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Sufficient conditions are obtained to ensure starlikeness of positive order for analytic functions defined in the open unit disk
satisfying certain third-order differential inequalities. As a consequence, conditions for starlikeness of functions defined by integral
operators are obtained. Connections are also made to earlier known results.

1. Introduction

LetH denote the class of analytic functions 𝑓 defined in the
open unit disk 𝑈 := {𝑧 ∈ C : |𝑧| < 1}. For 𝑎 ∈ C and 𝑛 a
positive integer, let

H
𝑛
(𝑎) = {𝑓 ∈ H : 𝑓 (𝑧) = 𝑎 +

∞

∑
𝑘=𝑛

𝑎
𝑘
𝑧𝑘} , (1)

andA
𝑛
= {𝑓 ∈ H : 𝑓(𝑧) = 𝑧 + ∑

∞

𝑘=𝑛+1
𝑎
𝑘
𝑧𝑘}, withA

1
:= A.

For 𝛽 ∈ [0, 1), denote by S∗(𝛽) the subclass of A consisting
of functions starlike of order 𝛽 satisfying

Re(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) > 𝛽, 𝑧 ∈ 𝑈. (2)

The class S∗ := S∗(0) is the well-known subclass of starlike
functions studied widely in geometric function theory.

In the sequel, we give emphasis to the class

S
1
(𝛽) = {𝑓 ∈ A :



𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1


< 1 − 𝛽, 𝑧 ∈ 𝑈} , (3)

𝛽 ∈ [0, 1), where S
1
:= S
1
(0) ⊂ S∗. Evidently S

1
(𝛽) ⊂

S∗(𝛽) for 0 ≤ 𝛽 < 1. The class S
1
(𝛽) was investigated by

Silverman [1], who showed that S
1
(𝛽) coincides with S∗(𝛽)

for univalent functions with negative coefficients. This class
has subsequently been studied in several other works (see,
e.g., [2]).

The problem of determining sufficient conditions to
ensure starlikeness of functions has been widely investigated.
These include conditions in terms of differential inequalities;
see, for example, [2–11]. Miller and Mocanu [12], Kuroki
and Owa [13], and, more recently, Ali et al. [14] determined
conditions for starlikeness of functions defined by an integral
operator of the form

𝑓 (𝑧) = ∫
1

0

𝑊(𝑟, 𝑧) 𝑑𝑟, (4)

or by the double integral operator

𝑓 (𝑧) = ∬
1

0

𝑊(𝑟, 𝑠, 𝑧) 𝑑𝑟 𝑑𝑠. (5)

In this paper, conditions on certain third-order differen-
tial inequalities are found that would imply starlikeness of
positive order. As a consequence, conditions on the kernel of
certain integral operators are also obtained to ensure that the
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functions defined by these operators are starlike. Connections
are also made to earlier known results.

Recall that an analytic function 𝑓 is subordinate to an
analytic function 𝑔 in 𝑈, written as 𝑓(𝑧) ≺ 𝑔(𝑧), if there
exists an analytic self-map 𝑤 of 𝑈 with 𝑤(0) = 0 satisfying
𝑓(𝑧) = 𝑔(𝑤(𝑧)).

The following lemmas will be required in the sequel.

Lemma 1 (see [15, Theorem 1, page 192] and see also [16,
Theorem 3.1b, page 71]). Let ℎ be convex in 𝑈 with ℎ(0) = 𝑎,
𝛾 ̸= 0 and Re 𝛾 ≥ 0. If 𝑝 ∈ H

𝑛
(𝑎) and

𝑝 (𝑧) +
𝑧𝑝 (𝑧)

𝛾
≺ ℎ (𝑧) , (6)

then

𝑝 (𝑧) ≺ 𝑞 (𝑧) ≺ ℎ (𝑧) , (7)

where

𝑞 (𝑧) =
𝛾

𝑛𝑧𝛾/𝑛
∫
𝑧

0

ℎ (𝑡) 𝑡
(𝛾/𝑛)−1𝑑𝑡. (8)

The function 𝑞 is convex and is the best (𝑎, 𝑛)-dominant.

Lemma 2 (see [17] and see also [16, Theorem 3.1d, page 76]).
Let h be a starlike function with ℎ(0) = 0. If𝑝 ∈ H

𝑛
(𝑎) satisfies

𝑧𝑝 (𝑧) ≺ ℎ (𝑧) , (9)

then

𝑝 (𝑧) ≺ 𝑞 (𝑧) = 𝑎 +
1

𝑛
∫
𝑧

0

ℎ (𝑡)

𝑡
𝑑𝑡. (10)

The function 𝑞 is convex and is the best (𝑎, 𝑛)-dominant.

2. Main Results

The following two results are easily obtained by simple
adaptations of Theorem 2.1 and Theorem 2.6 in [13]. The
proofs are therefore omitted.

Lemma 3. Let 𝑓 ∈ A
𝑛
, 0 ≤ 𝛼 < 𝑛𝛿, and 0 ≤ 𝛽 < 1. If

𝛿𝑧𝑓


(𝑧) − 𝛼 (𝑓 (𝑧) − 1)
 <

(𝑛 + 1) (1 − 𝛽) (𝑛𝛿 − 𝛼)

𝑛 + 1 − 𝛽
, (11)

then 𝑓 ∈ S∗(𝛽) with an extremal function 𝑓(𝑧) = 𝑧 + (1 −

𝛽)𝑧𝑛+1/(𝑛 + 1 − 𝛽).

Lemma 4. Let 0 ≤ 𝛼 < 𝑛𝛿, 0 ≤ 𝛽 < 1, and 𝑔 ∈ H. If

𝑔 (𝑧)
 <

(𝑛 + 1) (1 − 𝛽) (𝑛𝛿 − 𝛼)

𝑛 + 1 − 𝛽
, (12)

then

𝑓 (𝑧) = 𝑧 +
𝑧𝑛+1

𝛿
∬
1

0

𝑔 (𝑟𝑠𝑧) 𝑟
[(𝑛−1)𝛿−𝛼]/𝛿𝑠𝑛𝑑𝑟 𝑑𝑠 (13)

is a starlike function of order 𝛽.

Remark 5. Even though the conditions given in Lemmas 3
and 4 are sufficient to deduce 𝑓 ∈ S∗(𝛽), they are in fact
sufficient to imply 𝑓 ∈ S

1
(𝛽) ⊂ S∗(𝛽).

The above two lemmas are next used to obtain conditions
in terms of a third-order differential inequality and a third-
order integral operator to deduce starlikeness of 𝑓 of order
𝛽.

Theorem 6. Let 𝑓 ∈ A
𝑛
, 0 < 𝛼 < 𝑛], 𝛿 > 𝛼 ≥ 𝛾 ≥ 0, and

0 ≤ 𝛽 < 1. Further let 𝜇 and ] satisfy

] − 𝛼𝜇 = 𝛿 − 𝛾, ]𝜇 = 𝛾. (14)

If
𝛾𝑧
2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1)



<
(1 + 𝑛𝜇) (𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
,

(15)

then 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽). Equality is attained for 𝑓(𝑧) =

𝑧 + (1 − 𝛽)𝑧𝑛+1/(𝑛 + 1 − 𝛽).

Proof. Let

𝑝 (𝑧) = ]𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1) . (16)

A brief computation shows that

𝑝 (𝑧) + 𝜇𝑧𝑝 (𝑧) = 𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1) .

(17)

Hence, (15) can be written in the subordination form as

𝑝 (𝑧) + 𝜇𝑧𝑝 (𝑧) ≺
(1 + 𝑛𝜇) (𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
𝑧. (18)

It follows from Lemma 1 that

𝑝 (𝑧) ≺
1

𝜇𝑛𝑧1/𝜇𝑛
∫
𝑧

0

(1 + 𝜇𝑛) (𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
𝑡1/𝜇𝑛𝑑𝑡

=
(𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
𝑧,

(19)

which implies

]𝑧𝑓


(𝑧) − 𝛼 (𝑓 (𝑧) − 1)
 ≤

(𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
. (20)

Hence 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽) on using Lemma 3.

For sharpness, it is evident that the function 𝑓(𝑧) = 𝑧 +

(1 − 𝛽)𝑧𝑛+1/(𝑛 + 1 − 𝛽) satisfies
𝛾𝑧
2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1)



=
(1 + 𝑛𝜇) (𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
.

(21)



Abstract and Applied Analysis 3

Thus,


𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1


< 1 − 𝛽, 𝑧 ∈ 𝑈. (22)

Theorem 7. Let 0 < 𝛼 < 𝑛𝜇, 𝛿 > 𝛼 ≥ 𝛾 ≥ 0, 0 ≤ 𝛽 < 1, and
𝑔 ∈ H. If

𝑔 (𝑧)
 <

(1 + 𝜇𝑛) (𝑛 + 1) (1 − 𝛽) (𝑛] − 𝛼)

𝑛 + 1 − 𝛽
, (23)

where

] − 𝛼𝜇 = 𝛿 − 𝛾, ]𝜇 = 𝛾, (24)

then

𝑓 (𝑧) = 𝑧 +
𝑧𝑛+1

𝛾
∭
1

0

𝑔 (𝑟𝑠𝑡𝑧) 𝑟
𝑛−1−𝛼/]𝑠𝑛𝑡𝑛−1+1/𝜇𝑑𝑟 𝑑𝑠 𝑑𝑡

(25)

satisfies 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽).

Proof. Let 𝑓 ∈ A
𝑛
satisfy

𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1) = 𝑧𝑛𝑔 (𝑧) . (26)

From Theorem 6, the solution of (26) belongs to the class
S
1
(𝛽) ⊂ S∗(𝛽). Now (26) has the form

𝑝 (𝑧) + 𝜇𝑧𝑝 (𝑧) = 𝑧𝑛𝑔 (𝑧) , (27)

where

𝑝 (𝑧) = ]𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1) . (28)

Equation (27) has a solution

𝑝 (𝑧) =
𝑧−1/𝜇

𝜇
∫
𝑧

0

𝑔 (𝜉) 𝜉
𝑛−1+1/𝜇𝑑𝜉

=
𝑧𝑛

𝜇
∫
1

0

𝑔 (𝑡𝑧) 𝑡
𝑛−1+1/𝜇𝑑𝑡 = 𝑧𝑛𝜙 (𝑧) ,

(29)

with

𝜙 (𝑧) =
1

𝜇
∫
1

0

𝑔 (𝑡𝑧) 𝑡
𝑛−1+1/𝜇𝑑𝑡. (30)

Note that the function 𝑓 in Lemma 4 satisfies 𝛿𝑧𝑓(𝑧) −
𝛼(𝑓(𝑧) − 1) = 𝑧𝑛𝑔(𝑧). Thus replacing the appropriate
parameters in the equation

]𝑧𝑓 (𝑧) − 𝛼 (𝑓 (𝑧) − 1) = 𝑧𝑛𝜙 (𝑧) (31)

yields a solution

𝑓 (𝑧) = 𝑧 +
𝑧𝑛+1

]
∬
1

0

𝜙 (𝑟𝑠𝑧) 𝑟
𝑛−1−𝛼/]𝑠𝑛𝑑𝑟 𝑑𝑠

= 𝑧 +
𝑧𝑛+1

𝛾
∭
1

0

𝑔 (𝑟𝑠𝑡𝑧) 𝑟
𝑛−1−𝛼/]𝑠𝑛𝑡𝑛−1+1/𝜇𝑑𝑟 𝑑𝑠 𝑑𝑡.

(32)

This completes the proof.

The next result provides a sufficient condition for star-
likeness of order 𝛽 involving a second-order differential
inequality.

Lemma 8. Let 𝑓 ∈ A
𝑛
, and 0 ≤ 𝛼 < 𝛿 with 0 ≤ 𝛽 < 1. If


𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
)

<
𝑛 (1 − 𝛽) (𝛿 (𝑛 + 1) − 𝛼)

𝑛 + 1 − 𝛽
,

(33)

then 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽) with an extremal function 𝑓(𝑧) =

𝑧 + (1 − 𝛽)𝑧𝑛+1/(𝑛 + 1 − 𝛽).

Proof. Inequality (33) can be expressed in the subordination
form

𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
)

≺
𝑛 (1 − 𝛽) (𝛿 (𝑛 + 1) − 𝛼)

𝑛 + 1 − 𝛽
𝑧, 𝑧 ∈ 𝑈.

(34)

Writing

𝑃 (𝑧) = 𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
= 𝑃
𝑛
𝑧𝑛 + ⋅ ⋅ ⋅ , (35)

it follows that

𝛿𝑧𝑃 (𝑧) + (𝛿 − 𝛼) 𝑃 (𝑧) = 𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
)

≺
𝑛 (1 − 𝛽) (𝛿 (𝑛 + 1) − 𝛼)

𝑛 + 1 − 𝛽
𝑧.

(36)

Now Lemma 1 with 𝛾 = 1 − 𝛼/𝛿 yields

𝑃 (𝑧) ≺
𝛾

𝑛𝑧𝛾/𝑛
∫
𝑧

0

(
𝑛 (1 − 𝛽) (𝛿 (𝑛 + 1) − 𝛼)

(𝛿 − 𝛼) (𝑛 + 1 − 𝛽)
𝑡) 𝑡𝛾/𝑛−1𝑑𝑡

=
𝑛 (1 − 𝛽)

𝑛 + 1 − 𝛽
𝑧,

(37)

which implies

𝑓 (𝑧) −

𝑓 (𝑧)

𝑧


<

𝑛 (1 − 𝛽)

𝑛 + 1 − 𝛽
. (38)

Let

𝑝 (𝑧) =
𝑓 (𝑧)

𝑧
= 1 + 𝑝

𝑛
𝑧𝑛 + ⋅ ⋅ ⋅ . (39)

Since

𝑧𝑝 (𝑧) = 𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
≺

𝑛 (1 − 𝛽)

𝑛 + 1 − 𝛽
𝑧, (40)

an application of Lemma 2 shows that

𝑝 (𝑧) ≺ 1 +
1

𝑛
∫
𝑧

0

(
𝑛 (1 − 𝛽)

𝑛 + 1 − 𝛽
𝑡)

𝑑𝑡

𝑡
= 1 +

(1 − 𝛽)

𝑛 + 1 − 𝛽
𝑧. (41)
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Therefore,

𝑝 (𝑧)
 =



𝑓 (𝑧)

𝑧


> 1 −

1 − 𝛽

𝑛 + 1 − 𝛽
=

𝑛

𝑛 + 1 − 𝛽
. (42)

Combining (38) and (42) yields

𝑛

𝑛 + 1 − 𝛽



𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1



=
𝑛

𝑛 + 1 − 𝛽



𝑧

𝑓 (𝑧)




𝑓 (𝑧) −

𝑓 (𝑧)

𝑧



<
𝑛 (1 − 𝛽)

𝑛 + 1 − 𝛽
,

(43)

which means |𝑧𝑓(𝑧)/𝑓(𝑧) − 1| < 1 − 𝛽, whence 𝑓 ∈ S
1
(𝛽) ⊂

S∗(𝛽).

Remark 9. For 𝛿 = 1 and 𝛽 = 0, Lemma 8 reduces to [12,
Lemma 2.2].

The following result gives starlikeness for a function given
by a double integral operator associated with Lemma 4. The
proof is analogous toTheorem 2.2 of [12] and is omitted.

Lemma 10. Let 0 ≤ 𝛼 < 𝑛𝛿, 𝛿 > 𝛼, 0 ≤ 𝛽 < 1, and 𝑔 ∈ H. If

𝑔 (𝑧)
 <

𝑛 (1 − 𝛽) (𝛿 (𝑛 + 1) − 𝛼)

𝑛 + 1 − 𝛽
, (44)

then

𝑓 (𝑧) = 𝑧 +
𝑧𝑛+1

𝛿
∬
1

0

𝑔 (𝑟𝑠𝑧) 𝑟
(𝑛𝛿−𝛼)/𝛿𝑠𝑛−1𝑑𝑟 𝑑𝑠 (45)

satisfies 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽).

An application of Lemma 8 yields the following sufficient
condition for starlikeness in terms of a third-order differential
inequality.

Theorem 11. Let 𝑓 ∈ A
𝑛
, 0 ≤ 𝛼 < (1−𝜇)(𝑛 + 1)], 𝛼 ≥ 𝛾 ≥ 0,

𝛿 > 𝛾 + 𝛼, and 0 ≤ 𝛽 < 1. Further let

] −
𝛼𝜇

1 − 𝜇
= 𝛿 − 𝛾, ]𝜇 = 𝛾. (46)

If


𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
)


<
𝑛 [(𝑛 + 1) (] − 𝛾) − 𝛼] (1 − 𝛽) (1 + 𝑛𝜇)

(𝑛 + 1 − 𝛽) (1 − 𝜇)
,

(47)

then 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽). Equality is attained for 𝑓(𝑧) =

𝑧 + (1 − 𝛽)𝑧𝑛+1/(𝑛 + 1 − 𝛽).

Proof. Proceeding similarly as in the proof of Lemma 8,
inequality (47) can be written as

𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
)

≺
𝑛 [(𝑛 + 1) (] − 𝛾) − 𝛼] (1 − 𝛽) (1 + 𝑛𝜇)

(𝑛 + 1 − 𝛽) (1 − 𝜇)
𝑧.

(48)

Let

𝑝 (𝑧) = ]𝑧𝑓 (𝑧) −
𝛼

1 − 𝜇
(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
) . (49)

Then a computation yields

𝑝 (𝑧) = ]𝑧𝑓 (𝑧) + ]𝑓 (𝑧) −
𝛼

1 − 𝜇
𝑓 (𝑧)

+
𝛼

1 − 𝜇
(
𝑓 (𝑧)

𝑧
−
𝑓 (𝑧)

𝑧2
) ,

(50)

so that

𝑝 (𝑧) + 𝜇𝑧𝑝 (𝑧) = 𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧)

− 𝛼(𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
) .

(51)

Hence

𝑝 (𝑧) + 𝜇𝑧𝑝 (𝑧)

≺
𝑛 [(𝑛 + 1) (] − 𝛾) − 𝛼] (1 − 𝛽) (1 + 𝑛𝜇)

(𝑛 + 1 − 𝛽) (1 − 𝜇)
𝑧, 𝑧 ∈ 𝑈.

(52)

Applying Lemma 1 yields

𝑝 (𝑧) ≺
1

𝜇𝑛𝑧1/𝑛𝜇
∫
𝑧

0

( (𝑛 [(𝑛 + 1) (] − 𝛾) − 𝛼]

× (1 − 𝛽) (1 + 𝑛𝜇))

× ((𝑛 + 1 − 𝛽) (1 − 𝜇))
−1

) 𝑡1/𝑛𝜇𝑑𝑡.

(53)

This implies that

]𝑧𝑓 (𝑧) −
𝛼

1 − 𝜇
(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
)

≺
𝑛 (1 − 𝛽) [(𝑛 + 1) (] − 𝛾) − 𝛼]

(𝑛 + 1 − 𝛽) (1 − 𝜇)
𝑧,

(54)

and thus

]𝑧𝑓 (𝑧) −

𝛼

1 − 𝜇
(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
)


≤
𝑛 (1 − 𝛽) [(𝑛 + 1) (] − 𝛾) − 𝛼]

(𝑛 + 1 − 𝛽) (1 − 𝜇)

=
𝑛 (1 − 𝛽) [] (𝑛 + 1) − 𝛼/ (1 − 𝜇)]

𝑛 + 1 − 𝛽
,

(55)
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which, in comparison with Lemma 8, gives the required
result.

Further the result is sharp for 𝑓(𝑧) = 𝑧 + (1 − 𝛽)𝑧𝑛+1/(𝑛 +
1 − 𝛽) which satisfies


𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
)


=
𝑛 [(𝑛 + 1) (] − 𝛾) − 𝛼] (1 − 𝛽) (1 + 𝑛𝜇)

(𝑛 + 1 − 𝛽) (1 − 𝜇)
.

(56)

Remark 12. For 𝑓 ∈ A
𝑛
, the choice 𝛼 = 0 = 𝛾 in Theorem 11

results in

𝛿𝑧𝑓


(𝑧)
 <

𝑛 [𝛿 (𝑛 + 1)] (1 − 𝛽)

𝑛 + 1 − 𝛽
⇒ 𝑓 ∈ S

1
(𝛽) ⊂ S

∗ (𝛽) .

(57)

For 𝛿 = 1, this coincides with Lemma 8 at 𝛼 = 0, which was
also exhibited in [13, Corollary 2.4]. Further, for 𝑛 = 1, (57)
gives

𝛿𝑧𝑓


(𝑧)
 <

2𝛿 (1 − 𝛽)

2 − 𝛽
⇒ 𝑓 ∈ S

1
(𝛽) ⊂ S

∗ (𝛽) , (58)

which for 𝛿 = 1 and 𝛽 = 0 is the result given in [8, Theorem
1].

Corresponding to Theorem 11, a sufficient condition for
starlikeness of order 𝛽 for functions defined by a triple
integral operator is obtained in the following result.

Theorem 13. Let 0 ≤ 𝛼 < (1−𝜇)(𝑛+1)], 𝛼 ≥ 𝛾 ≥ 0, 𝛿 > 𝛾+𝛼,
0 ≤ 𝛽 < 1, and 𝑔 ∈ H. Further let

] −
𝛼𝜇

1 − 𝜇
= 𝛿 − 𝛾, ]𝜇 = 𝛾. (59)

If

𝑔 (𝑧)
 <

𝑛 [(𝑛 + 1) (] − 𝛾) − 𝛼] (1 − 𝛽) (1 + 𝑛𝜇)

(𝑛 + 1 − 𝛽) (1 − 𝜇)
, (60)

then

𝑓 (𝑧) = 𝑧 +
𝑧𝑛+1

𝛾
∭
1

0

𝑔 (𝑟𝑠𝑡𝑧) 𝑟
(1/])[𝑛]−𝛼/(1−𝜇)]

× 𝑠𝑛𝑡
𝑛−1+1/𝜇

𝑑𝑟 𝑑𝑠 𝑑𝑡

(61)

satisfies 𝑓 ∈ S
1
(𝛽) ⊂ S∗(𝛽).

Proof. Let 𝑓 ∈ A
𝑛
satisfy

𝛾𝑧2𝑓 (𝑧) + 𝛿𝑧𝑓 (𝑧) − 𝛼(𝑓 (𝑧) −
𝑓 (𝑧)

𝑧
) = 𝑧𝑛𝑔 (𝑧) .

(62)

From Theorem 11, we find that the solution of (62) lies in
S∗(𝛽). Now (62) becomes

𝑝 (𝑧) + 𝜇𝑧𝑝 (𝑧) = 𝑧𝑛𝑔 (𝑧) , (63)

where

𝑝 (𝑧) = ]𝑧𝑓 (𝑧) −
𝛼

1 − 𝜇
(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
) . (64)

Equation (63) has a solution

𝑝 (𝑧) =
𝑧−1/𝜇

𝜇
∫
𝑧

0

𝑔 (𝜉) 𝜉
𝑛+1/𝜇−1𝑑𝜉

=
𝑧𝑛

𝜇
∫
1

0

𝑔 (𝑡𝑧) 𝑡
𝑛+1/𝜇−1𝑑𝑡 = 𝑧𝑛𝜙 (𝑧) ,

(65)

with

𝜙 (𝑧) =
1

𝜇
∫
1

0

𝑔 (𝑡𝑧) 𝑡
𝑛+1/𝜇−1𝑑𝑡. (66)

In view of Lemma 10, the equation

]𝑧𝑓 (𝑧) −
𝛼

1 − 𝜇
(𝑓 (𝑧) −

𝑓 (𝑧)

𝑧
) = 𝑧𝑛𝜙 (𝑧) (67)

has a solution

𝑓 (𝑧) = 𝑧 +
𝑧𝑛+1

]
∬
1

0

𝜙 (𝑟𝑠𝑧) 𝑟
(1/])[𝑛]−𝛼/(1−𝜇)]𝑠𝑛−1𝑑𝑟 𝑑𝑠

= 𝑧 +
𝑧𝑛+1

𝜇]
∭
1

0

𝑔 (𝑟𝑠𝑡𝑧) 𝑟
(1/])[𝑛]−𝛼/(1−𝜇)]

× 𝑠𝑛−1𝑡𝑛−1+1/𝜇𝑑𝑟 𝑑𝑠 𝑑𝑡

= 𝑧 +
𝑧𝑛+1

𝛾
∭
1

0

𝑔 (𝑟𝑠𝑡𝑧) 𝑟
(1/])[𝑛]−𝛼/(1−𝜇)]

× 𝑠𝑛−1𝑡𝑛−1+1/𝜇𝑑𝑟 𝑑𝑠 𝑑𝑡.

(68)

This completes the proof.
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