 𝜑

𝑝
𝑚

(𝛽) = 𝛽;

(A.20)

that is, 𝜑(𝑓−𝑚(𝛽)) = 𝑓−𝑚(𝛽). And from 𝑓
−𝑚
(𝛽) ∈ [𝛼, 1], this

contradicts that 𝜑 does not have a fixed point on [𝛼, 1]. Thus,
we have 𝛽 ∉ [𝑓𝑛(𝛼), 𝑓𝑛(1)], ∀𝑛 ≥ 1. Suppose that there exists
𝑚 ≥ 1 such that 𝛽 ∈ (𝑓𝑚+1(1), 𝑓𝑚(𝛼)); then by (A.3), we have

𝑓
𝑚−1

(𝜑 (𝑓
1−𝑚

(𝛽))) = 𝜑
𝑝
𝑚
−1
(𝑓
𝑚−1

(𝑓
1−𝑚

(𝛽)))

= 𝜑
𝑝
𝑚
−1
(𝛽) = 𝛽.

(A.21)

Thereby, 𝜑(𝑓1−𝑚(𝛽)) = 𝑓
1−𝑚

(𝛽). That is, 𝑓1−𝑚(𝛽) ∈ (𝑓2(1),
𝑓(𝛼)) is a fixed point of 𝜑. Since 𝜑 has no fixed point
on [𝑓(𝛼), 𝑓(1)] and 𝜑(𝜆) > 𝜆, we have that 𝜑 must be
strictly increasing on [𝑓2(1), 𝑓(𝛼)]. And 𝜑 has the fixed point
𝑓
1−𝑚

(𝛽) ∈ (𝑓
2
(1), 𝑓(𝛼)); thus 𝜑𝑝 is strictly increasing on

[𝑓
2
(1), 𝑓(𝛼)]. But by (4) and the fact that 𝜑 is decreasing on

[𝜆, 𝛼], we have that 𝜑𝑝 is strictly decreasing on [𝑓2(1), 𝑓(𝛼)].
This contradicts. Thus, we have 𝛽 ∉ [𝑓𝑛+1(1), 𝑓𝑛(𝛼)], ∀𝑛 ≥ 1.
Thereby, we prove (A.19).Thus, we have 𝛽 ∈ (𝜆, 𝛼). And since
𝜑 is decreasing on [𝜆, 𝛼], we have that 𝛽 ∈ (𝜆, 𝛼) is the unique
fixed point.
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(v) By (4), we have 0 = 𝑓(𝜑(𝛼)) = 𝜑
𝑝
(𝑓(𝛼)). And

since 𝛼 is the unique minimum point of 𝜑, it follows that
𝜑
𝑝−1
(𝑓(𝛼)) = 𝛼. Thus the sufficiency is proved.
We prove the necessity as follows. Suppose that 𝜑𝑖(𝑥) = 𝛼

for some 𝑥 ∈ [0, 𝜆] and 0 ≤ 𝑖 ≤ 𝑝 − 1. Firstly, we claim that

𝑥 ∉ (𝑓
𝑛+1

(1) , 𝑓
𝑛
(𝛼)) ∪ (𝑓

𝑛
(𝛼) , 𝑓

𝑛
(1)) , ∀𝑛 ≥ 1.

(A.22)

Suppose that 𝑥 ∈ (𝑓
𝑛
(𝛼), 𝑓

𝑛
(1)); then 𝜑𝑖+1 is not mono-

tone on (𝑓
𝑛
(𝛼), 𝑓

𝑛
(1)). Thereby, 𝜑𝑝 is not monotone on

(𝑓
𝑛
(𝛼), 𝑓

𝑛
(1)). This contradicts that 𝜑𝑝 is monotone on

(𝑓
𝑛
(𝛼), 𝑓

𝑛
(1)) by (A.3). Thus 𝑥 ∉ (𝑓

𝑛
(𝛼), 𝑓

𝑛
(1)). We have

similarly that 𝑥 ∉ (𝑓𝑛+1(1), 𝑓𝑛(𝛼)). Thereby we prove (A.22);
that is, 𝑥 = 𝑓𝑛(1) or 𝑥 = 𝑓𝑛(𝛼), ∀𝑛 ≥ 1.

Secondly, we prove that

𝑥 ̸= 𝑓
𝑛
(1) , 𝑥 ̸= 𝑓

𝑛+1
(𝛼) , ∀𝑛 ≥ 1. (A.23)

Suppose that 𝑥 = 𝑓
𝑛
(1) for some 𝑛 ≥ 1; then 𝜑𝑖(𝑓𝑛(1)) =

𝛼. And from (A.5), we have 𝛼 = 𝜑
𝑖
(𝑓
𝑛
(1)) = 𝜑

𝑖
(𝜑
𝑝
𝑛

(0)) =

𝜑
𝑖+𝑝
𝑛

(0). This contradicts that 0 is not a periodic point of 𝜑.
Thus we prove 𝑥 ̸= 𝑓

𝑛
(1), ∀𝑛 ≥ 1. Suppose that 𝑥 = 𝑓𝑛(𝛼) for

some 𝑛 ≥ 2; then 𝜑𝑖(𝑓𝑛(𝛼)) = 𝛼. And from (A.3), we have

𝜑
𝑖
(0) = 𝜑

𝑖
(𝜑
𝑝
𝑛

(𝑓
𝑛
(𝛼))) = 𝜑

𝑝
𝑛

(𝜑
𝑖
(𝑓
𝑛
(𝛼)))

= 𝜑
𝑝
𝑛

(𝛼) = 𝜑
𝑝
𝑛
−1
(0) .

(A.24)

This contradicts that 0 is a recurrent point of𝜑.Thuswe prove
𝑥 ̸= 𝑓
𝑛
(𝛼), ∀𝑛 ≥ 2. Thereby (A.23) holds. That is, we get 𝑥 =

𝑓(𝛼) and 𝜑𝑖(𝑓(𝛼)) = 𝛼.
Lastly, we prove 𝑖 = 𝑝 − 1. Suppose that there exists

𝑗 ̸= 𝑖, 0 ≤ 𝑗 ≤ 𝑝 − 1, such that 𝜑𝑗(𝑓(𝛼)) = 𝛼. Then we can
suppose that 𝑗 < 𝑖 and

0 = 𝜑
𝑖+1
(𝑓 (𝛼)) = 𝜑

𝑖−𝑗
(𝜑
𝑗+1
(𝑓 (𝛼))) = 𝜑

𝑖−𝑗
(0) . (A.25)

This contradicts that 0 is not a periodic point of 𝜑. Thus we
prove 𝜑𝑗(𝑓(𝛼)) ̸= 𝛼, ∀𝑗 ̸= 𝑖. Thereby we have 𝑖 = 𝑝 − 1 and
𝑥 = 𝑓(𝛼).

Proof of Lemma 4. (i) Firstly, we prove that, for all 𝑖 =

0, 1, . . . , 𝑝 − 2, we have 𝐽𝑖 ⊂ (𝜆, 1]; that is, 𝐽𝑖 ∩ 𝐽 = 0. We
claim that

𝜑
𝑖+1
(𝑓 (𝛼)) > 𝜆, ∀0 ≤ 𝑖 ≤ 𝑝 − 2. (A.26)

Suppose that there exists 1 ≤ 𝑗 ≤ 𝑝 − 1 such that 𝜑𝑗(𝑓(𝛼)) =
𝑥 ≤ 𝜆. And from Lemma 3(v) we have 𝛼 = 𝜑

𝑝−1
(𝑓(𝛼)) =

𝜑
𝑝−1−𝑗

(𝜑
𝑗
(𝑓(𝛼))) = 𝜑

𝑝−1−𝑗
(𝑥). This contradicts Lemma 3(v).

Thus (A.26) holds. We claim that

𝜑
𝑖+1
(𝜆) > 𝜆, ∀0 ≤ 𝑖 ≤ 𝑝 − 2. (A.27)

It is trivial that 𝜑𝑖+1(𝜆) ̸= 𝜆 by 0 is a recurrent point of
𝜑. Suppose that there exists 1 ≤ 𝑗 ≤ 𝑝 − 1 such that
𝜑
𝑗
(𝜆) < 𝜆. And from 𝜑

𝑗
(𝑓(𝛼)) > 𝜆 we have that there exists

𝑥 ∈ (𝑓(𝛼), 𝑓(1)) such that 𝜑𝑗(𝑥) = 𝜆. And from the fact that
𝜆 is an extreme point of 𝜑, we get that 𝜑𝑗+1 is not monotone
on [𝑓(𝛼), 𝑓(1)]. This contradicts that 𝜑𝑝 is strictly monotone
on [𝑓(𝛼), 𝑓(1)]. Thus, (A.27) holds. We claim that

𝜑
𝑖+1
(𝑥) > 𝜆, ∀0 ≤ 𝑖 ≤ 𝑝 − 2, 𝑥 ∈ [0, 𝜆] . (A.28)

Suppose that there exists 𝑥 ∈ [0, 𝜆) and 1 ≤ 𝑗 ≤ 𝑝 − 1 such
that 𝜑𝑗(𝑥) = 𝜆. And from (4) we get 𝜑𝑝−𝑗(𝜆) = 𝜑

𝑝
(𝑥) =

𝑓(𝜑(𝑓
−1
(𝑥))) ≤ 𝑓(1) = 𝜆. This contradicts (A.27). Thus

𝜑
𝑖+1
(𝑥) ̸= 𝜆, ∀0 ≤ 𝑖 ≤ 𝑝 − 2, 𝑥 ∈ [0, 𝜆]. Suppose that there

exists 𝑥 ∈ [0, 𝜆) and 1 ≤ 𝑗 ≤ 𝑝 − 1 such that 𝜑𝑗(𝑥) < 𝜆.
And from (A.27) we have that there exists 𝑧 ∈ (𝑥, 𝜆) such
that 𝜑𝑗(𝑧) = 𝜆. And from (4) we get 𝜑𝑝−𝑗(𝜆) = 𝜑

𝑝
(𝑧) =

𝑓(𝜑(𝑓
−1
(𝑧))) ≤ 𝑓(1) = 𝜆. This contradicts (A.27). Thus

(A.28) holds. That is, 𝐽𝑖 ∩ 𝐽 = 0.
Secondly, we prove that 𝐽𝑖, ∀0 ≤ 𝑖 ≤ 𝑝 − 2, are pairwise

disjoint. Suppose that there exists 0 ≤ 𝑖 < 𝑗 ≤ 𝑝− 2, such that
𝐽𝑖 ∩ 𝐽𝑗 = 𝐽𝑖𝑗 ̸= 0. Let 𝑦 ∈ 𝐽𝑖𝑗; then there exist 𝑥𝑖 ∈ [0, 𝜆], 𝑥𝑗 ∈
[0, 𝜆], such that 𝜑𝑖+1(𝑥𝑖) = 𝑦 = 𝜑

𝑗+1
(𝑥𝑗). Thereby we have

𝜑
𝑝−𝑗+𝑖

(𝑥𝑖) = 𝜑
𝑝−1−𝑗

(𝜑
𝑖+1
(𝑥𝑖)) = 𝜑

𝑝−1−𝑗
(𝜑
𝑗+1
(𝑥𝑗)) = 𝜑

𝑝
(𝑥𝑗) =

𝑓(𝜑(𝑓
−1
(𝑥𝑗))) ≤ 𝑓(1) = 𝜆. This contradicts 𝐽𝑖 ⊂ (𝜆, 1]. Thus

we proved that 𝐽0, 𝐽1, . . . , 𝐽𝑝−2 are pairwise disjoint.
(ii) For all 𝑖 = 0, 1, . . . , 𝑝 − 2, then 𝜑𝑖+1 : 𝐽 󳨃→ 𝐽𝑖 is a

homeomorphismby Lemmas 3(i) and 3(v).Thereby𝜑𝑖 : 𝐽0 󳨃→
𝐽𝑖 is also a homeomorphism.

Proof of Lemma 5. 𝜆 is a maximum point of 𝜑 on [𝑓(𝛼), 𝛼]
by Lemma 3(iii). Suppose that 𝑓𝑚(1) is the maximum point
of 𝜑 on [𝑓𝑚(𝛼), 𝛼], where 𝑚 is some certain integer. Firstly,
we prove 𝑓𝑚(𝛼) is an extreme point of 𝜑. If otherwise, 𝜑 is
strictly increasing on [𝑓𝑚+1(1), 𝑓𝑚(𝛼)]. Thus 𝜑(𝑓𝑚+1(1)) <
𝜑(𝑓
𝑚
(𝛼)) and 𝜑 is strictly increasing on Δ𝑚. We claim that 𝜑

is strictly increasing on Δ 𝑘 for all 𝑘 ≥ 𝑚. It holds obviously
when 𝑘 = 𝑚. Suppose that 𝜑 is strictly increasing on Δ 𝑘 for
all 𝑚 ≤ 𝑘 ≤ 𝑙, where 𝑙 is some certain integer. 𝜑𝑝 is strictly
increasing on Δ 𝑙+1 by (4). Thereby 𝜑 is strictly monotone on
Δ 𝑙+1. If 𝜑 is strictly decreasing on Δ 𝑙+1, then we claim that

𝜑 (𝑓
𝑠
(1)) < 𝜑 (𝑓

𝑙
(𝛼)) , ∀𝑠 ≥ 𝑙 + 1. (A.29)

Its proof is similar to (A.7) and we omit it here. Thereby
𝜑(𝑓
𝑠
(1)) < 𝜑(𝑓

𝑙
(𝛼)) < 1, ∀𝑠 ≥ 𝑙 + 1. This contradicts

𝜑(0) = 1. Thus 𝜑 is strictly increasing on Δ 𝑙+1. Thereby 𝜑 is
strictly increasing on [0, 𝑓𝑚(1)] by induction. Furthermore
𝜑(0) < 𝜑(𝑓

𝑚
(1)) < 1. This contradicts 𝜑(0) = 1. Thus 𝑓𝑚(𝛼)

is an extreme point of 𝜑.
Secondly, we prove 𝑓𝑚(𝛼) is the minimum point of 𝜑 on

[0, 𝑓
𝑚
(1)]. Suppose that there exists 𝑙 ≥ 𝑚 + 1 such that

𝜑(𝑓
𝑙
(𝛼)) < 𝜑(𝑓

𝑚
(𝛼)) or 𝜑(𝑓𝑙(1)) < 𝜑(𝑓𝑚(𝛼)); then we claim

that

𝜑 (𝑓
𝑠
(𝛼)) < 𝜑 (𝑓

𝑚
(𝛼)) , ∀𝑠 ≥ 𝑙, (A.30)

or

𝜑 (𝑓
𝑠
(1)) < 𝜑 (𝑓

𝑚
(𝛼)) , ∀𝑠 ≥ 𝑙. (A.31)
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The proof is similar to (A.7) and we omit it here. Thereby
𝜑(0) < 𝜑(𝑓

𝑚
(𝛼)) < 1. This contradicts 𝜑(0) = 1. Thus 𝑓𝑚(𝛼)

is the minimum point of 𝜑 on [0, 𝑓𝑚(1)].
Thirdly, we prove 𝑓𝑚+1(1) is an extreme point of 𝜑.

𝜑
𝑝−1 is strictly increasing on [𝜑(𝑓𝑚(𝛼)), 𝜑(𝑓𝑚+1(1))] by (4)

and 𝜑 is strictly decreasing on [𝑓𝑚+1(1), 𝑓𝑚(𝛼)]. And from
Lemma 4(ii) we have that 𝜑𝑝−1 is strictly increasing on 𝐽0 =
[𝜑(𝑓(𝛼)), 1]. Suppose that 𝑓𝑚+1(1) is not an extreme point
of 𝜑; then 𝜑 is strictly decreasing on [𝑓

𝑚+1
(𝛼), 𝑓

𝑚+1
(1)].

And from (4) and the fact that 𝜑 is strictly increasing
on [𝑓

𝑚
(𝛼), 𝑓

𝑚
(1)], we get that 𝜑𝑝 is strictly increasing

on [𝑓
𝑚+1

(𝛼), 𝑓
𝑚+1

(1)]. Thereby 𝜑𝑝−1 is strictly decreasing
on [𝜑(𝑓

𝑚+1
(1)), 𝜑(𝑓

𝑚+1
(𝛼))]. This contradicts that 𝜑𝑝−1 is

strictly increasing on 𝐽0 = [𝜑(𝑓(𝛼)), 1]. Thus 𝑓𝑚+1(1) is the
extreme point of 𝜑.

Lastly, we have that 𝑓𝑚+1(1) is the maximum point of 𝜑
on [𝑓𝑚+1(𝛼), 𝛼]. The proof is similar to 𝑓𝑚(𝛼) and we omit it
here. Thereby 𝑓𝑛(1) is the maximum point of 𝜑 on [𝑓𝑛(𝛼), 𝛼]
and 𝑓𝑛(𝛼) is the minimum point of 𝜑 on [0, 𝑓𝑛(1)] for all 𝑛 ≥
1 by induction.

Proof of Lemma 6. It is trivial that 𝑥 = 1 is a solution of the
equation 𝜑𝑝−1(𝑥) = 𝑓(𝑥) by (4). Suppose that 𝑥 = 𝑥0 ∈

(𝜑(𝑓(𝛼)), 1] is an arbitrary solution of this equation; that is,
𝜑
𝑝−1
(𝑥0) = 𝑓(𝑥0). Since 𝜑([0, 𝑓(𝛼)]) = [𝜑(𝑓(𝛼)), 1], we have

that there exists 𝑦 ∈ [0, 𝑓(𝛼)], such that 𝜑(𝑦) = 𝑥0. We claim
that

𝜑 (𝑓
𝑛
(𝑦)) = 𝑥0, ∀𝑛 ≥ 0. (A.32)

Obviously, (A.32) holds for 𝑛 = 0. Suppose that (A.32) holds
for 𝑛 = 𝑘, where 𝑘 ≥ 0 is a certain integer. Therefore, by (4)
we have that

𝜑
𝑝−1

(𝜑 (𝑓
𝑘+1

(𝑦))) = 𝑓 (𝜑 (𝑓
𝑘
(𝑦))) = 𝑓 (𝑥0) = 𝜑

𝑝−1
(𝑥0) .

(A.33)

Since𝑓𝑘+1(𝑦) ∈ [0, 𝑓(𝛼)), we have 𝜑(𝑓𝑘+1(𝑦)) ∈ (𝜑(𝑓(𝛼)), 1].
And since 𝜑

𝑝−1 is strictly increasing on [𝜑(𝑓(𝛼)), 1] by
𝜑(𝑓(𝛼)) > 𝛼, we have 𝜑(𝑓𝑘+1(𝑦)) = 𝑥0. That is, (A.32) holds
for 𝑛 = 𝑘 + 1. Thereby, (A.32) is proved by induction. By the
fact that {𝑓𝑛(𝑦)} is strictly decreasing and lim𝑛→∞𝑓

𝑛
(𝑦) = 0,

we have 𝑥0 = lim𝑛→+∞𝜑(𝑓
𝑛
(𝑦)) = 𝜑(0) = 1.

Proof of Lemma 7. There exist 𝛼 ∈ (𝜆, 1), 𝛽 ∈ (𝜆, 1) such that
𝜑𝑖(𝛼) = 0, 𝜑𝑖(𝛽) = 𝛽 (𝑖 = 1, 2) by (8). Denote 𝜑0(𝑥) = 𝜑1(𝑥) =
𝜑2(𝑥) (𝑥 ∈ [𝜆, 1]) and 𝛼1 = 𝜑1(𝑓(𝛼)) < 𝜑1(𝜆) = 𝜑0(𝜆), 𝛼2 =
𝜑2(𝑓(𝛼)) < 𝜑2(𝜆) = 𝜑0(𝜆). We prove that 𝛼1 = 𝛼2 as follows.
It is trivial that 𝛼1 > 𝜆, 𝛼2 > 𝜆, and

𝜑
𝑝−1

0
(𝛼1) = 𝜑

𝑝−1

1
(𝛼1) = 𝜑

𝑝

1
(𝑓 (𝛼)) = 0,

𝜑
𝑝−1

0
(𝛼2) = 𝜑

𝑝−1

2
(𝛼2) = 𝜑

𝑝

2
(𝑓 (𝛼)) = 0,

(A.34)

by Lemmas 3(v) and 4. Since 𝜑𝑝−1
0

is strictly monotone on
[min{𝛼1, 𝛼2}, 1], we have that 𝛼1 = 𝛼2. Let 𝛼0 = 𝛼1 = 𝛼2; then
𝛼0 < 𝜑0(𝜆) and 𝜑

𝑝−1

0
(𝛼0) = 0. Define 𝜓+ = 𝜑

𝑝−1

0
|[𝛼0 ,1]

. By
Lemmas 3(v) and 4, we have that 𝜓+ is a homeomorphism.

And by 𝜓+(𝛼0) = 0 ≤ 𝜓+(1), we know that 𝜓+ is strictly
increasing.

We prove 𝜑1(𝑥) = 𝜑2(𝑥) on Δ 𝑘 for all 𝑘 ≥ 0 by induction
as follows.

Obviously, 𝜑1(𝑥) = 𝜑2(𝑥) holds on Δ 0. Suppose that
𝜑1(𝑥) = 𝜑2(𝑥) holds on Δ 𝑘 for all 𝑘 ≤ 𝑚, where 𝑚 ≥ 0 is
a certain integer. Let

𝜑 (𝑥) = 𝜑1 (𝑥) = 𝜑2 (𝑥) , 𝑥 ∈ [𝑓
𝑚+1

(1) , 1] . (A.35)

Since 𝜑𝑖(𝑥) ≥ 𝜑𝑖(𝑓(𝛼)) = 𝛼0 > 𝜆 for 𝑥 ≤ 𝜆 and from (4) we
have

𝑓 (𝜑 (𝑓
−1
(𝑥))) = 𝑓 (𝜑𝑖 (𝑓

−1
(𝑥))) = 𝜑

𝑝−1

𝑖
(𝜑𝑖 (𝑥))

= 𝜓+ (𝜑𝑖 (𝑥)) , (𝑖 = 1, 2, 𝑥 ∈ Δ𝑚+1) .

(A.36)

Thereby

𝜑𝑖 (𝑥) = 𝜓
−1

+
(𝑓 (𝜑 (𝑓

−1
(𝑥)))) , (𝑖 = 1, 2, 𝑥 ∈ Δ𝑚+1) .

(A.37)

Thus we have 𝜑1(𝑥) = 𝜑2(𝑥) on Δ𝑚+1. Thus we get 𝜑1(𝑥) =
𝜑2(𝑥) on Δ 𝑘 for all 𝑘 ≥ 0 by induction.
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