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We study the boundary stabilization of a semilinear wave equation with variable coefficients under the time-varying and nonlinear
feedback. By the Riemannian geometry methods, we obtain the stability results of the system under suitable assumptions of the
bound of the time-varying term and the nonlinearity of the nonlinear term.

1. Introduction

Many results concerning the boundary stabilization of clas-
sical wave equations are available in literatures. See [1–6] for
linear cases and [7–14] for nonlinear ones. The stability of a
nondissipative system described by partial differential equa-
tions (PDEs) has attracted much attention. Reference [15]
developed the exponential stability for an abstract nondissi-
pative linear system, and in [16], the Riesz basis property was
developed for a beam equation with nondissipativity.

In [17], the following semilinear wave equation was
considered:

𝑢
𝑡𝑡
− Δ
𝑔
𝑢 + ℎ (∇𝑢) + 𝑓 (𝑢) = 0 (𝑥, 𝑡) ∈ Ω × (0, +∞) ,

𝑢 (𝑥, 𝑡)|
Γ
2

= 0 𝑡 ∈ (0, +∞) ,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝜇

+ 𝑙 (𝑢
𝑡
) = 0 (𝑥, 𝑡) ∈ Γ

1
× (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) 𝑥 ∈ Ω

(1)

and the well-posedness and uniform decay of the energy of
the system (1) was also established with linearly bounded 𝑙(𝑢)
in [17].

Based on [17], we study the system (1) with time-varying
and nonlinear feedback:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝜇

+ 𝜙 (𝑡) 𝑙 (𝑢) = 0 (𝑥, 𝑡) ∈ Γ
1
× (0, +∞) . (2)

The decay rate of the energy (when 𝑡 goes to infinity) of the
wave equation with time-varying feedback was established
under the assumption 𝜙 is decreasing [18–20] or 𝜙 has an
upper bound [21].

In this paper, we consider the decay rate of the energy
under suitable assumptions of the bound of the time-varying
term 𝜙(𝑡) and the nonlinearity of the nonlinear term 𝑙(𝑢).

2. Some Notation

Let Ω be a bounded domain in R𝑛 (𝑛 ≥ 2) with smooth
boundary Γ. It is assumed that Γ consists of two parts Γ

1
and

Γ
2
(Γ = Γ

1
∪ Γ
2
) with Γ

2
̸= 0, Γ
1
∩ Γ
2
= 0.

Let 𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥)) be symmetric, positively definite

matrices for each 𝑥 ∈ R𝑛, and 𝑎
𝑖𝑗
(𝑥) are smooth functions

on R𝑛. As in [22], we define

𝑔 = 𝐴
−1
(𝑥) for 𝑥 ∈ R

𝑛 (3)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 728760, 6 pages
http://dx.doi.org/10.1155/2014/728760

http://dx.doi.org/10.1155/2014/728760


2 Abstract and Applied Analysis

as a Riemannian metric on R𝑛 and consider the couple
(R𝑛, 𝑔) as a Riemannian manifold with an inner product:

⟨𝑋, 𝑌⟩
𝑔
= ⟨𝐴
−1
(𝑥)𝑋, 𝑌⟩ , |𝑋|

2

𝑔
= ⟨𝑋,𝑋⟩

𝑔
𝑋,𝑌 ∈ R

𝑛

𝑥
.

(4)

Denote by 𝐷, ∇
𝑔
, div
𝑔
, and Δ

𝑔
the Levi-Civita con-

nection, the gradient operator, the divergence operator, and
the Beltrami-Laplace operator in terms of the Riemannian
metric 𝑔, respectively. It can be easily shown that, under the
Euclidean coordinate,

∇
𝑔
𝑓 =

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥)

𝜕

𝜕𝑥
𝑗

𝑓)

𝜕

𝜕𝑥
𝑖

= 𝐴 (𝑥) ∇𝑓,

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
=

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥)

𝜕𝑓

𝜕𝑥
𝑖

𝜕𝑓

𝜕𝑥
𝑗

𝑥 ∈ R
𝑛
,

Δ
𝑔
𝑓 =

1

√𝐺

𝑛

∑

𝑖=1

𝜕

𝜕𝑥
𝑖

(√𝐺

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥)

𝜕

𝜕𝑥
𝑗

𝑓) , 𝑥 ∈ R
𝑛
,

(5)

where ∇𝑓 is the gradient of 𝑓 in the standard metric and 𝐺 =

det(𝑔).
Let𝐻 be a vector field on (R𝑛

𝑥
, 𝑔). Then for each 𝑥 ∈ R𝑛,

the covariant differential𝐷𝐻 of𝐻 determines a bilinear form
on R𝑛
𝑥
:

𝐷𝐻(𝑋, 𝑌) = ⟨𝐷
𝑌
𝐻,𝑋⟩

𝑔
∀𝑋, 𝑌 ∈ R

𝑛

𝑥
, (6)

where 𝐷
𝑌
𝐻 stands for the covariant derivative of the vector

field𝐻 with respect to 𝑌.

3. The Main Results

We consider the semilinear wave equation with variable
coefficients under the time-varying and nonlinear boundary
feedback:

𝑢
𝑡𝑡
− Δ
𝑔
𝑢 + 𝑓 (𝑢) = 0 (𝑥, 𝑡) ∈ Ω × (0, +∞) ,

𝑢 (𝑥, 𝑡)|
Γ
2

= 0 𝑡 ∈ (0, +∞) ,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝜇

+ 𝜙 (𝑡) 𝑙 (𝑢
𝑡
) = 0 (𝑥, 𝑡) ∈ Γ

1
× (0, +∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) 𝑥 ∈ Ω,

(7)

where 𝑙, 𝑓 are continuous nonlinear functions and 𝜇(𝑥) is
the outside unit normal vector of the Riemannian manifold
(Ω, 𝑔) for each 𝑥 ∈ Γ. Different from [18–21], in this paper,
we consider a general 𝜙; that is, 𝜙 ∈ 𝐶

1
([0, +∞)) satisfies

1

Φ (𝑡)

≤ 𝜙 ≤ Φ (𝑡) ∀𝑡 ≥ 0, (8)

where Φ(𝑡) ∈ 𝐶([0, +∞)) is a positive and nondecreasing
function satisfying

lim
𝑡→+∞

Φ (𝑡)

𝑡

= 0. (9)

Let Φ󸀠(𝑡) ∈ 𝐶([0, +∞)) be a positive and nondecreasing
functionwith 0 as the limit.Then 𝑡Φ󸀠(𝑡) satisfies (9).There are
many examples of Φ󸀠(𝑡) such as (1 + 𝑡)𝛼(𝛼 < 0) and 𝑒𝛽𝑡(𝛽 <

0).
The main assumptions are listed as follows.

Assumption A. 𝑓 ∈ 𝐶
1
(R), 𝑓(0) = 0 derives from a potential

𝐹:

𝐹 (𝑠) = ∫

𝑠

0

𝑓 (𝜏) 𝑑𝜏 ≥ 0 ∀𝑠 ∈ R, (10)

and satisfies
󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑏
1
|𝑠|
𝜌
+ 𝑏
2

∀𝑠 ∈ R, (11)

where 𝑏
1
, 𝑏
2
are positive constants, and the parameter 𝜌

satisfies

1 ≤ 𝜌 ≤

{

{

{

2, 𝑛 = 2,

𝑛

𝑛 − 2

, 𝑛 ≥ 3.

(12)

Being different from [17], we assume the nonlinear term
𝑙(𝑢) has no growth restriction near zero as in [23, 24].

Assumption B. 𝑙 ∈ 𝐶
1
(R) is a nondecreasing function

satisfying

𝑙 (0) = 0, 𝑐
1
|𝑠|
2
≤ 𝑠𝑙 (𝑠) ≤ 𝑐

2
|𝑠|
2

∀ |𝑠| ≥ 1. (13)

Assumption C. There exists a vector field𝐻 onΩ such that

𝐷𝐻(𝑋,𝑋) = 𝑐 (𝑥) |𝑋|
2

𝑔
for 𝑋 ∈ R

𝑛

𝑥
𝑥 ∈ Ω, (14)

where 𝑏 = min
Ω
𝑐(𝑥) and 𝐵 = max

Ω
𝑐(𝑥)

𝐵 < min{𝑏 + 2𝑏

𝑛

, 𝑟𝑏} , (15)

where 𝑟 > 1 is a constant. Moreover we assume that

⟨𝐻, 𝜇⟩
𝑔
≤ 0 𝑥 ∈ Γ

2
, ⟨𝐻, 𝜇⟩

𝑔
≥ 0 𝑥 ∈ Γ

1
. (16)

Condition (14) as a checkable assumption is very useful to
study the control and stabilization of the wave equation with
variable coefficients and the quasilinear wave equation [22,
25]. For the examples of the condition, see [22, 26].

Based on condition (14), Assumption C was given by [17]
to study the stabilization of the wave equation with variable
coefficients and nonlinear boundary condition. Being differ-
ent from [17], the lower bound of ⟨𝐻, 𝜇⟩

𝑔
was relaxed on Γ

1

from a positive constant to zero.
To facilitate the writing, we denote the volume element of

(Ω, 𝑔) by 𝑑𝑥 and denote the volume element of (Γ, 𝑔) by 𝑑Γ.
Define the energy of the system (7) by

𝐸 (𝑡) = ∫

Ω

(𝑢
2

𝑡
+

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
+ 2𝐹 (𝑢)) 𝑑𝑥. (17)

As in [23, 24], we let ℎ ∈ 𝐶([0, +∞)) be a concave
increasing function such that

ℎ (0) = 0, 𝑠
2
+ (𝑔 (𝑠))

2

≤ ℎ (𝑠𝑔 (𝑠)) for |𝑠| ≤ 1. (18)
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With (18), the stabilization of the wave equation with variable
coefficients and time dependent delay was studied by [27].

The main result of this paper is as follows.

Theorem 1. Let Assumptions A–C hold true. Assume that

2𝑟𝐹 (𝑠) ≤ 𝑠𝑓 (𝑠) ∀𝑠 ∈ R, (19)

where 𝑟 is defined in (15).
(a) If the function 𝑙 in (7) satisfies

𝑐
1
|𝑠|
2
≤ 𝑠𝑙 (𝑠) ≤ 𝑐

2
|𝑠|
2

∀ |𝑠| < 1, (20)

then there exist constants 𝐶 > 0 such that

𝐸 (𝑡) ≤

𝐶Φ (𝑡)

𝑡

𝐸 (0) 𝑡 > 0. (21)

(b) If the functions 𝜙(𝑡), 𝑙 in (7) satisfy

𝜙 (𝑡) ≤ 𝜙
0

∀𝑡 ≥ 0, 𝑠𝑙 (𝑠) ≥ 𝑐
1
|𝑠|
2

∀ |𝑠| < 1, (22)

where 𝜙
0
is a positive constant, then there exist constants

𝐶
1
, 𝐶
2
> 0 such that

𝐶
1
ℎ(

𝐶
2
Φ (𝑇)

𝑇

𝐸 (0)) +

𝐶
1
Φ (𝑇)

𝑇

𝐸 (0) 𝑡 > 0. (23)

(c) If the functionΦ(𝑡) in (8) is a constant function; that is,

Φ (𝑡) = Φ (0) ∀𝑡 ≥ 0, (24)

then there exist constants 𝐶
1
, 𝐶
2
> 0 such that

𝐶
1
ℎ(

𝐶
2
𝐸 (0)

𝑇

) +

𝐶
1

𝑇

𝐸 (0) 𝑡 > 0. (25)

4. Well Posedness of the System

Define

𝐻
1

Γ
2

(Ω) = {𝑢 ∈ 𝐻
1
| (Ω) 𝑢|

Γ
2

= 0} . (26)

By a similar proof as Lemma 7.1 in [17], we have the following
result.

Theorem 2. Let Assumptions A-B hold true. For any initial
data (𝑢

0
, 𝑢
1
) ∈ 𝐻

1

Γ
2

(Ω) × 𝐿
2
(Ω), system (7) admits a

unique weak solution u such that 𝑢 ∈ 𝐶([0, +∞),𝐻
1

Γ
2

(Ω)) ∩

𝐶
1
([0, +∞), 𝐿

2
(Ω)).

To proveTheorem 1, we still need several lemmas further.
Define

𝐸
0
(𝑡) = ∫

Ω

(𝑢
2

𝑡
+

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
) 𝑑𝑥. (27)

Then, we have

𝐸 (𝑡) = 𝐸
0
(𝑡) + 2∫

Ω

𝐹 (𝑢) 𝑑𝑥. (28)

The following lemma shows the energy of the system (7)
is decreasing.

Lemma 3. Suppose that Assumptions A-B hold true. Let 𝑢 be
the solution of the system (7). Then

𝐸 (0) − 𝐸 (𝑇) = 2∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) 𝑢
𝑡
𝑙 (𝑢
𝑡
) 𝑑Γ 𝑑𝑡. (29)

The assertion (29) implies that 𝐸(𝑡) is decreasing.

Proof. Differentiating (17), we obtain

𝐸
󸀠
(𝑡) = ∫

Ω

(2𝑢
𝑡
𝑢
𝑡𝑡
+ 2⟨∇

𝑔
𝑢, ∇
𝑔
𝑢
𝑡
⟩
𝑔
+ 2𝑓 (𝑢)) 𝑑𝑥

= ∫

Γ
1

2𝜙 (𝑡) 𝑢
𝑡
𝑙 (𝑢
𝑡
) 𝑑Γ.

(30)

Then the inequality (29) follows directly from (30) integrating
from 0 to 𝑇.

5. Proofs of Theorem 1

Lemma4. Let𝑢(𝑥, 𝑡) be the solution of the equation𝑢
𝑡𝑡
+Δ
𝑔
𝑢+

𝑓(𝑢) = 0, (𝑥, 𝑡) ∈ Ω × (0, +∞) and that H is a vector field
defined on Ω. Then for 𝑇 ≥ 0

∫

𝑇

0

∫

Γ

𝜕𝑢

𝜕𝜇

H (𝑢) 𝑑Γ 𝑑𝑡 +

1

2

∫

𝑇

0

∫

Γ

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
− 2𝐹 (𝑢))

× ⟨H, 𝜇⟩
𝑔
𝑑Γ 𝑑𝑡

= (𝑢
𝑡
,H (𝑢))

󵄨
󵄨
󵄨
󵄨

𝑇

0
+ ∫

𝑇

0

∫

Ω

𝐷H (∇
𝑔
𝑢, ∇
𝑔
𝑢) 𝑑𝑥 𝑑𝑡

+

1

2

∫

𝑇

0

∫

Ω

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
− 2𝐹 (𝑢)) div

𝑔
H𝑑𝑥 𝑑𝑡.

(31)

Moreover, assume that 𝑃 ∈ 𝐶
1
(Ω). Then

∫

𝑇

0

∫

Ω

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
− 𝑢𝑓 (𝑢)) 𝑃𝑑𝑥 𝑑𝑡

= (𝑢
𝑡
, 𝑢𝑃)

󵄨
󵄨
󵄨
󵄨

𝑇

0
+

1

2

∫

𝑇

0

∫

Ω

∇
𝑔
𝑃 (𝑢
2
) 𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

∫

Γ

𝑃𝑢

𝜕𝑢

𝜕𝜇

𝑑Γ 𝑑𝑡.

(32)

Proof. Note that

H (𝑢) 𝑓 (𝑢) = H (𝐹 (𝑢)) = div
𝑔
(𝐹 (𝑢)H) − 𝐹 (𝑢) div

𝑔
H.

(33)

The equality (31) and the equality (32) follow from
Proposition 2.1 in [22].

Lemma 5. Suppose that all assumptions in Theorem 1 hold
true. Let 𝑢 solve the system (7). Then there exist positive
constants 𝑇, 𝐶 for which

𝐸 (𝑇) ≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
+ (

𝜕𝑢

𝜕𝜇

)

2

)𝑑Γ𝑑𝑡, (34)

where 𝑇 ≥ 𝑇.



4 Abstract and Applied Analysis

Proof. From (15), we choose a positive constant 𝜃 satisfying

𝜃 <

𝑛𝑏

2

, 𝑏 + 𝜃 −

𝑛𝐵

2

> 0, 2𝑟𝜃 > 𝑛𝐵. (35)

Set

H = 𝐻, 𝑃 = 𝜃. (36)

We substitute the formula (32) into the formula (31), and we
have

Π
Γ
= (𝑢
𝑡
, 𝐻 (𝑢) + 𝑃𝑢)

󵄨
󵄨
󵄨
󵄨

𝑇

0

+ ∫

𝑇

0

∫

Ω

(𝐷𝐻(∇
𝑔
𝑢, ∇
𝑔
𝑢) − 𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
) 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫

Ω

((

1

2

div𝐻 − 𝜃)𝑢
2

𝑡

+(𝑏 + 𝜃 −

1

2

div𝐻)

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
)𝑑𝑥𝑑𝑡

+ ∫

𝑇

0

∫

Ω

[𝜃 (𝑢𝑓 (𝑢) − 2𝑟𝐹 (𝑢))

+ (2𝑟𝜃 − div𝐻)𝐹 (𝑢) ] 𝑑𝑥 𝑑𝑡,

(37)

where

Π
Γ
= ∫

𝑇

0

∫

Γ

𝜕𝑢

𝜕𝜇

(𝐻 (𝑢) + 𝑢𝑃) 𝑑Γ 𝑑𝑡

+

1

2

∫

𝑇

0

∫

Γ

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
− 2𝐹 (𝑢)) ⟨𝐻, 𝜇⟩

𝑔
𝑑Γ 𝑑𝑡.

(38)

Decompose Π
Γ
as

Π
Γ
= Π
Γ
1

+ Π
Γ
2

, (39)

where Π
Γ
1

(Π
Γ
2

) stands by the value of the terms on the right
side of (38) integrating on Γ

1
(Γ
2
).

Similar to [5, 22], we deal with Π
Γ
2

as follows.
Since 𝑢|

Γ
2

= 0, we have ∇
Γ
𝑢|
Γ
2

= 0; that is,

∇
𝑔
𝑢 =

𝜕𝑢

𝜕𝜇

𝜇 for 𝑥 ∈ Γ
2
. (40)

Similarly, we obtain

𝐻(𝑢) = ⟨𝐻, ∇
𝑔
𝑢⟩
𝑔
=

𝜕𝑢

𝜕𝜇

⟨𝐻, 𝜇⟩
𝑔

for 𝑥 ∈ Γ
2
. (41)

Using the equality (40) and (41) in the equality (38) on the
portion Γ

2
, with (16) we obtain

Π
Γ
2

=

1

2

∫

𝑇

0

∫

Γ
2

(

𝜕𝑢

𝜕𝜇

)

2

⟨𝐻, 𝜇⟩
𝑔
𝑑Γ 𝑑𝑡 ≤ 0. (42)

Let𝐻
1
be a vector field onΩ such that

𝐻
1
= 𝜇 𝑥 ∈ Γ

1
,

𝐻
1
= 0 𝑥 ∈ Γ

2
.

(43)

SetH = 𝐻
1
; it follows from (31) that

∫

𝑇

0

∫

Γ
1

(

𝜕𝑢

𝜕𝜇

)

2

𝑑Γ 𝑑𝑡 +

1

2

∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
) 𝑑Γ 𝑑𝑡

= (𝑢
𝑡
, 𝐻
1
(𝑢))

󵄨
󵄨
󵄨
󵄨

𝑇

0
+ ∫

𝑇

0

𝑑𝑡∫

Ω

𝐷𝐻
1
(∇
𝑔
𝑢, ∇
𝑔
𝑢) 𝑑𝑥

+

1

2

∫

𝑇

0

𝑑𝑡∫

Ω

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
− 2𝐹 (𝑢)) div

𝑔
𝐻
1
𝑑𝑥.

(44)

Then we obtain that

∫

𝑇

0

∫

Γ
1

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
𝑑Γ 𝑑𝑡

≤ 𝐶∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
+ (

𝜕𝑢

𝜕𝜇

)

2

)𝑑Γ𝑑𝑡 + 𝐶 (𝐸
0
(0) + 𝐸

0
(𝑇))

+ 𝐶∫

𝑇

0

∫

Ω

(𝑢
2

𝑡
+

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
+ 2𝐹 (𝑢)) 𝑑𝑥 𝑑𝑡.

(45)

With (16) and (45), we have

Π
Γ
1

= ∫

𝑇

0

∫

Γ
1

𝜕𝑢

𝜕𝜇

(𝐻 (𝑢) + 𝑢𝑃) 𝑑Γ 𝑑𝑡

+

1

2

∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
−

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
− 𝐹 (𝑢)) ⟨𝐻, 𝜇⟩

𝑔
𝑑Γ 𝑑𝑡

≤ 𝐶
𝜀
∫

𝑇

0

∫

Γ
1

(

𝜕𝑢

𝜕𝜇

)

2

𝑑Γ 𝑑𝑡 + 𝜀∫

𝑇

0

∫

Γ
1

(𝑢
2
+

󵄨
󵄨
󵄨
󵄨
󵄨
∇
𝑔
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑔
) 𝑑Γ 𝑑𝑡

+ 𝐶∫

𝑇

0

∫

Γ
1

𝑢
2

𝑡
𝑑Γ 𝑑𝑡

≤ 𝐶∫

𝑇

0

∫

Γ
1

(

𝜕𝑢

𝜕𝜇

)

2

𝑑Γ 𝑑𝑡

+ 𝜀 (𝐸
0
(0) + 𝐸

0
(𝑇) + ∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡) + 𝐶∫

𝑇

0

∫

Γ
1

𝑢
2

𝑡
𝑑Γ 𝑑𝑡.

(46)

Note that

𝑛𝑏 ≤ div
𝑔
𝐻 ≤ 𝑛𝐵 ∀𝑥 ∈ Ω. (47)

Substituting the formulas (42) and (46) into the formula (37),
with (19) and (35), we obtain

∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 ≤ 𝐶 (𝐸
0
(0) + 𝐸

0
(𝑇))

+ 𝐶∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
+ (

𝜕𝑢

𝜕𝜇

)

2

) 𝑑Γ 𝑑𝑡.

(48)
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Since

𝐸
0
(0) = 𝐸

0
(𝑇) − ∫

𝑇

0

∫

Γ
1

𝑢
𝑡

𝜕𝑢

𝜕𝜇

𝑑Γ 𝑑𝑡

≤ 𝐸
0
(𝑇) +

1

2

∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
+ (

𝜕𝑢

𝜕𝜇

)

2

)𝑑Γ𝑑𝑡,

(49)

from (48), we have

∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 ≤ 𝐶𝐸 (𝑇) + 𝐶∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
+ (

𝜕𝑢

𝜕𝜇

)

2

)𝑑Γ𝑑𝑡.

(50)

Since 𝐸(𝑡) is decreasing, we deduce that

∫

𝑇

0

𝐸 (𝑡) 𝑑𝑡 ≥ 𝑇𝐸 (𝑇) . (51)

Substituting the formulas (51) into the formula (50), for
sufficiently large 𝑇, we have

𝐸 (𝑇) ≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

(𝑢
2

𝑡
+ (

𝜕𝑢

𝜕𝜇

)

2

)𝑑Γ𝑑𝑡. (52)

The inequality (34) holds.

Proof of Theorem 1. (a) From (8), (13), (20), (29), and (34), for
𝑇 ≥ 𝑇 we deduce that

𝐸 (𝑇) ≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

(𝜙
2
(𝑡) + 1) 𝑢

2

𝑡
𝑑Γ 𝑑𝑡

≤

𝐶

𝑇

( sup {𝜙 (𝑡) | 0 ≤ 𝑡 ≤ 𝑇}

+ sup{ 1

𝜙 (𝑡)

| 0 ≤ 𝑡 ≤ 𝑇})

× ∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) 𝑢
2

𝑡
𝑑Γ 𝑑𝑡 ≤

𝐶Φ (𝑇)

𝑇

𝐸 (0) .

(53)

Note that 𝐸(𝑡) is decreasing, and the estimate (21) holds.
(b) From (8), (13), (22), (29), and (34), for 𝑇 ≥ 𝑇 we

deduce that

𝐸 (𝑇) ≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

(𝜙
2
(𝑡) 𝑔
2
(𝑢
𝑡
) + 𝑢
2

𝑡
) 𝑑Γ 𝑑𝑡

≤

𝐶

𝑇

{∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) 𝑔
2
(𝑢
𝑡
) 𝑑Γ 𝑑𝑡

+Φ (𝑇)∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) 𝑢
2

𝑡
𝑑Γ 𝑑𝑡}

≤

𝐶

𝑇

{∫

𝑇

0

∫

{𝑥∈Γ
1
,|𝑢
𝑡
|≤1}

𝜙 (𝑡) 𝑔
2
(𝑢
𝑡
) 𝑑Γ 𝑑𝑡

+Φ (𝑇)∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) 𝑢
𝑡
𝑔 (𝑢
𝑡
) 𝑑Γ 𝑑𝑡}

≤

𝐶

𝑇

∫

𝑇

0

∫

{𝑥∈Γ
1
,|𝑢
𝑡
|≤1}

𝜙 (𝑡) ℎ (𝑢
𝑡
𝑔 (𝑢
𝑡
)) 𝑑Γ 𝑑𝑡

+

𝐶Φ (𝑇)

𝑇

𝐸 (0)

≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) ℎ (𝑢
𝑡
𝑔 (𝑢
𝑡
)) 𝑑Γ 𝑑𝑡 +

𝐶Φ (𝑇)

𝑇

𝐸 (0)

≤

𝐶∫

𝑇

0
𝜙 (𝑡) 𝑑𝑡 ⋅meas (Γ

1
)

𝑇

ℎ

× (

∫

𝑇

0
∫
Γ
1

𝜙 (𝑡) 𝑢
𝑡
𝑔 (𝑢
𝑡
) 𝑑Γ 𝑑𝑡

∫

𝑇

0
𝜙 (𝑡) 𝑑𝑡 ⋅meas (Γ

1
)

) +

𝐶Φ (𝑇)

𝑇

𝐸 (0)

≤ 𝐶
1
ℎ(

𝐶
2
Φ (𝑇)

𝑇

𝐸 (0)) +

𝐶
1
Φ (𝑇)

𝑇

𝐸 (0) .

(54)

Note that 𝐸(𝑡) is decreasing, and the estimate (23) holds.
(c) From (8), (13), (24), (29), and (34), for 𝑇 ≥ 𝑇 we

deduce that

𝐸 (𝑇) ≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

(𝜙
2
(𝑡) 𝑔
2
(𝑢
𝑡
) + 𝑢
2

𝑡
) 𝑑Γ 𝑑𝑡

≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) (𝑔
2
(𝑢
𝑡
) + 𝑢
2

𝑡
) 𝑑Γ 𝑑𝑡

≤

𝐶

𝑇

∫

𝑇

0

∫

{𝑥∈Γ
1
,|𝑢
𝑡
|≤1}

𝜙 (𝑡) ℎ (𝑢
𝑡
𝑔 (𝑢
𝑡
)) 𝑑Γ 𝑑𝑡

+

𝐶

𝑇

∫

𝑇

0

∫

{𝑥∈Γ
1
,|𝑢
𝑡
|>1}

𝜙 (𝑡) 𝑢
2

𝑡
𝑑Γ 𝑑𝑡

≤

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) ℎ (𝑢
𝑡
𝑔 (𝑢
𝑡
)) 𝑑Γ 𝑑𝑡

+

𝐶

𝑇

∫

𝑇

0

∫

Γ
1

𝜙 (𝑡) 𝑢
𝑡
𝑔 (𝑢
𝑡
) 𝑑Γ 𝑑𝑡

≤

𝐶∫

𝑇

0
𝜙 (𝑡) 𝑑𝑡 ⋅meas (Γ

1
)

𝑇

ℎ

× (

∫

𝑇

0
∫
Γ
1

𝜙 (𝑡) 𝑢
𝑡
𝑔 (𝑢
𝑡
) 𝑑Γ 𝑑𝑡

∫

𝑇

0
𝜙 (𝑡) 𝑑𝑡 ⋅meas (Γ

1
)

) +

𝐶

𝑇

𝐸 (0)

≤ 𝐶
1
ℎ(

𝐶
2
𝐸 (0)

𝑇

) +

𝐶
1

𝑇

𝐸 (0) .

(55)

Note that 𝐸(𝑡) is decreasing, and the estimate (25) holds.
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