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By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear
wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling
wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and
nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave
solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot
the graphs of some representative traveling wave solutions.

1. Introduction

In this work, wewill study the following high-order nonlinear
wave equation of Korteweg-de Vries type:
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This is an important model of water wave derived by Fokas
[1] in 1995, where 𝛼 = 3𝐴/2, 𝛽 = 𝐵/6, and 0 < 𝛼, 𝛽 ≪ 1.

Obviously, (1) is a very complex partial deferential equa-
tion, it has nine parameters 𝛼, 𝛽, 𝜌

𝑖
, (𝑖 = 1, 2, . . . , 7), and

contains both high-order derivative terms and multinonlin-
ear terms. It is very different from the original KdV equation.
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1
, 𝜌
2
, 𝜌
3
, 𝜌
4
, 𝜌
5
, 𝜌
6
, 𝜌
7
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Tzirtzilakis et al. [2] investigated solitary wave solutions of (1)
and they called (1) high-order wave equation of Korteweg-de
Vries type. Just as Tzirtzilakis et al. [2] said that investigations
of solitary wave solutions of (1) are more physically and
practically meaningful. The motion described by the model
(1) is a 2-dimensional, inviscid, and incompressible fluid
(water) lying above a horizontal flat bottom located at 𝑦 =

−ℏ
0
(ℏ
0
is a constant) and letting the air above the water.

It turns out that, for such a system if the vorticity is zero

initially, it remains zero.The fluids (waters) analyzed by Fokas
are only irrotational flows. This system is characterized by
two parameters 𝛼 = 3𝐴/2 and 𝛽 = 𝐵/6 with 𝐴 = 𝑎/ℏ

0

and 𝐵 = ℏ
2

0
/ℓ
2, where 𝑎 and ℓ are two typical values of the

amplitude and of thewavelength of thewaves.Theparameters
𝑎, ℏ
0
, and ℓ satisfy the condition 𝑎 ≪ ℏ

0
< ℓ because the

system is a model of short amplitude and long wavelength.
When 𝜌
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reduced to the classical (original) KdV equation:
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In [1], Fokas assumed that 𝑂(𝛽) < 𝑂(𝛼) and 𝛽 ≈ 𝛼
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rding to this assumption,we easily know that𝑂(𝛼2𝛽) < 𝑂(𝛼
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𝛽) < 𝑂(𝛼𝛽). Neglecting two high-order infini-

tesimal terms of 𝑂(𝛼3, 𝛼2𝛽), (1) can be reduced to another
high-order wave equation of KdV type [2–5] as follows:
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Equation (3) can be regarded as a special case of (1) for 𝜌
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= 0. In [1], it was observed that (3) can be
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to a completely integrable PDE as follows:
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Equation (5) was first derived in [6] by using the method of
bi-Hamiltonian systems and its Lax pair was given in [7].

Neglecting the highest-order infinitesimal term of
𝑂(𝛼
2
𝛽), (1) can be reduced to a new generalized KdV

equation as follows:
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We call it a generalized KdV equation of neglecting the
highest-order infinitesimal term [8]. In fact, (6) can be
regarded as another special case of (1) for 𝜌

5
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it is also third-order approximate equation of higher-order
KdV type.

From the above references and the references cited
therein, we know that (1) is a very important model of water
wave. However, (1) is too complex to obtain its exact solution
under universal conditions. Only under some very special
parametric conditions, its exact solutions were obtained in
existing literatures [2–5, 8–12]. In addition, in [13], under
different kinds of parametric conditions,Marinakis discussed
two integrable cases for the third-order approximationmodel
(1). In [14], Marinakis proved that (1) and its some special
cases are integrable. Generally, a system is regarded as that it is
integrable if it has Darboux transformation, Lax pair, bilinear
structure and multilinear structure, Hamilton function, first
integral function (equation), symmetrical structure (i.e.,
symmetry), conservation law, and so forth. In [15], Gandarias
and Bruzon proved that (1) is self-adjoint if and only if 𝜌
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From the above research backgrounds of (1), we can see
that its exact solutions under universal conditions are hard
to obtain because it is highly nonlinear equation and most
probably it is not integrable equation in general. Thus, large
numbers of research results are still concentrated on the
generalized KdV, mKdV equations [16, 17] and other some
high-order equations with KdV type, such as KdV-Burgers
equation [18, 19] and KdV-Burgers-Kuramoto equation [20].
Therefore, studying solvability and finding exact solutions
of (1) within more extensive parameter ranges are very
important and necessary. In this paper, based on the works
in [8], by using the integral bifurcation method [21], we
will investigate solvable conditions and exact traveling wave
solutions of (1) within more extensive parameter ranges. It
is different from those special cases which were considered
by authors in existing literatures; we will discuss a newly
solvable case 𝜌
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parametric conditions. Though this is still a special case for
(1), it is more general than the cases on the assumptions of
parametric conditions which appeared in existing literatures.

In particular, the results which will be obtained in this paper
are very new and different from those in [8, 9].

The rest of this paper is organized as follows. In Section 2,
we will derive two-dimensional dynamical system which is
equivalent to (1) and give its first integrals. In Section 3, by
using the integral bifurcation method, we will investigate
different kinds of exact traveling wave solutions of (1) within
more extensive parameter ranges and discuss their dynamic
properties.

2. The First Integrals of (1) under
Newly Integrable Conditions

Making a transformation 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝑥 − 𝑐𝑡, (1)
can be reduced to the following ODE:
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where 𝜙 = 𝑑𝜙/𝑑𝜉, 𝑐 is a wave velocity which moves along
the direction of 𝑥-axis, and 𝑐 ̸= 0. It is easy to find that (7)
can be integrated once under the conditions 𝜌
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are newly solvable conditions and they are different from
others in [8, 9, 13–15], and the ranges of parametric values are
more extensive than others in existing references.Thus, under
these solvable conditions, integrating (7) once and setting the
integral constant as zero yield
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̸= 0, (8) can be reduced to a
singular two-dimensional system as follows:
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where 𝜙 = 𝑑𝜙/𝑑𝜉 = 𝑦. However, when 1 + 𝛼𝜌
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0, (9) is not equivalent to (8). In order to obtain a system
which is equivalent to (8), we make the following scalar
transformation
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Equation (9) can be changed into a regular two-dimensional
system as follows:

𝑑𝜙

𝑑𝜏
= 12𝛽 (1 + 𝛼𝜌

2
𝜙 + 𝛼
2
𝜌
5
𝜙
2
) 𝑦,

𝑑𝑦

𝑑𝜏
= 12 (𝑐 − 1) 𝜙 − 6𝛼𝜙

2
− 4𝜌
1
𝛼
2
𝜙
3
− 3𝜌
4
𝛼
3
𝜙
4

− 6𝑚𝛼𝛽𝜌
2
𝑦
2
− 12𝑚𝛼

2
𝛽𝜌
5
𝜙𝑦
2
,

(11)

where 𝜏 is a parameter. Thus, (11) is equivalent to (8). Obvi-
ously, (11) and (9) have the same one first integral as follows:
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It is easy to find that the integral of right side of (12) is
always integrable once the 𝑚 is given by an idiographic
integer. In fact, the first integrals obtained by (12) have certain
determinate orderliness; see the following discussions.
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(iv) When𝑚 is an integer and𝑚 ≥ 4, (12) can be reduced
to the following form:
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from (12) once the 𝑚 is given by an idiographic integer; we
omit them here because their expressions are tediously long.

3. Exact Traveling Wave Solutions of (1) and
Their Dynamic Properties

In this section, we will investigate exact traveling wave
solutions of (1) and discuss their dynamic properties under
different kinds of parametric conditions in the greatly possi-
ble parameter regions; see the following discussions. For the
convenience of discussion, we always consider the cases of all
the integral constants as zero (i.e., ℎ
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, 𝑘
1
) is a Legendre’s incomplete elliptic integral

of the second kind with 𝜃
1

= arcsin√(𝜂 − 𝜙
1
)/𝜂, 𝑘

1
=

√−𝜙
2
/(𝜙
1
− 𝜙
2
), and 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝑥 − 𝑡.

(b) When 𝜌
4
> 0, 𝜌

1
> 2√6𝜌

4
/5, 𝑐 = 1, and 𝜌

5
= (1/4)𝜌

2

2
,

substituting (17) into the first equation of (9) yields

𝑑𝜙

√𝑋
21
(𝜙)

+
1

2
𝛼𝜌
2

𝑑𝜙

√𝑋
22
(𝜙)

= ±𝛼√
𝛼𝜌
4

10𝛽
𝑑𝜉, (20)
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where 𝑋
21
(𝜙) = (0 − 𝜙)

3
(𝜙 − 𝜙

2
)(𝜙 − 𝜙

1
) and 𝑋

22
(𝜙) = (0 −

𝜙)(𝜙 − 𝜙
2
)(𝜙 − 𝜙

1
) with 𝜙

1,2
= (−5𝜌

1
∓ 5√𝜌2

1
− 24𝜌

4
/5)/6𝜌

4
𝛼

and 𝜙
1
< 𝜙
2
< 𝜙 < 0. Taking 𝜙(0) = 𝜙

2
as the initial constant

and then integrating (20), we obtain an implicit solution of
(1) as follows:

−
2𝜙
2
+ 𝛼𝜌
2

𝜙
2
√−𝜙
1

𝐹 (𝜃
2
, 𝑘
2
) +

2

𝜙
2
√−𝜙
1

𝐸 (𝜃
2
, 𝑘
2
)

−
2

𝜙
2

√
𝜂 − 𝜙
2

𝜂 (𝜙
1
− 𝜂)

= 𝛼√
𝛼𝜌
4

10𝛽

𝜉
 ,

(21)

where 𝜃
2
= arcsin√𝜙

1
(𝜂 − 𝜙

2
)/𝜙
2
(𝜂 − 𝜙

1
), 𝑘
2
= √𝜙
2
/𝜙
1
, and

𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝑥 − 𝑡.
(c)When 𝜌

4
> 0, 𝜌
1
< −2√6𝜌

4
/5, 𝑐 = 1, and 𝜌

5
= (1/4)𝜌

2

2
,

substituting (17) into the first equation of (9) yields

𝑑𝜙

√𝑋
31
(𝜙)

+
1

2
𝛼𝜌
2

𝑑𝜙

√𝑋
32
(𝜙)

= ±𝛼√
𝛼𝜌
4

10𝛽
𝑑𝜉, (22)

where𝑋
31
(𝜙) = (𝜙

2
− 𝜙)(𝜙 − 𝜙

1
)(𝜙 − 0)

3 and𝑋
32
(𝜙) = (𝜙

2
−

𝜙)(𝜙 − 𝜙
1
)(𝜙 − 0) with 𝜙

1,2
= (−5𝜌

1
∓ 5√𝜌2

1
− 24𝜌

4
/5)/6𝜌

4
𝛼

and 0 < 𝜙
1
< 𝜙 < 𝜙

2
. Taking 𝜙(0) = 𝜙

1
as the initial constant

and then integrating (22), we obtain an implicit solution of
(1) as follows:

2

𝜙
1
√𝜙
2

𝐸 (𝜃
2
, 𝑘
2
) +

𝛼𝜌
2

√𝜙
2

𝐹 (𝜃
2
, 𝑘
2
) = 𝛼√

𝛼𝜌
4

10𝛽

𝜉
 , (23)

where 𝜃
2
and 𝑘

2
are given above and 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 =

𝑥 − 𝑡.
(d) When 𝜌

4
< 0, 𝑐 ̸= 1, and equation (𝑐 − 1) − (1/3)𝛼𝜙 −

(1/6)𝜌
1
𝛼
2
𝜙
2
− (1/10)𝜌

4
𝛼
3
𝜙
3
= 0 has three real roots, substi-

tuting (17) into the first equation of (9) yields

𝑑𝜙

𝜙√𝑋
4
(𝜙)

+
1

2
𝛼𝜌
2

𝑑𝜙

√𝑋
4
(𝜙)

= ±𝛼√−
𝛼𝜌
4

10𝛽
𝑑𝜉, (24)

where𝑋
4
(𝜙) = (𝜙−𝑎

1
)(𝜙−𝑏

1
)(𝜙−𝑐

1
) and the three real roots

𝑎
1
, 𝑏
1
, and 𝑐

1
are defined by 2√−𝑝/3 cos(𝜃/3) − (5𝜌

1
/9𝛼𝜌
4
),

2√−𝑝/3 cos(𝜃/3 + 2𝜋/3) − (5𝜌
1
/9𝛼𝜌
4
), 2√−𝑝/3 cos(𝜃/3 +

4𝜋/3) − (5𝜌
1
/9𝛼𝜌
4
) with 𝑝 = −(5/27)(−18𝜌

4
+ 5𝜌
2

1
)/(𝜌
2

4
𝛼
2
) <

0, 𝑞 = −(10/729)(135𝜌
1
𝜌
4
+ 729𝑐𝜌

2

4
− 25𝜌

3

1
− 729𝜌

2

4
)/(𝜌
3

4
𝛼
3
),

𝜃 = arccos[−(𝑞/2)(−𝑝3/27)]−1/2. We always write 𝑎
1

>

𝑏
1
> 𝑐
1
; that is, the largest root is denoted by 𝑎

1
among the

three real roots. Taking 𝜙(0) = 𝑎
1
as initial value and then

integrating (24) once, we obtain a traveling wave solution as
follows:
1

𝛼2
1

[𝐹 (𝜓, 𝑘
1
) − (𝛼

2

1
− 1)Π (𝜓, 𝛼

2

1
, 𝑘
1
)] +

𝛼𝜌
2

√𝑎
1
− 𝑐
1

𝐹 (𝜓, 𝑘
1
)

= 𝛼√−
𝛼𝜌
4

10𝛽

𝜉
 ,

(25)

where 𝜓 = arcsin√(𝜂 − 𝑎
1
)/(𝜂 − 𝑏

1
), 𝛼
1

= √𝑏
1
/𝑎
1
, 𝑘
1

=

√(𝑏
1
− 𝑐
1
)/(𝑎
1
− 𝑐
1
), and 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝑥 − 𝑐𝑡.

(e) When 𝜌
4
> 0, 𝑐 ̸= 1, and equation (𝑐 − 1) − (1/3)𝛼𝜙 −

(1/6)𝜌
1
𝛼
2
𝜙
2
− (1/10)𝜌

4
𝛼
3
𝜙
3
= 0 has three real roots 𝑎

1
, 𝑏
1
,

and 𝑐
1
, substituting (17) into the first equation of (9) yields

𝑑𝜙

𝜙√𝑋
5
(𝜙)

+
1

2
𝛼𝜌
2

𝑑𝜙

√𝑋
5
(𝜙)

= ±𝛼√
𝛼𝜌
4

10𝛽
𝑑𝜉, (26)

where 𝑋
5
(𝜙) = (𝑎

1
− 𝜙)(𝜙 − 𝑏

1
)(𝜙 − 𝑐

1
) and 𝑎

1
, 𝑏
1
, and 𝑐

1

are given above. Taking 𝜙(0) = 𝑎
1
as initial value and then

integrating (26) once, we obtain a traveling wave solution as
follows:

2

𝑎
1√𝑎
1
− 𝑐
1

Π(𝜑, 𝛼
2

2
, 𝑘
2
) +

𝛼𝜌
2

√𝑎
1
− 𝑐
1

𝐹 (𝜑, 𝑘
2
) = 𝛼√

𝛼𝜌
4

10𝛽

𝜉
 ,

(27)

where 𝜑 = arcsin√(𝑎
1
− 𝜂)/(𝑎

1
− 𝑏
1
), 𝛼
2
= √(𝑎

1
− 𝑏
1
)/𝑎
1
,

𝑘
2
= √(𝑎

1
− 𝑏
1
)/(𝑎
1
− 𝑐
1
), and 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝑥 − 𝑐𝑡.

Case 2. Under the parametric conditions𝑚 = 1, ℎ
1
= 0, 𝜌

5
=

(1/4)𝜌
2

2
, and 𝜌

4
= 0, (13) can be reduced to

𝑦 = ±

𝜙√(𝑐 − 1) − (1/3) 𝛼𝜙 − (1/6) 𝜌
1
𝛼2𝜙2

√𝛽 (1 + (1/2) 𝛼𝜌
2
𝜙)

. (28)

Substituting (28) and 𝜌
5
= (1/4)𝜌

2

2
into the first equation of

(9) yields

𝑑𝜙

𝜙√𝑋
6
(𝜙)

+
1

2
𝛼𝜌
2

𝑑𝜙

√𝑋
6
(𝜙)

= ±
1

√𝛽
𝑑𝜉, (29)

where𝑋
6
(𝜙) = 𝑎+�̃�𝜙+𝑐𝜙

2 with 𝑎 = (𝑐−1), �̃� = − (1/3) 𝛼, and
𝑐 = −(1/6)𝜌

1
𝛼
2. Write Δ = 4𝑎𝑐− �̃�

2
= (1/9)𝛼

2
[6𝜌
1
(𝑐 − 1) + 1].

(a) When 𝑎 > 0, 𝑐 > 0, Δ > 0 (i.e., 𝑐 > 1, −(1/6(𝑐 − 1)) <

𝜌
1
< 0), integrating (29) and setting the integral constant as

zero, we obtain two exact traveling wave solutions of implicit
function type as follows:

−
1

√𝑎
Arsh(

2𝑎 + �̃�𝜂

𝜂√Δ
) +

𝛼𝜌
2

2√𝑐
Arsh(

2𝑐𝜂 + �̃�

√Δ
) = ±

𝜉

√𝛽
,

(30)

where 𝑎, �̃�,𝑐, and Δ are given above and 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with
𝜉 = 𝑥−𝑐𝑡; the “Arsh” is an inverse function of the hyperbolic-
sine function, that is, sinh−1.

(b) When 𝑎 = 0, 𝑐 < 0, Δ > 0 (i.e., 𝑐 = 1, 𝜌
1
> 0),

integrating (29) and setting the integral constant as zero, we
obtain two exact traveling wave solutions of implicit function
type as follows:

2𝑐𝜂 + �̃�

�̃�
= ± sin(√−

𝑐

𝛽
𝜉 ±

𝛼𝜌
2
√−𝑐√�̃�𝜂 + 𝑐𝜂2

�̃�𝜂
) , (31)

where 𝜂(𝑥, 𝑡) = 𝜙(𝜉) with 𝜉 = 𝑥 − 𝑡.
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Case 3. Under the parametric conditions 𝑚 = 1, ℎ
1
= 0, 𝑐 =

(𝜌
4
/10𝜌
2
𝜌
5
) + 1 − (1/3𝜌

2
), and 𝜌

1
= (2𝜌

5
/𝜌
2
) − (3𝜌

4
/5𝜌
2
) +

(3𝜌
2
𝜌
4
/5𝜌
5
), (13) can be reduced to

𝑦 = ±𝜙√
3𝜌
4
− 10𝜌

5

30𝛽𝜌
2
𝜌
5

−
𝛼𝜌
4

10𝛽𝜌
5

𝜙. (32)

(a) When ((3𝜌
4
− 10𝜌
5
)/𝜌
2
𝜌
5
) > 0 and 𝜌

4
̸= 0, substituting

(32) into the first equation of (9) to integrate, we obtain a
smooth solitary wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 10𝜌

5

3𝛼𝜌
2
𝜌
4

sech2(1

2
√
3𝜌
4
− 10𝜌

5

30𝛽𝜌
2
𝜌
5

𝜉) ,

(33)

where 𝜉 = 𝑥 − [(𝜌
4
/10𝜌
2
𝜌
5
) + 1 − (1/3𝜌

2
)]𝑡.

(b) When ((3𝜌
4
−10𝜌
5
)/𝜌
2
𝜌
5
) < 0 and 𝜌

4
̸= 0, substituting

(32) into the first equation of (9) to integrate, we obtain a
periodic wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 10𝜌

5

3𝛼𝜌
2
𝜌
4

sec2(1

2
√
10𝜌
5
− 3𝜌
4

30𝛽𝜌
2
𝜌
5

𝜉) ,

(34)

where 𝜉 = 𝑥 − [(𝜌
4
/10𝜌
2
𝜌
5
) + 1 − (1/3𝜌

2
)]𝑡.

(c) When 𝜌
2
< 0 and 𝜌

4
= 0, (32) becomes

𝑦 = ±
1

√−3𝛽𝜌
2

𝜙, (𝜙 > 0) . (35)

Taking 𝜙(0) = 1 as initial value, substituting (35) into the first
equation of (9) to integrate, we obtain a peakon solution as
follows:

𝜂 (𝑥, 𝑡) = 𝑒
−(1/√−3𝛽𝜌

2
)|𝑥−(1−(1/3𝜌

2
))𝑡|
. (36)

Case 4. Under the parametric conditions𝑚 = 2, ℎ
2
= 0, and

𝜌
4
= 0, (14) can be reduced to

𝑦 = ±

𝜙√(𝑐 − 1) + 𝑎
1
𝜙 + 𝑎
2
𝜙2 + 𝑎

3
𝜙3 + 𝑎

4
𝜙4

√𝛽 (1 + 𝛼𝜌
2
𝜙 + 𝛼2𝜌

5
𝜙2)

, (37)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
are given above. Substituting (37) into

the first equation of (9) yields

𝑑𝜙

𝜙√𝑅
1
(𝜙)

+ 𝛼𝜌
2

𝑑𝜙

√𝑅
1
(𝜙)

+ 𝛼
2
𝜌
5

𝜙𝑑𝜙

√𝑅
1
(𝜙)

= ±
𝑑𝜉

√𝛽
, (38)

where 𝑅
1
(𝜙) = (𝑐 − 1) + 𝑎

1
𝜙 + 𝑎
2
𝜙
2
+ 𝑎
3
𝜙
3
+ 𝑎
4
𝜙
4. In fact,

the cases of roots of the equation 𝑅
1
(𝜙) = 0 determine the

forms of solutions of (38); different kinds of cases of roots
correspond to different kinds of solutions of (38). However,
the expressions of the roots of the equation𝑅

1
(𝜙) = 0 are very

complex, so we omit these expressions. Of course, the roots of
the equation 𝑅

1
(𝜙) = 0 can be solved once the parameters 𝛼,

𝜌
1
, 𝜌
2
, and 𝜌

5
are fixed concretely. For example, we can obtain

four real roots 2.919208358, −1.821216553, −3.236247427,
and −10.46174438 of the equation 𝑅

1
(𝜙) = 0 when 𝛼 = 0.5,

𝜌
1
= 6.0, 𝜌

2
= 2.0, 𝜌

5
= 0.4, and 𝑐 = 4 by using computer.

(1) When 𝜌
1
𝜌
5
> 0 and the equation 𝑅

1
(𝜙) = 0 has four

real roots 𝜙
1
, 𝜙
2
, 𝜙
3
, and 𝜙

4
, respectively, taking 𝜙(0) = 𝜙

1
, 𝜙
2
,

𝜙
3
,𝜙
4
as initial value and then integrating (38), we obtain four

kinds of exact traveling wave solutions of implicit function
type as follows:

− Ω
1
Π(𝜇, 𝜅

1
, 𝑟) + 𝜔(

1

𝜙
4

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜙
4
) F (𝜇, 𝑟)

− Ω
2
Π(𝜇, 𝜅

2
, 𝑟) =

1

3
𝛼
2

√
𝜌
1
𝜌
5

𝛽

𝜉
 ,

(39)

Ω
3
Π(𝜆, 𝜅

3
, 𝑟) + 𝜔(

1

𝜙
3

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜙
3
) F (𝜆, 𝑟)

+ Ω
4
Π(𝜆, 𝜅

4
, 𝑟) =

1

3
𝛼
2

√
𝜌
1
𝜌
5

𝛽

𝜉
 ,

(40)

Ω
1
Π(𝛾, 𝜅

5
, 𝑟) + 𝜔(

1

𝜙
2

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜙
2
) F (𝛾, 𝑟)

+ Ω
2
Π(𝛾, 𝜅

6
, 𝑟) =

1

3
𝛼
2

√
𝜌
1
𝜌
5

𝛽

𝜉
 ,

(41)

− Ω
3
Π(𝜗, 𝜅

7
, 𝑟) + 𝜔(

1

𝜙
1

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜙
1
) F (𝜗, 𝑟)

− Ω
4
Π(𝜗, 𝜅

8
, 𝑟) =

1

3
𝛼
2

√
𝜌
1
𝜌
5

𝛽

𝜉
 ,

(42)

where 𝜔 = 2/√(𝜙
1
− 𝜙
3
)(𝜙
2
− 𝜙
4
), Ω
1
= 𝜔(𝜙

1
− 𝜙
4
)/𝜙
1
𝜙
4
,

Ω
2
= 𝜔𝛼
2
𝜌
5
(𝜙
4
−𝜙
1
),Ω
3
= 𝜔(𝜙

3
−𝜙
2
)/𝜙
2
𝜙
3
,Ω
4
= 𝜔𝛼
2
𝜌
5
(𝜙
2
−

𝜙
3
), 𝜇 = arcsin√(𝜙

2
− 𝜙
4
)(𝜙
1
− 𝜂)/(𝜙

1
− 𝜙
2
)(𝜂 − 𝜙

4
), and

𝜂 is limited by 𝜙
1

≥ 𝜂 > 𝜙
2

> 𝜙
3

> 𝜙
4
;

𝜆 = arcsin√(𝜙
1
− 𝜙
3
)(𝜂 − 𝜙

2
)/(𝜙
1
− 𝜙
2
)(𝜂 − 𝜙

4
) and 𝜂 is

limited by 𝜙
1

≥ 𝜂 > 𝜙
2

> 𝜙
3

> 𝜙
4
; 𝛾 =

arcsin√(𝜙
2
− 𝜙
4
)(𝜙
3
− 𝜂)/(𝜙

3
− 𝜙
4
)(𝜙
2
− 𝜂) and 𝜂 is lim-

ited by 𝜙
1

> 𝜙
2

> 𝜙
3

> 𝜂 ≥ 𝜙
4
; 𝜗 =

arcsin√(𝜙
1
− 𝜙
3
)(𝜂 − 𝜙

4
)/(𝜙
3
− 𝜙
4
)(𝜙
1
− 𝜂) and 𝜂 is limited

by 𝜙
1
> 𝜙
2
> 𝜙
3
≥ 𝜂 > 𝜙

4
, and 𝜅

1
= 𝜙
4
(𝜙
2
− 𝜙
1
)/𝜙
1
(𝜙
2
− 𝜙
4
),

𝜅
2
= (𝜙
2
−𝜙
1
)/(𝜙
2
−𝜙
4
), 𝜅
3
= 𝜙
3
(𝜙
1
−𝜙
2
)/𝜙
2
(𝜙
1
−𝜙
3
), 𝜅
4
= (𝜙
1
−

𝜙
2
)/(𝜙
1
−𝜙
3
), 𝜅
5
= 𝜙
2
(𝜙
3
−𝜙
4
)/𝜙
3
(𝜙
2
−𝜙
4
), 𝜅
6
= (𝜙
3
−𝜙
4
)/(𝜙
2
−

𝜙
4
), 𝜅
7
= 𝜙
1
(𝜙
4
− 𝜙
3
)/𝜙
4
(𝜙
1
− 𝜙
3
), 𝜅
8
= (𝜙
4
− 𝜙
3
)/(𝜙
1
− 𝜙
3
),

and 𝑟 = √(𝜙
1
− 𝜙
2
)(𝜙
3
− 𝜙
4
)/(𝜙
1
− 𝜙
3
)(𝜙
2
− 𝜙
4
).

(2) When 𝜌
1
𝜌
5
< 0 and the equation 𝑅

1
(𝜙) = 0 has four

real roots 𝜑
1
, 𝜑
2
, 𝜑
3
, and 𝜑

4
, respectively, taking 𝜙(0) =

𝜑
1
, 𝜑
2
, 𝜑
3
, 𝜑
4
as initial value and then integrating (38), we

obtain another four kinds of exact traveling wave solutions of
implicit function type as follows:

𝑄
1
Π(], 𝑚

1
, 𝑞) + 𝜔(

1

𝜑
2

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜑
2
) F (], 𝑞)

+ 𝑄
2
Π(], 𝑚

2
, 𝑞) =

1

3
𝛼
2

√−
𝜌
1
𝜌
5

𝛽

𝜉
 ,



6 Abstract and Applied Analysis

− 𝑄
1
Π(𝜖,𝑚

3
, 𝑞) + 𝜔(

1

𝜑
1

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜑
1
) F (𝜖, 𝑞)

− 𝑄
2
Π(𝜖,𝑚

4
, 𝑞) =

1

3
𝛼
2

√−
𝜌
1
𝜌
5

𝛽

𝜉
 ,

𝑄
3
Π(𝛿,𝑚

5
, 𝑞) + 𝜔(

1

𝜑
4

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜑
4
) F (𝛿, 𝑞)

+ 𝑄
4
Π(𝛿,𝑚

6
, 𝑞) =

1

3
𝛼
2

√−
𝜌
1
𝜌
5

𝛽

𝜉
 ,

− 𝑄
3
Π(𝜁,𝑚

7
, 𝑞) + 𝜔(

1

𝜑
3

+ 𝛼𝜌
2
+ 𝛼
2
𝜌
5
𝜑
3
) F (𝜁, 𝑞)

− 𝑄
4
Π(𝜁,𝑚

8
, 𝑞) =

1

3
𝛼
2

√−
𝜌
1
𝜌
5

𝛽

𝜉
 ,

(43)

where 𝑄
1

= 𝜔(𝜑
2
− 𝜑
1
)/𝜑
1
𝜑
2
, 𝑄
2

= 𝜔𝛼
2
𝜌
5
(𝜑
1
− 𝜑
2
),

𝑄
3

= 𝜔(𝜑
4

− 𝜑
3
)/𝜑
3
𝜑
4
, 𝑄
4

= 𝜔𝛼
2
𝜌
5
(𝜑
3

− 𝜑
4
),

] = arcsin√(𝜑
2
− 𝜑
4
)(𝜂 − 𝜑

1
)/(𝜑
1
− 𝜑
4
)(𝜂 − 𝜑

2
), and 𝜂

is defined by 𝜑
1

≥ 𝜂 > 𝜑
2

> 𝜑
3

> 𝜑
4
;

𝜖 = arcsin√(𝜑
1
− 𝜑
3
)(𝜑
2
− 𝜂)/(𝜑

2
− 𝜑
3
)(𝜑
1
− 𝜂) and 𝜂

is defined by 𝜑
1

> 𝜑
2

> 𝜂 ≥ 𝜑
3

> 𝜑
4
;

𝛿 = arcsin√(𝜑
2
− 𝜑
4
)(𝜂 − 𝜑

3
)/(𝜑
2
− 𝜑
3
)(𝜂 − 𝜑

4
) and 𝜂 is

defined by𝜑
1

> 𝜑
2

≥ 𝜂 > 𝜑
3

> 𝜑
4
; 𝜁 =

arcsin√(𝜑
1
− 𝜑
3
)(𝜑
4
− 𝜂)/(𝜑

1
− 𝜑
4
)(𝜑
3
− 𝜂) and 𝜂 is defined

by 𝜑
1

> 𝜑
2

> 𝜑
3

> 𝜑
4

> 𝜂, and 𝑚
1

= 𝜑
2
(𝜑
1
−

𝜑
4
)/𝜑
1
(𝜑
2
− 𝜑
4
), 𝑚
2
= (𝜑
1
− 𝜑
4
)/(𝜑
2
− 𝜑
4
), 𝑚
3
= 𝜑
1
(𝜑
2
−

𝜑
3
)/𝜑
2
(𝜑
1
− 𝜑
3
), 𝑚
4
= (𝜑
2
− 𝜑
3
)/(𝜑
1
− 𝜑
3
), 𝑚
5
= 𝜑
4
(𝜑
2
−

𝜑
3
)/𝜑
3
(𝜑
2
− 𝜑
4
), 𝑚
6
= (𝜑
2
− 𝜑
3
)/(𝜑
2
− 𝜑
4
), 𝑚
7
= 𝜑
3
(𝜑
1
−

𝜑
4
)/𝜑
4
(𝜑
1
− 𝜑
3
), 𝑚
8

= (𝜑
1
− 𝜑
4
)/(𝜑
1
− 𝜑
3
), and 𝑞 =

√(𝜑
2
− 𝜑
3
)(𝜑
1
− 𝜑
4
)/(𝜑
1
− 𝜑
3
)(𝜑
2
− 𝜑
4
).

Case 5. Under the parametric conditions 𝑚 = 2, ℎ
2
= 0,𝑐 =

(3𝜌
4
/56𝜌
2
𝜌
5
)+1−(1/4𝜌

2
), and 𝜌

1
= (9𝜌
5
/4𝜌
2
)−(27𝜌

4
/56𝜌
2
)+

(15𝜌
2
𝜌
4
/28𝜌
5
), (14) can be reduced to

𝑦 = ±𝜙√
3𝜌
4
− 14𝜌

5

56𝛽𝜌
2
𝜌
5

−
𝛼𝜌
4

14𝛽𝜌
5

𝜙. (44)

(a) When (3𝜌
4
− 14𝜌

5
)/𝜌
2
𝜌
5
> 0 and 𝜌

4
̸= 0, substituting

(44) into the first equation of (9) to integrate, we obtain a
smooth solitary wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 14𝜌

5

4𝛼𝜌
2
𝜌
4

sech2(1

2
√
3𝜌
4
− 14𝜌

5

56𝛽𝜌
2
𝜌
5

𝜉) ,

(45)

where 𝜉 = 𝑥 − [(3𝜌
4
/56𝜌
2
𝜌
5
) + 1 − (1/4𝜌

2
)]𝑡.

(b) When (3𝜌
4
− 14𝜌

5
/𝜌
2
𝜌
5
) < 0 and 𝜌

4
̸= 0, substituting

(44) into the first equation of (9) to integrate, we obtain a
periodic wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 14𝜌

5

4𝛼𝜌
2
𝜌
4

sec2(1

2
√
14𝜌
5
− 3𝜌
4

56𝛽𝜌
2
𝜌
5

𝜉) ,

(46)

where 𝜉 = 𝑥 − [(3𝜌
4
/56𝜌
2
𝜌
5
) + 1 − (1/4𝜌

2
)]𝑡.

(c) When 𝜌
2
< 0 and 𝜌

4
= 0, (44) becomes

𝑦 = ±
1

2√−𝛽𝜌
2

𝜙, (𝜙 > 0) . (47)

Taking 𝜙(0) = 1 as initial value, substituting (47) into the first
equation of (9) to integrate, we obtain a peakon solution as
follows:

𝜂 (𝑥, 𝑡) = 𝑒
−(1/2√−𝛽𝜌

2
)|𝑥−(1−(1/4𝜌

2
))𝑡|
. (48)

Case 6. Under the parametric conditions 𝑚 = 3, ℎ
3
= 0, 𝑐 =

(𝜌
4
/30𝜌
2
𝜌
5
) + 1 − (1/5𝜌

2
), and 𝜌

1
= (12𝜌

5
/5𝜌
2
) − (2𝜌

4
/5𝜌
2
) +

(𝜌
2
𝜌
4
/2𝜌
5
), (15) can be reduced to

𝑦 = ±𝜙√
3𝜌
4
− 18𝜌

5

90𝛽𝜌
2
𝜌
5

−
𝛼𝜌
4

18𝛽𝜌
5

𝜙. (49)

(a) When ((3𝜌
4
− 18𝜌
5
)/𝜌
2
𝜌
5
) > 0 and 𝜌

4
̸= 0, substituting

(49) into the first equation of (9) to integrate, we obtain a
smooth solitary wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 18𝜌

5

5𝛼𝜌
2
𝜌
4

sech2(1

2
√
3𝜌
4
− 18𝜌

5

90𝛽𝜌
2
𝜌
5

𝜉) ,

(50)

where 𝜉 = 𝑥 − [(𝜌
4
/30𝜌
2
𝜌
5
) + 1 − (1/5𝜌

2
)]𝑡.

(b) When ((3𝜌
4
−18𝜌
5
)/𝜌
2
𝜌
5
) < 0 and 𝜌

4
̸= 0, substituting

(49) into the first equation of (9) to integrate, we obtain a
periodic wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 18𝜌

5

5𝛼𝜌
2
𝜌
4

sec2(1

2
√
18𝜌
5
− 3𝜌
4

90𝛽𝜌
2
𝜌
5

𝜉) ,

(51)

where 𝜉 = 𝑥 − [(𝜌
4
/30𝜌
2
𝜌
5
) + 1 − (1/5𝜌

2
)]𝑡.

(c) When 𝜌
2
< 0 and 𝜌

4
= 0, (49) becomes

𝑦 = ±
1

√−5𝛽𝜌
2

𝜙, (𝜙 > 0) . (52)

Taking 𝜙(0) = 1 as initial value, substituting (52) into the first
equation of (9) to integrate, we obtain a peakon solution as
follows:

𝜂 (𝑥, 𝑡) = 𝑒
−(1/√−5𝛽𝜌

2
)|𝑥−(1−(1/5𝜌

2
))𝑡|
. (53)

Case 7. Under the parametric conditions 𝑚 = 4, ℎ
4
= 0, 𝑐 =

(3𝜌
4
/132𝜌

2
𝜌
5
)+1−(1/6𝜌

2
), and𝜌

1
= (5𝜌
5
/2𝜌
2
)−(15𝜌

4
/44𝜌
2
)+

(21𝜌
2
𝜌
4
/44𝜌
5
), (16) can be reduced to

𝑦 = ±𝜙√
3𝜌
4
− 22𝜌

5

132𝛽𝜌
2
𝜌
5

−
𝛼𝜌
4

22𝛽𝜌
5

𝜙. (54)
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Figure 1: The graphs of solutions (19) and (39) under some fixed parametric values.

(a) When ((3𝜌
4
− 22𝜌
5
)/𝜌
2
𝜌
5
) > 0 and 𝜌

4
̸= 0, substituting

(54) into the first equation of (9) to integrate, we obtain a
smooth solitary wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 22𝜌

5

6𝛼𝜌
2
𝜌
4

sech2(1

2
√
3𝜌
4
− 22𝜌

5

132𝛽𝜌
2
𝜌
5

𝜉) ,

(55)

where 𝜉 = 𝑥 − [(3𝜌
4
/132𝜌

2
𝜌
5
) + 1 − (1/6𝜌

2
)]𝑡.

(b) When ((3𝜌
4
−22𝜌
5
)/𝜌
2
𝜌
5
) < 0 and 𝜌

4
̸= 0, substituting

(54) into the first equation of (9) to integrate, we obtain a
periodic wave solution as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− 22𝜌

5

6𝛼𝜌
2
𝜌
4

sec2(1

2
√
22𝜌
5
− 3𝜌
4

132𝛽𝜌
2
𝜌
5

𝜉) ,

(56)

where 𝜉 = 𝑥 − [(3𝜌
4
/132𝜌

2
𝜌
5
) + 1 − (1/6𝜌

2
)]𝑡.

(c) When 𝜌
2
< 0 and 𝜌

4
= 0, (54) becomes

𝑦 = ±
1

√−6𝛽𝜌
2

𝜙, (𝜙 > 0) . (57)

Taking 𝜙(0) = 1 as initial value, substituting (57) into the first
equation of (9) to integrate, we obtain a peakon solution as
follows:

𝜂 (𝑥, 𝑡) = 𝑒
−(1/√−6𝛽𝜌

2
)|𝑥−(1−(1/6𝜌

2
))𝑡|
. (58)

When the value of 𝑚 goes on increasing, the expression
(16) becomesmore andmore complex; thus we cannot obtain
exact solutions of (1) as in Cases 1, 2, and 4 under general
parameter conditions by integrating this expression. But
the exact smooth solitary wave solutions and nonsmooth

peakon solutions can always be obtained under certain spe-
cial parameter conditions. From Cases 3, 6, and 7, by using
the mathematical induction, we easily obtain the following
results.

Under the parametric conditions ℎ
𝑚
= 0, 𝑐 = (3𝜌

4
/(2𝑚 +

3)(2𝑚+4)𝜌
2
𝜌
5
)+1−(1/(𝑚+2)𝜌

2
), and 𝜌

1
= (3(𝑚+1)𝜌

5
/(𝑚+

2)𝜌
2
)−(9(𝑚+1)𝜌

4
/(2𝑚+3)(2𝑚+4)𝜌

2
)+(3(𝑚+3)𝜌

2
𝜌
4
/4(2𝑚+

3)𝜌
5
) and all-in positive integers𝑚, (16) can be reduced to

𝑦 = ±𝜙√
3𝜌
4
− (4𝑚 + 6) 𝜌

5

(2𝑚 + 3) (2𝑚 + 4) 𝛽𝜌
2
𝜌
5

−
𝛼𝜌
4

(4𝑚 + 6) 𝛽𝜌
5

𝜙.

(59)

(a) When (3𝜌
4
− (4𝑚 + 6)𝜌

5
/𝜌
2
𝜌
5
) > 0 and 𝜌

4
̸= 0, substi-

tuting (59) into the first equation of (9) to integrate, for all-in
positive integers𝑚, we obtain a series of smooth solitary wave
solutions as follows:

𝜂 (𝑥, 𝑡) ≡𝜙 (𝜉) = −
3𝜌
4
− (4𝑚 + 6) 𝜌

5

(𝑚 + 2) 𝛼𝜌
2
𝜌
4

× sech2(1

2
√

3𝜌
4
− (4𝑚 + 6) 𝜌

5

(2𝑚 + 3) (2𝑚 + 4) 𝛽𝜌
2
𝜌
5

𝜉) ,

(60)

where 𝜉 = 𝑥−[(3𝜌
4
/(2𝑚+3)(2𝑚+4)𝜌

2
𝜌
5
)+1−(1/(𝑚+2)𝜌

2
)]𝑡.

Obviously, when𝑚 = 1, 2, 3, 4, the solution (60), respectively,
becomes the solutions (33), (45), (50), and (55).

(b) When ((3𝜌
4
− (4𝑚 + 6)𝜌

5
)/𝜌
2
𝜌
5
) < 0 and 𝜌

4
̸= 0,

substituting (59) into the first equation of (9) to integrate, for



8 Abstract and Applied Analysis

0

0.5

1

1.5

2

2.5

3

−3 −2 −1 1 2
x

𝜂

3

(a) 𝑚 = 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−4 −2 2 4
x

𝜂

(b) 𝑚 = 4

0.2

0.4

0.6

0.8

−15 −10 −5 5 10 15
x

𝜂

(c) 𝑚 = 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−20 −10 10 20
x

𝜂

(d) 𝑚 = 100

Figure 2: The graphs of solution (60) under some fixed parametric values.

all-in positive integers𝑚, we obtain a series of periodic wave
solutions as follows:

𝜂 (𝑥, 𝑡) ≡ 𝜙 (𝜉) = −
3𝜌
4
− (4𝑚 + 6) 𝜌

5

(𝑚 + 2) 𝛼𝜌
2
𝜌
4

× sec2(1

2
√

(4𝑚 + 6) 𝜌
5
− 3𝜌
4

(2𝑚 + 3) (2𝑚 + 4) 𝛽𝜌
2
𝜌
5

𝜉) ,

(61)

where 𝜉 = 𝑥 − [(3𝜌
4
/(2𝑚 + 3)(2𝑚 + 4)𝜌

2
𝜌
5
) + 1 − (1/(𝑚 +

2)𝜌
2
)]𝑡. In particular, when 𝑚 = 1, 2, 3, 4, the solution (61),

respectively, becomes the solutions (34), (46), (51), and (56).

(c) When 𝜌
2
< 0 and 𝜌

4
= 0, (59) becomes

𝑦 = ±
1

− (2𝑚 + 3) (2𝑚 + 4) 𝛽𝜌
2

𝜙, (𝜙 > 0) . (62)

Taking 𝜙(0) = 1 as initial value, substituting (62) into the first
equation of (9) to integrate, for all-in positive integers𝑚, we
obtain a series of peakon solutions as follows:

𝜂 (𝑥, 𝑡) = 𝑒
−(1/√−(𝑚+2)𝛽𝜌

2
)|𝑥−(1−(1/(𝑚+2)𝜌

2
))𝑡|
. (63)

Similarly, when 𝑚 = 1, 2, 3, 4, the solution (63), respectively,
becomes the solutions (36), (48), (53), and (58).
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Figure 3: The graphs of solution (61) under some fixed parametric values.
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Figure 4: The graphs of solution (63) under some fixed parametric values.

In order to intuitively describe and expediently discuss
the dynamic properties of the above exact traveling wave
solutions of implicit type and explicit type, we draw their
profile graphs; see Figures 1, 2, 3, and 4 and the discussions
below them.

When 𝛼 = 0.5, 𝛽 = 0.25, 𝜌
1
= 3, 𝜌
2
= 2, 𝜌
4
= −2.5, 𝑡 = 0.1,

𝑥 ∈ [−3, 3], and 𝜂 ∈ [0, 10], we draw graph of solution (19);
see Figure 1(a). When 𝛼 = 0.5, 𝛽 = 0.25, 𝜌

1
= 6, 𝜌

2
= 2,

𝜌
5
= 0.4, 𝑐 = 4, 𝑡 = 0.01, 𝑥 ∈ [−3, 3], and 𝜂 ∈ [0, 2.8], we draw

profile graph of solution (39); see Figure 1(b).
Figure 1(a) shows a shape of dark broken-soliton; it seems

that a dark soliton is broken. Figure 1(b) shows a shape of
bright broken-soliton; it seems that a bright soliton is broken.

When 𝛼 = 0.5, 𝛽 = 0.25, 𝜌
2
= −0.8, 𝜌

4
= 8, 𝜌

5
= −0.5,

𝑡 = 0.01, and 𝑚 is taking different values, we draw graphs of
solution (60); see Figures 2(a)–2(d).
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Figure 2 shows four smooth solitary waves; it is easy to
find that their amplitudes and width of waves are different;
the amplitude and width of wave decrease as the value of 𝑚
increases under the same parametric conditions.

When 𝛼 = 0.5, 𝛽 = 0.25, 𝜌
2
= −0.8, 𝜌

4
= 8, 𝜌

5
= 0.5,

𝑡 = 0.01, and 𝑚 is taking different values, we draw graphs of
solution (61); see Figures 3(a) and 3(b).

Figure 3 shows two periodic waves of blow-up type; it is
easy to find that their width of waves is also different; the
width of periodic wave increases as the value of 𝑚 increases
under the same parametric conditions.

When 𝛽 = 0.2, 𝜌
2
= −2, 𝑡 = 0.5, and𝑚 is taking different

values, we draw graphs of solution (63); see Figures 4(a) and
4(b).

Figure 4 shows two peakon waves; it is easy to find that
their amplitudes are the same, but the width of waves and
velocities of waves are different; thewidth of wave increases as
the value of𝑚 increases; the velocities ofwaves decrease as the
value of𝑚 increases under the same parametric condition.

4. Conclusion

In this work, by using the integral bifurcation method
together with factoring technique, we investigate exact trav-
eling wave solutions of (1) within more extensive parameter
ranges. Some exact traveling wave solutions such as broken-
soliton solutions (19), (21), (23), (25) (27), (39)–(42), and
(43), periodic wave solutions of blow-up type (34), (46),
(51), (56), and (61), smooth solitary wave solutions (33), (45),
(50), (55), and (60), and nonsmooth peakon solutions (35),
(48), (53), (58), and (63) are obtained. It is very worthy to
mention solutions (60) and (63); solution (60) denotes a
series of smooth solitary waves; solution (63) denotes a series
of nonsmooth peakon waves according as the positive integer
𝑚 increase. Compared with the literature [9], exact solutions
obtained in this paper are much more than those in [9]; only
one exact solitary wave solution is obtained in [9]. Indeed,
we enrich the results of exact solutions based on the works in
[8, 9].

In addition, the results obtained in this work are very
different from those in existing literatures. However, the exact
solutions which we obtained in this paper are not much
yet because the model studied in this work is very complex
equation.Therefore, we hope more and more researchers pay
attention to investigations for exact solutions of (1) in future
work.
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